Forthcoming events in this series


Tue, 17 May 2022

14:00 - 15:00
L6

Splitting fields of real irreducible representations of finite groups

Dmitrii Pasechnik
(Oxford)
Abstract

We show that any irreducible representation $\rho$ of a finite group $G$ of exponent $n$, realisable over $\mathbb R$, is realisable over the field $E$ of real cyclotomic numbers of order $n$, and describe an algorithmic procedure transforming a realisation of $\rho$ over $\mathbb Q(\zeta_n)$ to one over $E$.

Thu, 12 May 2022

15:30 - 16:30
L4

Representations of p-adic groups – with a twist

Jessica Fintzen
(Bonn University)
Abstract

The Langlands program is a far-reaching collection of conjectures that relate different areas of mathematics including number theory and representation theory. A fundamental problem on the representation theory side of the Langlands program is the construction of all (irreducible, smooth, complex or mod-$\ell$) representations of p-adic groups. I will provide an overview of our understanding of the representations of p-adic groups, with an emphasis on recent progress including joint work with Kaletha and Spice that introduces a twist to the story, and outline some applications.

Tue, 10 May 2022

14:00 - 15:00
L6

Equivariance in Deep Learning

Sheheryar Zaidi and Bryn Elesedy
(Oxford)
Abstract

One core aim of (supervised) machine learning is to approximate an unknown function given a dataset containing examples of input-output pairs. Real-world examples of such functions include the mapping from an image to its label or the mapping from a molecule to its energy. For a variety of such functions, while the precise mapping is unknown, we often have knowledge of its properties. For example, the label of an image may be invariant to rotations of the input image. Generally, such properties formally correspond to the function being equivariant to certain actions on its input and output spaces. This has led to much research on building equivariant function classes (aka neural networks). In this talk, we survey this growing field of equivariance in deep learning for a mathematical audience, motivating the need for equivariance, covering concrete examples of equivariant neural networks, and offering a learning theoretic perspective on the benefits of equivariance. 

Tue, 03 May 2022

14:00 - 15:00
L6

Equivariant line bundles with connection on the Drinfeld upper half-space

Amy Zhu
(Cambridge)
Abstract

Ardakov and Wadsley developed a theory of D-modules on rigid analytic spaces and established a Beilinson-Bernstein style localisation theorem for coadmissible modules over the locally analytic distribution algebra. Using this theory, they obtained admissible locally analytic representations of SL_2 by taking global sections of Drinfeld line bundles. In this talk, we will extend their techniques to SL_3 by studying the Drinfeld upper half-space \Omega^{(3)} of dimension 2.

Tue, 08 Mar 2022
14:00
L6

Localization in the smooth representation theory in natural characteristic of p-adic Lie groups

Peter Schneider
(Muenster)
Abstract

In commutative algebra localizing a ring and its modules is a fundamental technique. In the general case of a Grothendieck abelian category or even a triangulated category with small direct sums this is replaced by forming the quotient category by a localizing subcategory. Therefore the classification of these localizing subcategories becomes an important problem. I will begin by recalling the case of the (derived) module category of a commutative noetherian ring due to Gabriel and Hopkins/Neeman, respectively, in order to give an idea how such a classification can look like.

The case of interest in this talk is the derived category D(G) of smooth representation in characteristic p of a p-adic Lie group G. This is motivated by the emerging p-adic Langlands program. In joint work with C. Heyer we have some modest initial results if G is compact pro-p or abelian. which I will present.

Tue, 18 Jan 2022
14:00
Virtual

Dimensions of Iwasawa algebras and their representations

James Timmins
(Oxford)
Abstract

The Iwasawa algebra of a compact $p$-adic Lie group is fundamental to the study of the representations of the group. Understanding this representation theory is crucial in progress towards a (mod p) local Langlands correspondence. However, much remains unknown about Iwasawa algebras and their modules.

In this talk we'll aim to measure the size of the Iwasawa algebra and its representations. I'll explain the algebraic tools we use to do this - Krull dimension and canonical dimension - and survey previously known examples. Our main result is a new bound on these dimensions for the group $SL_2(O_F)$, where $F$ is a finite extension of the p-adic numbers. When $F$ is a quadratic extension, we find the Krull dimension is exactly 5, as predicted by a conjecture of Ardakov and Brown.

Tue, 30 Nov 2021
14:00
Virtual

Braids, Unipotent Representations, and Nonabelian Hodge Theory

Minh-Tâm Trinh
(MIT)
Abstract

A complex plane curve singularity gives rise to two objects: (1) a moduli space that representation theorists call an affine Springer fiber, and (2) a topological link up to isotopy. Roughly a decade ago, Oblomkov–Rasmussen–Shende conjectured a striking identity relating the homology of the affine Springer fiber to the so-called HOMFLYPT homology of the link. In unpublished writing, Shende speculated that it would follow from advances in nonabelian Hodge theory: the study of transcendental diffeomorphisms relating “Hitchin” and “Betti” moduli spaces. We make this dream precise by expressing HOMFLYPT homology in terms of the homology of a “Betti”-type space, which, we conjecture, deformation-retracts onto the affine Springer fiber. In doing so, we recast the whole story in terms of an arbitrary semisimple group. We give evidence for the nonabelian Hodge conjecture at the numerical level, using a mysterious formula that involves rational Cherednik algebras and the degrees of unipotent principal-series representations.

Tue, 16 Nov 2021
14:00
L3

Homology torsion growth in finitely presented pro-p groups

Nikolay Nikolov
(Oxford University)
Abstract

Let $G$ be a finitely presented residually finite group. We are interested in the growth of size of the torsion of $H^{ab}$ as a function of $|G:H|$ where $H$ ranges over normal subgroups of finite index in $G$. It is easy to see that this grows at most exponentially in terms of $|G:H|$. Of particular interest is the case when $G$ is an arithmetic hyperbolic 3-manifold group and $H$ ranges over its congruence subgroups. Proving exponential lower bounds on the torsion appears to be difficult and in this talk I will focus on the situation of finitely presented pro-$p$ groups.

In contrast with abstract groups I will show that in finitely presented pro-$p$ groups torsion in the abelianizations can grow arbitrarily fast. The examples are rather 'large' pro-$p$ groups, in particular they are virtually Golod-Shafarevich. When we restrict to $p$-adic analytic groups the torsion growth is at most polynomial.

Tue, 09 Nov 2021
14:00
L5

TBA

Marek Kaluba
(Karlsruher Institute für Technologie)
Abstract

In this leisure talk I will show how a sum of squares decomposition problem can be transformed to a problem of semi-definite optimization. Then the practicality of such reformulations will be discussed, illustrated by an explicit example of Artin's solutions to Hilberts 17th problem. Finally I will show how a numerical solution could be turned into a mathematically certified one, using the order structure on the cone of sums of squares.
The talk requires no pre-requisite knowledge of neither optimization or programming and only undergraduate mathematics.

Tue, 02 Nov 2021
14:15
L5

Solving semidecidable problems in group theory

Giles Gardam
(Münster)
Abstract

Group theory is littered with undecidable problems. A classic example is the word problem: there are groups for which there exists no algorithm that can decide if a product of generators represents the trivial element or not. Many problems (the word problem included) are at least semidecidable, meaning that there is a correct algorithm guaranteed to terminate if the answer is "yes", but with no guarantee on how long one has to wait. I will discuss strategies to try and tackle various semidecidable problems computationally using modern solvers for Boolean satisfiability, with the key example being the discovery of a counterexample to the Kaplansky unit conjecture.

Tue, 15 Jun 2021
14:15
Virtual

Harish-Chandra Lefschetz principle for branching laws of general linear groups

Kei Yuen Chan
(Fudan University)
Abstract

The Harish-Chandra Lefschetz principle asserts representation theory for real groups, p-adic groups and automorphic forms should be placed on an equal footing. A particular example in this aspect is that Ciubotaru and Trapa constructed Arakawa-Suzuki type functors between category of Harish-Chandra modules and category of graded Hecke algebra modules, giving an explicit connection on the representation categories between p-adic and real sides. 

This talk plans to begin with comparing the representation theory between real and p-adic general linear groups, such as unitary and unipotent representations. Then I shall explain results in more details on the p-adic branching law from GL(n+1) to GL(n), including branching laws for Arthur type representations (one of the non-tempered Gan-Gross-Prasad conjectures). The analogous results and predictions on the real group side will also be discussed. Time permitting, I will explain a notion of left-right Bernstein-Zelevinsky derivatives and its applications on branching laws.
 

Tue, 08 Jun 2021
14:15
Virtual

Kaplansky's conjectures

Giles Gardam
(University Muenster)
Abstract

Three conjectures on group rings of torsion-free groups are commonly attributed to Kaplansky, namely the unit, zero divisor and idempotent conjectures. For example, the zero divisor conjecture predicts that if $K$ is a field and $G$ is a torsion-free group, then the group ring $K[G]$ has no zero divisors. I will survey what is known about the conjectures, including their relationships to each other and to other conjectures and group properties, and present my recent counterexample to the unit conjecture.

Tue, 01 Jun 2021
14:15
Virtual

p-Kazhdan—Lusztig theory for Hecke algebras of complex reflection groups

Chris Bowman
(University of York)
Abstract

Riche—Williamson recently proved that the characters of tilting modules for GL_h are given by non-singular p-Kazhdan—Lusztig polynomials providing p>h.  This is equivalent to calculating the decomposition numbers for symmetric groups labelled by partitions with at most h columns.  We discuss how this result can be generalised to all cyclotomic quiver Hecke algebras via a new and explicit isomorphism between (truncations of) quiver Hecke algebras and Elias–Williamson’s diagrammatic endomorphism algebras of Bott–Samelson bimodules. 

This allows us to give an elementary and explicit proof of the main theorem of Riche–Williamson’s recent monograph and extend their categorical equivalence to all cyclotomic quiver Hecke algebras, thus solving Libedinsky–Plaza’s categorical blob conjecture.  Furthermore, it allows us to classify and construct the homogeneous simple modules of quiver Hecke algebras via BGG resolutions.   
 
This is joint work with A. Cox, A. Hazi, D.Michailidis, E. Norton, and J. Simental.  
 

Tue, 18 May 2021
14:15
Virtual

Categorification of the elliptic Hall algebra

Alistair Savage
(Ottawa)
Abstract

The elliptic Hall algebra has appeared in many different contexts in representation theory and geometry under different names.  We will explain how this algebra is categorified by the quantum Heisenberg category.  This diagrammatic category is modelled on affine Hecke algebras and can be viewed as a deformation of the framed HOMFLYPT skein category underpinning the HOMFLYPT link invariant.  Using the categorification of the elliptic Hall algebra, one can construct large families of representations for this algebra.

Tue, 11 May 2021
14:15
Virtual

C*-blocks and crossed products for real and p-adic reductive groups

Anne-Marie Aubert
(Sorbonne Université - Université de Paris)
Abstract

Let G be a real or a p-adic connected reductive group. We will recall the description of the connected components of the tempered dual of G in terms of certain subalgebras of its reduced C*-algebra.

Each connected component comes with a torus equipped with a finite group action. We will see that, under a certain geometric assumption on the structure of stabilizers for that action (that is always satisfied for real groups), the component has a simple geometric structure which encodes the reducibility of the associate parabolically induced representations.

We will provide a characterization of the connected components for which the geometric assumption is satisfied, in the case when G is a symplectic group.

This is a joint work with Alexandre Afgoustidis.

Tue, 27 Apr 2021

14:15 - 15:15
Virtual

An upper bound for the nonsolvable length of a finite group in terms of its shortest law

Orazio Puglisi
(Università degli Studi di Firenze)
Abstract

Every finite group $G$ has a normal series each of whose factors is either a solvable group or a direct product of non-abelian simple groups. The minimum number of nonsolvable factors, attained on all possible such series in G, is called the nonsolvable length $\lambda(G)$ of $G$. In recent years several authors have investigated this invariant and its relation to other relevant parameters. E.g. it has been conjectured by Khukhro and Shumyatsky (as a particular case of a more general conjecture about non-$p$-solvable length) and Larsen that, if $\nu(G)$ is the length of the shortest law holding in the finite group G, the nonsolvable length of G can be bounded above by some function of $\nu(G)$. In a joint work with Francesco Fumagalli and Felix Leinen we have confirmed this conjecture proving that the inequality $\lambda(G) < \nu(G)$ holds in every finite group $G$. This result is obtained as a consequence of a result about permutation representations of finite groups of fixed nonsolvable length. In this talk I will outline the main ideas behind the proof of our result.

Tue, 09 Mar 2021
14:15
Virtual

Coadmissible modules, bornologies, and derived categories II

Andreas Bode
(ENS Lyon)
Abstract

Coadmissible modules over Frechet-Stein algebras arise naturally in p-adic representation theory, e.g. in the study of locally analytic representations of p-adic Lie groups or the function spaces of rigid analytic Stein spaces. We show that in many cases, the category of coadmissible modules admits an exact and fully faithful embedding into the category of complete bornological modules, also preserving tensor products. This allows us to introduce derived methods to the study of coadmissible modules without forsaking the analytic flavour of the theory. As an application, we introduce six functors for Ardakov-Wadsley's D-cap-modules and discuss some instances where coadmissibility (in a derived sense) is preserved.

Tue, 02 Mar 2021
14:15
Virtual

Graded Clifford-Drinfeld algebras

Kieran Calvert
(Manchester University)
Abstract

We combine the notions of graded Clifford algebras and Drinfeld algebras. This gives us a framework to study algebras with a PBW property and underlying vector space $\mathbb{C}[G] \# Cl(V) \otimes S(U) $ for $G$-modules $U$ and $V$. The class of graded Clifford-Drinfeld algebras contains the Hecke-Clifford algebras defined by Nazarov, Khongsap-Wang. We give a new example of a GCD algebra which plays a role in an Arakawa-Suzuki duality involving the Clifford algebra.

Tue, 23 Feb 2021

14:15 - 15:15
Virtual

From braids to transverse slices in reductive groups

Dr Wicher Malten
(University of Oxford)
Abstract

We explain how group analogues of Slodowy slices arise by interpreting certain Weyl group elements as braids. Such slices originate from classical work by Steinberg on regular conjugacy classes, and different generalisations recently appeared in work by Sevostyanov on quantum group analogues of W-algebras and in work by He-Lusztig on Deligne-Lusztig varieties.

Our perspective furnishes a common generalisation, essentially solving the problem. We also give a geometric criterion for Weyl group elements to yield strictly transverse slices.

Tue, 26 Jan 2021

14:15 - 15:15
Virtual

Representation theory of wreath products

Reuben Green
(Pembroke College)
Abstract

The wreath product of a finite group, or more generally an algebra, with a symmetric group is a familiar and important construction in representation theory and other areas of Mathematics. I shall present some highlights from my work on the representation theory of wreath products. These will include both structural properties (for example, that the wreath product of a cellular algebra with a symmetric group is again a cellular algebra) and cohomological ones (one 
particular point of interest being a generalisation of the result of Hemmer and Nakano on filtration multiplicities to the wreath product of two symmetric groups). I will also give an outline of some potential applications of this and related theory to important open  problems in algebraic combinatorics.

Tue, 01 Dec 2020

14:15 - 15:15
Virtual

The deformed Dixmier-Moeglin equivalence for completed enveloping algebras

Adam Jones
(Manchester University)
Abstract

An algebra $R$ is said to satisfy the Dixmier-Moeglin equivalence if a prime ideal $P$ of $R$ is primitive if and only if it is rational, if and only if it is locally closed, and a commonly studied problem in non-commutative algebra is to classify rings satisfying this equivalence, e.g. $U(\mathfrak g)$ for a finite dimensional Lie algebra $\mathfrak g$. We explore methods of generalising this to a $p$-adic setting, where we need to weaken the statement. Specifically, if $\hat R$ is the $p$-adic completion of a $\mathbb Q_p$-algebra $R$, rather than approaching the Dixmier-Moeglin equivalence for $\hat R$ directly, we instead compare the classes of primitive, rational and locally closed prime ideals of $\hat R$ within suitable "deformations". The case we focus on is where $R=U(L)$ for a $\mathbb Z_p$-Lie algebra $L$, and the deformations have the form $\hat U(p^n L)$, and we aim to prove a version of the equivalence in the instance where $L$ is nilpotent.

Tue, 24 Nov 2020

14:15 - 15:15
Virtual

Minkowski's theorem, and a question of Serre

Michael Collins
(Oxford University)
Abstract

Let $p$ be a prime. Minkowski (1887) gave a bound for the order of a finite $p$-subgroup of the linear group $\mathsf{GL}(n,\mathbf Z)$ as a function of $n$, and this necessarily holds for $p$-subgroups of $\mathsf{GL}(n,\mathbf Q)$ also. A few years ago, Serre asked me whether some analogous result might be obtained for subgroups of $\mathsf{GL}(n,\mathbf C)$ using the methods I employed to obtain optimal bounds for Jordan's theorem.

Bounds can be so obtained and I will explain how but, while Minkowski's bound is achieved, no linear bound (as Serre initially suggested) can be achieved. I will discuss progress on this problem and the issues that arise in seeking an ideal form for the solution.

Tue, 17 Nov 2020

14:15 - 15:15
Virtual

The Poisson spectrum of the symmetric algebra of the Virasoro algebra

Susan Sierra
(Edinburgh University)
Abstract

Let W be the Witt algebra of vector fields on the punctured complex plane, and let Vir be the Virasoro algebra, the unique nontrivial central extension of W.  We discuss work in progress with Alexey Petukhov to analyse Poisson ideals of the symmetric algebra of Vir.

We focus on understanding maximal Poisson ideals, which can be given as the Poisson cores of maximal ideals of Sym(Vir) and of Sym(W).  We give a complete classification of maximal ideals of Sym(W) which have nontrivial Poisson cores.  We then lift this classification to Sym(Vir), and use it to show that if $\lambda \neq 0$, then $(z-\lambda)$ is a maximal Poisson ideal of Sym(Vir).

Tue, 10 Nov 2020

14:15 - 15:15
Virtual

What is a unipotent representation?

Lucas Mason-Brown
(Oxford University)
Abstract

Let $G$ be a connected reductive algebraic group, and let $G(\mathbb{F}_q)$ be its group of $\mathbb{F}_q$-rational points. Denote by $\mathrm{Irr}(G(\mathbb{F}_q))$ the set of (equivalence classes) of irreducible finite-dimensional representations. Deligne and Lusztig defined a finite subset $$\mathrm{Unip}(G(\mathbb{F}_q)) \subset \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$$ 
of unipotent representations. These representations play a distinguished role in the representation theory of $G(\mathbb{F}_q)$. In particular, the classification of $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ reduces to the classification of $\mathrm{Unip}(G(\mathbb{F}_q))$. 

Now replace $\mathbb{F}_q$ with a local field $k$ and replace $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ with $\mathrm{Irr}_{\mathrm{u}}(G(k))$ (irreducible unitary representations). Vogan has predicted the existence of a finite subset 
$$\mathrm{Unip}(G(k)) \subset \mathrm{Irr}_{\mathrm{u}}(G(k))$$ 
which completes the following analogy
$$\mathrm{Unip}(G(k)) \text{ is to } \mathrm{Irr}_{\mathrm{u}}(G(k)) \text{ as } \mathrm{Unip}(G(\mathbb{F}_q)) \text{ is to } \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q)).$$
In this talk I will propose a definition of $\mathrm{Unip}(G(k))$ when $k = \mathbb{C}$. The definition is geometric and case-free. The representations considered include all of Arthur's, but also many others. After sketching the definition and cataloging its properties, I will explain a classification of $\mathrm{Unip}(G(\mathbb{C}))$, generalizing the well-known result of Barbasch-Vogan for Arthur's representations. Time permitting, I will discuss some speculations about the case of $k=\mathbb{R}$.

This talk is based on forthcoming joint work with Ivan Loseu and Dmitryo Matvieievskyi.

Tue, 03 Nov 2020

14:15 - 15:15
Virtual

Diving into the Shallow End

Stella Gastineau
(Boston College)
Abstract

In 2013, Reeder–Yu gave a construction of supercuspidal representations by starting with stable characters coming from the shallowest depth of the Moy–Prasad filtration. In this talk, we will be diving deeper—but not too deep. In doing so, we will construct examples of supercuspidal representations coming from a larger class of “shallow” characters. Using methods similar to Reeder–Yu, we can begin to make predictions about the Langlands parameters for these representations.