Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
13 January 2014
10:20
Jeremie Szeftel
Abstract

 

In order to control locally a space-time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bound on the curvature tensor on a given space-like hypersuface. I will  present the proof of this conjecture, which sheds light on the specific nonlinear structure of the Einstein equations. This is joint work with S. Klainerman and I. Rodnianski.  

 

  • Partial Differential Equations Seminar
13 January 2014
11:20
Gustav Holzegel, Willie Wai-Yeung Wong
Abstract

 When given an explicit solution to an evolutionary partial differential equation, it is natural to ask whether the solution is stable, and if yes, what is the mechanism for stability and whether this mechanism survives under perturbations of the equation itself. Many familiar linear equations enjoy some notion of stability for the zero solution: solutions of the heat equation dissipate and decay uniformly and exponentially to zero, solutions of the Schrödinger equations disperse at a polynomial rate in time depending on spatial dimension, while solutions of the wave equation enjoy radiative decay (in the presence of at least two spatial dimensions) also at polynomial rates.

For this set of short course sessions, we will focus on the wave equation and its nonlinear perturbations. As mentioned above, the stability mechanism for the linear wave equation is that of radiative decay. Radiative decay depends on the number of spatial dimensions, and hence so does the stability of the zero solution for nonlinear wave equations. By the mid-1980s it was well understood that the stability mechanism survives generally (for “smooth nonlinearities”) when the spatial dimension is at least four, but for lower dimensions (two and three specifically; in dimension one there is no linear stability mechanism to start with) obstructions can arise when the nonlinearities are “stronger” than can be controlled by radiative decay. This led to the discovery of the null condition as a structural condition on the nonlinearities preventing the aforementioned obstructions. But what happens when the null condition is violated? This development spanning a quarter of a century, from F. John’s qualitative analysis of the spherically symmetric case, though S. Alinhac’s sharp control of the asymptotic lifespan, and culminating in D. Christodoulou’s full description of the null geometry, is the subject of this short course.

(1) We will start by reviewing the radiative decay mechanism for wave equations, and indicate the nonlinear stability results for high spatial dimensions. We then turn our attention to the case of three spatial dimensions: after a quick discussion of the null condition for quasilinear wave equations, we sketch, at the semilinear level, what happens when the null condition fails (in particular the asymptotic approximation of the solution by a Riccati equation).

(2) The semilinear picture is built up using a version of the method of characteristics associated with the standard wave operator. Turning to the quasilinear problem we will hence need to understand the characteristic geometry for a variable coefficient wave operator. This leads us to introduce the optical/acoustical function and its associated null structure equations.

(3) From this modern geometric perspective we next discuss, in some detail, the blow-up results obtained in the mid-1980s by F. John for quasilinear wave equations assuming radial symmetry.

(4) Finally, we indicate the main difficulties in extending the analysis to the non-radially-symmetric case, and how they can be resolved à la the recent tour de force of D. Christodoulou. While some knowledge of Lorentzian geometry and dynamics of wave equations will be helpful, this short course should be accessible to also graduate students with training in partial differential equations.

Imperial College London, United Kingdom E-mail address: g.holzegel@imperial.ac.uk

École Polytechnique Fédérale de Lausanne, Switzerland E-mail address: willie.wong@epfl.ch

  • Partial Differential Equations Seminar
13 January 2014
17:20
Jonathan Luk
Abstract
We consider spacetimes arising from perturbations of the interior of Kerr black holes. These spacetimes have a null boundary in the future such that the metric extends continuously beyond. However, the Christoffel symbols may fail to be square integrable in a neighborhood of any point on the boundary. This is joint work with M. Dafermos
  • Partial Differential Equations Seminar
13 January 2014
18:10
Volker Schlue
Abstract

I describe recent unique continuation results for linear wave equations obtained jointly with Spyros Alexakis and Arick Shao. They state, informally speaking, that solutions to the linear wave equation on asymptotically flat spacetimes are completely determined, in a neighbourhood of infinity, from their radiation towards infinity, understood in a suitable sense. We find that the mass of the spacetime plays a decisive role in the analysis.

  • Partial Differential Equations Seminar
14 January 2014
09:00
Abstract
In this talk I will discuss the Cauchy problem for bounded self-gravitating elastic bodies in Einstein gravity. One of the main difficulties is caused by the fact that the spacetime curvature must be discontinuous at the boundary of the body. In order to treat the Cauchy problem, one must show that the jump in the curvature propagates along the timelike boundary of the spacetime track of the body. I will discuss a proof of local well-posedness which takes this behavior into account.
  • Partial Differential Equations Seminar

Pages

Add to My Calendar