Forthcoming events in this series


Tue, 05 Mar 2024
16:00
L6

Hybrid Statistics of the Maxima of a Random Model of the Zeta Function over Short Intervals

Christine Chang
(CUNY Graduate Center)
Abstract

We will present a matching upper and lower bound for the right tail probability of the maximum of a random model of the Riemann zeta function over short intervals.  In particular, we show that the right tail interpolates between that of log-correlated and IID random variables as the interval varies in length. We will also discuss a new normalization for the moments over short intervals. This result follows the recent work of Arguin-Dubach-Hartung and is inspired by a conjecture by Fyodorov-Hiary-Keating on the local maximum over short intervals.



 

Tue, 27 Feb 2024
16:00
L6

Dynamics in interlacing arrays, conditioned walks and the Aztec diamond

Theodoros Assiotis
(University of Edinburgh)
Abstract

I will discuss certain dynamics of interacting particles in interlacing arrays with inhomogeneous, in space and time, jump probabilities and their relations to conditioned random walks and random tilings of the Aztec diamond.

Tue, 13 Feb 2024

16:00 - 17:00
L6

Large-size Behavior of the Entanglement Entropy of Free Disordered Fermions

Leonid Pastur
(King's College London / B. Verkin Institute for Low Temperature Physics and Engineering)
Abstract

We consider a macroscopic system of free lattice fermions, and we are interested in the entanglement entropy (EE) of a large block of size L of the system, treating the rest of the system as the macroscopic environment of the block. Entropy is a widely used quantifier of quantum correlations between a block and its surroundings. We begin with known results (mostly one-dimensional) on the asymptotics form of EE of translation-invariant systems for large L, where for any value of the Fermi energy there are basically two asymptotics known as area law and enhanced (violated ) area law. We then show that in the disordered case and for the Fermi energy belonging to the localized spectrum of a one-body Hamiltonian, the EE obeys the area law for all typical realizations of disorder and any dimension. As for the enhanced area law, it turns out to be possible for some special values of the Fermi energy in the one-dimensional case

Tue, 06 Feb 2024

16:00 - 17:00
L6

Non-constant ground configurations in the disordered ferromagnet and minimal cuts in a random environment.

Michal Bassan
(University of Oxford )
Abstract
The disordered ferromagnet is a disordered version of the ferromagnetic Ising model in which the coupling constants are quenched random, chosen independently from a distribution on the non-negative reals. A ground configuration is an infinite-volume configuration whose energy cannot be reduced by finite modifications. It is a long-standing challenge to ascertain whether the disordered ferromagnet on the Z^D lattice admits non-constant ground configurations. When D=2, the problem is equivalent to the existence of bigeodesics in first-passage percolation, so a negative answer is expected. We provide a positive answer in dimensions D>=4, when the distribution of the coupling constants is sufficiently concentrated.

 
The talk will discuss the problem and its background, and present ideas from the proof. Based on joint work of with Shoni Gilboa and Ron Peled.
Tue, 30 Jan 2024

16:00 - 17:00
L6

Characteristic polynomials, the Hybrid model, and the Ratios Conjecture

Andrew Pearce-Crump
(University of York)
Abstract

In the 1960s Shanks conjectured that the  ζ'(ρ), where ρ is a non-trivial zero of zeta, is both real and positive in the mean. Conjecturing and proving this result has a rich history, but efforts to generalise it to higher moments have so far failed. Building on the work of Keating and Snaith using characteristic polynomials from Random Matrix Theory, the Hybrid model of Gonek, Hughes and Keating, and the Ratios Conjecture of Conrey, Farmer, and Zirnbauer, we have been able to produce new conjectures for the full asymptotics of higher moments of the derivatives of zeta. This is joint work with Chris Hughes.

Tue, 23 Jan 2024

16:00 - 17:00
L6

Combinatorial moment sequences

Natasha Blitvic
(Queen Mary University of London)
Abstract

We will look at a number of interesting examples — some proven, others merely conjectured — of Hamburger moment sequences in combinatorics. We will consider ways in which this positivity may be expected: for instance, in different types of combinatorial statistics on perfect matchings that encode moments of noncommutative analogues of the classical Central Limit Theorem. We will also consider situations in which this positivity may be surprising, and where proving it would open up new approaches to a class of very hard open problems in combinatorics.

Tue, 16 Jan 2024

16:00 - 17:00
L6

Branching selection particle systems and the selection principle.

Julien Berestycki
(Department of Statistics, University of Oxford)
Abstract
The $N$-branching Brownian motion with selection ($N$-BBM) is a particle system consisting of $N$ independent particles that diffuse as Brownian motions in $\mathbb{R}$, branch at rate one, and whose size is kept constant by removing the leftmost particle at each branching event. It is a very simple model for the evolution of a population under selection that has generated some fascinating research since its introduction by Brunet and Derrida in the early 2000s.
 
If one recentre the positions by the position of the left most particle, this system has a stationary distribution. I will show that, as $N\to\infty$ the stationary empirical measure of the $N$-particle system converges to the minimal travelling wave of an associated free boundary PDE. This resolves an open question going back at least to works of e.g. Maillard in 2012.
It follows a recent related result by Oliver Tough (with whom this is joint work) establishing a similar selection principle for the so-called Fleming-Viot particle system.
 
With very best wishes,
Julien
Tue, 28 Nov 2023

16:00 - 17:00
L6

Random tree encodings and snakes

Christina Goldschmidt
(University of Oxford)
Abstract

There are several functional encodings of random trees which are commonly used to prove (among other things) scaling limit results.  We consider two of these, the height process and Lukasiewicz path, in the classical setting of a branching process tree with critical offspring distribution of finite variance, conditioned to have n vertices.  These processes converge jointly in distribution after rescaling by n^{-1/2} to constant multiples of the same standard Brownian excursion, as n goes to infinity.  Their difference (taken with the appropriate constants), however, is a nice example of a discrete snake whose displacements are deterministic given the vertex degrees; to quote Marckert, it may be thought of as a “measure of internal complexity of the tree”.  We prove that this discrete snake converges on rescaling by n^{-1/4} to the Brownian snake driven by a Brownian excursion.  We believe that our methods should also extend to prove convergence of a broad family of other “globally centred” discrete snakes which seem not to be susceptible to the methods of proof employed in earlier works of Marckert and Janson.

This is joint work in progress with Louigi Addario-Berry, Serte Donderwinkel and Rivka Mitchell.

 

Tue, 21 Nov 2023

16:00 - 17:00
L6

Beyond i.i.d. weights: sparse and low-rank deep Neural Networks are also Gaussian Processes

Thiziri Nait Saada
(Mathematical Institute (University of Oxford))
Abstract

The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that enables a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews (2018) to a larger class of initial weight distributions (which we call "pseudo i.i.d."), including the established cases of i.i.d. and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with pseudo i.i.d. distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training.

Tue, 14 Nov 2023

16:00 - 17:00
L6

Percolation phase transition for the vacant set of random walk

Pierre-François Rodriguez
(Imperial College London)
Abstract

The vacant set of the random walk on the torus undergoes a percolation phase transition at Poissonian timescales in dimensions 3 and higher. The talk will review this phenomenon and discuss recent progress regarding the nature of the transition, both for this model and its infinite-volume limit, the vacant set of random interlacements, introduced by Sznitman in Ann. Math., 171 (2010), 2039–2087. The discussion will lead up to recent progress regarding the long purported equality of several critical parameters naturally associated to the transition. 

 

Tue, 07 Nov 2023

16:00 - 17:00
L6

Universal universality breaking for random partitions

Harriet Walsh
(University of Angers)
Abstract

I will talk about a family of measures on partitions (specifically, a case of Okounkov's Schur measures) which are in one-to-one correspondence with models of random unitary matrices and lattice fermions. Under these measures, as the expected size of a partition goes to infinity, the first part of a random partition generically exhibits the same universal asymptotic fluctuations as the largest eigenvalue of a GUE random Hermitian matrix. First, I'll describe how we can tune these measures to exhibit new edge fluctuations at a smaller scale, which naturally generalise the GUE edge behaviour. These new fluctuations are universal, having previously been found for trapped fermions, and when a measure is tuned to have them, the corresponding unitary matrix model is "multicritical". Then, I'll describe how our measures can escape these more general universality classes, when tuned to have several cuts in a certain "Fermi sea". In this case, the breakdown in universality arises from an oscillation phenomenon previously observed in multi-cut Hermitian matrix models. Moreover, we have a one-to-one correspondence with multi-cut unitary matrix models. This is partly based on joint work with Dan Betea and Jérémie Bouttier. 

Tue, 31 Oct 2023

16:00 - 17:00
L6

Bounding the Large Deviations in Selberg's Central Limit Theorem

Louis-Pierre Arguin
(University of Oxford)
Abstract

It was proved by Selberg's in the 1940's that the typical values of the logarithm of the Riemann zeta function on the critical line is distributed like a complex Gaussian random variable. In this talk, I will present recent work with Emma Bailey that extends the Gaussian behavior for the real part to the large deviation regime. This gives a new proof of unconditional upper bounds of the $2k$-moments of zeta for $0\leq k\leq 2$, and lower bounds for $k>0$. I will also discuss the connections with random matrix theory and with the Moments Conjecture of Keating & Snaith. 

 

Tue, 24 Oct 2023

16:00 - 17:00
L6

Correlations of the Riemann zeta function

Michael Curran
(University of Oxford)
Abstract

Abstract: Shifted moments of the Riemann zeta function, introduced by Chandee, are natural generalizations of the moments of zeta. While the moments of zeta capture large values of zeta, the shifted moments also capture how the values of zeta are correlated along the half line. I will describe recent work giving sharp bounds for shifted moments assuming the Riemann hypothesis, improving previous work of Chandee and Ng, Shen, and Wong. I will also discuss some unconditional results about shifted moments with small exponents.

Tue, 17 Oct 2023

16:00 - 17:00
L6

Limiting spectral distributions of random matrices arising in neural networks

Ouns El Harzli
Abstract

We study the distribution of eigenvalues of kernel random matrices where each element is the empirical covariance between the feature map evaluations of a random fully-connected neural network. We show that, under mild assumptions on the non-linear activation function, namely Lipschitz continuity and measurability, the limiting spectral distribution can be written as successive free multiplicative convolutions between the Marchenko-Pastur law and a nonrandom measure specific to the neural network. The latter has no known analytical expression but can be simulated empirically, separately from the random matrices of interest.

Tue, 10 Oct 2023

16:00 - 17:00
L6

Solving spin systems — the Babylonian way

Nicola Kistler
(Goethe University Frankfurt)
Abstract
The replica method, together with Parisi symmetry breaking mechanism, is a powerful tool which allows to compute the limiting free energy of any mean field disordered system. Unfortunately, the tool is dramatically flawed from a mathematical point of view. I will discuss a truly elementary procedure which allows to rigorously implement two (out of three) steps of the procedure, and which allows to represent the free energy of virtually any model from statistical mechanics as a Gaussian mixture model. I will then conclude with some remarks on the ensuing “Babylonian formulas” in relation with : 
1) work by Dellacherie-Martinez-San Martin on M-matrices, potential theory and ultrametricity, the latter being the key yet unjustified assumption of the whole Parisi theory; 
2) work of Mezard-Virasoro suggesting that the onset of scales and the universal hierarchical self-organisation of random systems is intimately linked to hidden geometrical properties of large random matrices which satisfy rules reminiscent of the popular SUDOKU game.
Tue, 30 May 2023
16:00
L6

Fermionic semiclassical L^p estimates

Ngoc Nhi Nguyen
(University of Milan)
Abstract

Spectral properties of Schrödinger operators are studied a lot in mathematical physics. They can give the description of trapped fermionic particles. This presentation will focus on the non-interacting case. I will explain why it is relevant to estimate L^p bounds of orthonormal families of eigenfuntions at the semiclassical regime and then, give the main ideas of the proof.

Tue, 23 May 2023

16:00 - 17:00
L6

Moments of the high order derivatives of CUE characteristic polynomials

Fei Wei
(University of Oxford)
Abstract

In this talk, I will firstly give asymptotic formulas for the moments of the n-th derivative of the characteristic polynomials from the CUE. Secondly, I will talk about the connections between them and a solution of certain Painleve differential equation. This is joint work with Jonathan P. Keating.
 

Tue, 09 May 2023

16:00 - 17:00
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(IUPUI)
Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Tue, 25 Apr 2023
16:00
L6

Projected Green’s Function Methods Applied to Quasi-Periodic Systems and the Dry Ten Martini Problem

Dan Borgnia
(UC Berkeley)
Abstract

The resolvents of finite volume restricted Hamiltonians, G^(⍵), have long been used to describe the localization of quantum systems. More recently, projected Green's functions (pGfs) -- finite volume restrictions of the resolvent -- have been applied to translation invariant free fermion systems, and the pGf zero eigenvalues have been shown to determine topological edge modes in free-fermion systems with bulk-edge correspondence. In this talk, I will connect the pGfs to the G^(⍵) appearing in the transfer matrices of quasi-periodic systems and discuss what pGF zeros can tell us about the solutions to transfer matrix equations. Using these methods, we re-examine the critical almost-Matthieu operator and notice new guarantees on analytic regions of its resolvent for Liouville irrationals.
 

Mon, 28 Nov 2022

13:00 - 14:00
L1

Integrability of the Liouville theory

Antti Kupiainen
(University of Helsinki)
Further Information

This is in joint with the String Theory seminar. Note the unusual date and time.

Abstract

Conformal Field Theories (CFT) are believed to be exactly solvable once their primary scaling fields and their 3-point functions are known. This input is called the spectrum and structure constants of the CFT respectively. I will review recent work where this conformal bootstrap program can be rigorously carried out for the case of Liouville CFT, a theory that plays a fundamental role in 2d random surface theory and many other fields in physics and mathematics. Liouville CFT has a probabilistic formulation on an arbitrary Riemann surface and the bootstrap formula can be seen as a "quantization" of the plumbing construction of surfaces with marked points axiomatically discussed earlier by Graeme Segal. Joint work with Colin Guillarmou, Remi Rhodes and Vincent Vargas

Tue, 22 Nov 2022

15:30 - 16:30
L6

Domino Shuffle and Matrix Refactorizations

Sunil Chhita
(Durham University)
Abstract

This talk is motivated by computing correlations for domino tilings of the Aztec diamond.  It is inspired by two of the three distinct methods that have recently been used in the simplest case of a doubly periodic weighting, that is the two-periodic Aztec diamond. This model is of particular probabilistic interest due to being one of the few models having a boundary between polynomially and exponentially decaying macroscopic regions in the limit. One of the methods to compute correlations, powered by the domino shuffle, involves inverting the Kasteleyn matrix giving correlations through the local statistics formula. Another of the methods, driven by a Wiener-Hopf factorization for two- by-two matrix valued functions, involves the Eynard-Mehta theorem. For arbitrary weights the Wiener-Hopf factorization can be replaced by an LU- and UL-decomposition, based on a matrix refactorization, for the product of the transition matrices. In this talk, we present results to say that the evolution of the face weights under the domino shuffle and the matrix refactorization is the same. This is based on joint work with Maurice Duits (Royal Institute of Technology KTH).  

 

Tue, 15 Nov 2022

15:30 - 16:30
L6

Unitary Brownian motion, 2D log-correlated field and loop soups

Isao Sauzzede
(University of Warwick)
Abstract

I will present two examples of log-correlated fields in 2 dimensions. It is well known that the log-characteristic polynomial of a uniform unitary matrix converges toward a 1 dimensional log-correlated field, and our first example will be obtained from a dynamical version of this model. The second example will be obtained from a radically different construction, based on the Brownian loop soup that we will introduce. It will lead to a whole family of log-correlated fields. We will focus on the description of the behaviour of these objects, more than on rigorous details.