Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
Today
12:45
Philip Candelas
Abstract

In the process of studying the zeta-function for one parameter families of Calabi-Yau manifolds we have been led to a manifold, for which the quartic numerator of the zeta-function factorises into two quadrics remarkably often. Among these factorisations, we find persistent factorisations; these are determined by a parameter that satisfies an algebraic equation with coefficients in Q, so independent of any particular prime.  We note that these factorisations are due a splitting of Hodge structure and that these special values of the parameter are rank two attractor points in the sense of IIB supergravity. To our knowledge, these points provide the first explicit examples of non-singular, non-rigid rank two attractor points for Calabi-Yau manifolds of full SU(3) holonomy. Modular groups and modular forms arise in relation to these attractor points in a way that, to a physicist, is unexpected. This is a report on joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

 

 

  • String Theory Seminar
Today
14:15
HENRI ELAD ALTMAN
Abstract

In this talk I will introduce a continuous wetting model consisting of the law of a Brownian meander tilted by its local time at a positive level h, with h small. I will prove that this measure converges, as h tends to 0, to the same weak limit as for discrete critical wetting models. I will also discuss the corresponding gradient dynamics, which is expected to converge to a Bessel SPDE admitting the law of a reflecting Brownian motion as invariant measure. This is based on joint work with Jean-Dominique Deuschel and Tal Orenshtein.

  • Stochastic Analysis & Mathematical Finance Seminars
Today
14:15
Abstract

McDuff and Schlenk determined when a four-dimensional symplectic ellipsoid can be symplectically embedded into a four-dimensional ball. They found that if the ellipsoid is close to round, the answer is given by an ``infinite staircase" determined by the odd index Fibonacci numbers, while if the ellipsoid is sufficiently stretched, all obstructions vanish except for the volume obstruction. Infinite staircases have also been found when embedding ellipsoids into polydisks (Frenkel - Muller, Usher) and into the ellipsoid E(2, 3) (Cristofaro-Gardiner - Kleinman). In this talk, we will see how the sharpness of ECH capacities for embedding of ellipsoids implies the existence of infinite staircases for these and three other target spaces.  We will then discuss the relationship with toric varieties, lattice point counting, and the Philadelphia subway system. This is joint work with Dan Cristofaro-Gardiner, Alessia Mandini,
and Ana Rita Pires.

 

  • Geometry and Analysis Seminar
Today
15:45
Daniel Woodhouse
Abstract


A broad challenge in the theory of finitely generated groups is to understand their subgroups. A group is commensurably coHopfian if its finite index subgroups are distinct from its infinite index subgroups (that is to say not abstractly isomorphic). We will focus primarily on hyperbolic groups, and give the first examples of one-ended hyperbolic groups that are not commensurably coHopfian.
This is joint work with Emily Stark.
 

Today
15:45
TOMMASO CONELIS ROSATI
Abstract

"We consider a spatial Lambda-Fleming-Viot process, a model in mathematical biology, with a randomly chosen (rough) selection field. We study the scaling limit of this process in different regimes. This leads to the analysis of semi-discrete approximations of singular SPDEs, in particular the Parabolic Anderson Model and allows to extend previous results to weakly nonlinear cases. The subject presented is based on joint works with Aleksander Klimek and Nicolas Perkowski."

  • Stochastic Analysis & Mathematical Finance Seminars
Today
16:00
Wojtek Wawrów
Abstract

Given a number field K, it is natural to ask whether it has a finite extension with ideal class number one. This question can be translated into a fundamental question in class field theory, namely the class field tower problem. In this talk, we are going to discuss this problem as well as its solution due to Golod and Shafarevich using methods of group cohomology.
 

  • Junior Number Theory Seminar
Today
16:00
Asma Hassannezhad
Abstract

 The Steklov eigenvalue problem is an eigenvalue problem whose spectral parameters appear in the boundary condition. On a Riemannian surface with smooth boundary, Steklov eigenvalues have a very sharp asymptotic expansion. Also, a number of interesting sharp bounds for the $k$th Steklov eigenvalues have been known. We extend these results on orbisurfaces and discuss how the structure of orbifold singularities comes into play. This is joint work with Arias-Marco, Dryden, Gordon, Ray and Stanhope.

  • Partial Differential Equations Seminar
Tomorrow
12:00
Peter Goddard
Abstract

A polynomial form is established for the off-shell CHY scattering equations proposed by Lam and Yao. Re-expressing this in terms of independent Mandelstam invariants provides a new expression for the polynomial scattering equations, immediately valid off shell, which makes it evident that they yield the off-shell amplitudes given by massless ϕ3 Feynman graphs. A CHY expression for individual Feynman graphs, valid even off shell, is established through a recurrence relation.

Tomorrow
12:00
Abstract

It is known that many real-world networks exhibit geometric properties.  Brain networks, social networks, and wireless communication networks are a few examples.  Storage and transmission of the information contained in the topologies and structures of these networks are important tasks, which, given their scale, is often nontrivial.  Although some (but not much) work has been done to characterize and develop compression limits and algorithms for nonspatial graphs, little is known for the spatial case.  In this talk, we will discuss an information theoretic formalism for studying compression limits for a fairly broad class of random geometric graphs.  We will then discuss entropy bounds for these graphs and, time permitting, local (pairwise) connection rules that yield maximum entropy properties in the induced graph distribution.

Tomorrow
12:45
to
14:00
Yusuf Al-Husaini
Abstract

Numerous mathematical models have been proposed for modelling cancerous tumour invasion (Gatenby and Gawlinski 1996), angiogenesis (Owen et al 2008), growth kinetics (Wang et al 2009), response to irradiation (Gao et al 2013) and metastasis (Qiam and Akcay 2018). In this study, we attempt to model the qualitative behavior of growth, invasion, angiogenesis and fragmentation of tumours at the tissue level in an explicitly spatial and continuous manner in two dimensions. We simulate the effectiveness of radiation therapy on a growing tumour in comparison with immunotherapy and propose a novel framework based on vector fields for modelling the impact of interstitial flow on tumour morphology. The results of this model demonstrate the effectiveness of employing a system of partial differential equations along with vector fields for simulating tumour fragmentation and that immunotherapy, when applicable, is substantially more effective than radiation therapy.

  • Junior Applied Mathematics Seminar

Pages

Add to My Calendar