Forthcoming events in this series


Tue, 12 May 2020
14:00
Virtual

Sections of high rank varieties and applications

Tamar Ziegler
(Hebrew University of Jerusalem)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will describe some recent work with D. Kazhdan where we obtain results in algebraic geometry, inspired by questions in additive combinatorics, via analysis over finite fields. Specifically we are interested in quantitative properties of polynomial rings that are independent of the number of variables. A sample application is the following theorem : Let $V$ be a complex vector space, $P$ a high rank polynomial of degree $d$, and $X$ the null set of $P$, $X=\{v \mid P(v)=0\}$. Any function $f:X\to C$ which is polynomial of degree $d$ on lines in $X$ is the restriction of a degree $d$ polynomial on $V$.

Tue, 05 May 2020
15:30
Virtual

Multidimensional Erdős-Szekeres theorem

Benny Sudakov
(ETH Zurich)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of $(n-1)^2+1$ distinct real numbers contains a monotone subsequence of length $n$. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They raise the problem of how large should a $d$-dimesional array be in order to guarantee a "monotone" subarray of size $n \times n \times \ldots \times n$. In this talk we discuss this problem and show how to improve their original Ackerman-type bounds to at most a triple exponential. (Joint work with M. Bucic and T. Tran)

Tue, 05 May 2020
14:00
Virtual

Ryser's conjecture and more

Liana Yepremyan
(LSE)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A Latin square of order n is an $n \times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Latin squares goes back more than 200 years to the work of Euler. One of the most famous open problems in this area is a conjecture of Ryser, Brualdi and Stein from 60s which says that every Latin square of order $n \times n$ contains a transversal of order $n-1$. A closely related problem is 40 year old conjecture of Brouwer that every Steiner triple system of order $n$ contains a matching of size $\frac{n-4}{3}$. The third problem we'd like to mention asks how many distinct symbols in Latin arrays suffice to guarantee a full transversal? In this talk we discuss a novel approach to attack these problems. Joint work with Peter Keevash, Alexey Pokrovskiy and Benny Sudakov.

Tue, 28 Apr 2020
15:30
Virtual

Percolation on triangulations, and a bijective path to Liouville quantum gravity

Olivier Bernardi
(Brandeis)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will discuss the percolation model on planar triangulations, and present a bijection that is key to relating this model to some fundamental probabilistic objects. I will attempt to achieve several goals:
1. Present the site-percolation model on random planar triangulations.
2. Provide an informal introduction to several probabilistic objects: the Gaussian free field, Schramm-Loewner evolutions, and the Brownian map.
3. Present a bijective encoding of percolated triangulations by certain lattice paths, and explain its role in establishing exact relations between the above-mentioned objects.
This is joint work with Nina Holden, and Xin Sun.

Tue, 28 Apr 2020
14:00
Virtual

The breadth-first construction of scaling limits of graphs with finite excess

Gregory Miermont
(ENS Lyon)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Random graphs with finite excess appear naturally in at least two different settings: random graphs in the critical window (aka critical percolation on regular and other classes of graphs), and unicellular maps of fixed genus. In the first situation, the scaling limit of such random graphs was obtained by Addario-Berry, Broutin and Goldschmidt based on a depth-first exploration of the graph and on the coding of the resulting forest by random walks. This idea originated in Aldous' work on the critical random graph, using instead a breadth-first search approach that seem less adapted to taking graph scaling limits. We show hat this can be done nevertheless, resulting in some new identities for quantities like the radius and the two-point function of the scaling limit. We also obtain a similar "breadth-first" construction of the scaling limit of unicellular maps of fixed genus. This is based on joint work with Sanchayan Sen.

Tue, 21 Apr 2020
15:30
Virtual

Bootstrap percolation and kinetically constrained spin models: critical time scales

Cristina Toninelli
(Paris Dauphine)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Recent years have seen a great deal of progress in understanding the behavior of bootstrap percolation models, a particular class of monotone cellular automata. In the two dimensional lattice there is now a quite complete understanding of their evolution starting from a random initial condition, with a universality picture for their critical behavior. Here we will consider their non-monotone stochastic counterpart, namely kinetically constrained models (KCM). In KCM each vertex is resampled (independently) at rate one by tossing a $p$-coin iff it can be infected in the next step by the bootstrap model. In particular infection can also heal, hence the non-monotonicity. Besides the connection with bootstrap percolation, KCM have an interest in their own : when $p$ shrinks to 0 they display some of the most striking features of the liquid/glass transition, a major and still largely open problem in condensed matter physics.

Tue, 21 Apr 2020
14:00
Virtual

The percolation density θ(p) is analytic

Agelos Georgakopoulos
(Warwick)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We prove that for Bernoulli bond percolation on $\mathbb{Z}^d$, $d\geq2$, the percolation density $\theta(p)$ (defined as the probability of the origin lying in an infinite cluster) is an analytic function of the parameter in the supercritical interval $(p_c,1]$. This answers a question of Kesten from 1981.

The proof involves a little bit of elementary complex analysis (Weierstrass M-test), a few well-known results from percolation theory (Aizenman-Barsky/Menshikov theorem), but above all combinatorial ideas. We used a new notion of contours, bounds on the number of partitions of an integer, and the inclusion-exclusion principle, to obtain a refinement of a classical argument of Peierls that settled the 2-dimensional case in 2018. More recently, we coupled these techniques with a renormalisation argument to handle all dimensions.

Joint work with Christoforos Panagiotis.

Tue, 14 Apr 2020
15:30
Virtual

Site percolation on planar graphs and circle packings

Ron Peled
(Tel Aviv)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Color each vertex of an infinite graph blue with probability $p$ and red with probability $1-p$, independently among vertices. For which values of $p$ is there an infinite connected component of blue vertices? The talk will focus on this classical percolation problem for the class of planar graphs. Recently, Itai Benjamini made several conjectures in this context, relating the percolation problem to the behavior of simple random walk on the graph. We will explain how partial answers to Benjamini's conjectures may be obtained using the theory of circle packings. Among the results is the fact that the critical percolation probability admits a universal lower bound for the class of recurrent plane triangulations. No previous knowledge on percolation or circle packings will be assumed.

Tue, 14 Apr 2020
14:00
Virtual

Thresholds

Bhargav Narayanan
(Rutgers)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I'll discuss our recent proof of a conjecture of Talagrand, a fractional version of the "expectation-threshold" conjecture of Kahn and Kalai. As a consequence of this result, we resolve various (heretofore) difficult problems in probabilistic combinatorics and statistical physics.

Tue, 07 Apr 2020
14:00
Virtual

Hipster random walks and their ilk

Louigi Addario-Berry
(McGill)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will describe how certain recursive distributional equations can be solved by using tools from numerical analysis on the convergence of approximation schemes for PDEs. This project is joint work with Luc Devroye, Hannah Cairns, Celine Kerriou, and Rivka Maclaine Mitchell.

Tue, 31 Mar 2020
14:00
Virtual

Erdős covering systems

Rob Morris
(IMPA)
Further Information

This is the first instalment of the new Oxford Discrete Maths and Probability seminar, held via Zoom. Please see the main seminar site here for further details.

Links: slides and video recording (to come)

Abstract

A covering system of the integers is a finite collection of arithmetic progressions whose union is the set of integers $\mathbb{Z}$. The study of these objects was initiated in 1950 by Erdős, and over the following decades he asked a number of beautiful questions about them. Most famously, his so-called 'minimum modulus problem' was resolved in 2015 by Hough, who proved that in every covering system with distinct moduli, the minimum modulus is at most $10^{16}$.

In this talk I will describe a simple and general method of attacking covering problems that was inspired by Hough's proof. We expect that this technique, which we call the 'distortion method', will have further applications in combinatorics.

This talk is based on joint work with Paul Balister, Béla Bollobás, Julian Sahasrabudhe and Marius Tiba.

Tue, 10 Mar 2020
14:00
L6

Cycles of length three and four in tournaments

Jonathan Noel
(Warwick)
Abstract

Given a tournament with $d{n \choose 3}$ cycles of length three, how many cycles of length four must there be? Linial and Morgenstern (2016) conjectured that the minimum is asymptotically attained by "blowing up" a transitive tournament and orienting the edges randomly within the parts. This is reminiscent of the tight examples for the famous Triangle and Clique Density Theorems of Razborov, Nikiforov and Reiher. We prove the conjecture for $d \geq \frac{1}{36}$ using spectral methods. We also show that the family of tight examples is more complex than expected and fully characterise it for $d \geq \frac{1}{16}$. Joint work with Timothy Chan, Andrzej Grzesik and Daniel Král'.

Tue, 03 Mar 2020
14:00
L6

Planar graphs: One graph to rule them all

Marthe Bonamy
(Bordeaux)
Abstract

Consider all planar graphs on n vertices. What is the smallest graph that contains them all as induced subgraphs? We provide an explicit construction of such a graph on $n^{4/3+o(1)}$ vertices, which improves upon the previous best upper bound of $n^{2+o(1)}$, obtained in 2007 by Gavoille and Labourel.

In this talk, we will gently introduce the audience to the notion of so-called universal graphs (graphs containing all graphs of a given family as induced subgraphs), and devote some time to a key lemma in the proof. That lemma comes from a recent breakthrough by Dujmovic et al. regarding the structure of planar graphs, and has already many interesting consequences - we hope the audience will be able to derive more. This is based on joint work with Cyril Gavoille and Michal Pilipczuk.

Tue, 25 Feb 2020
14:00
L6

Coordinate Deletion

Eero Räty
(Cambridge)
Abstract

For a family $A$ in $\{0,...,k\}^n$, its deletion shadow is the set obtained from $A$ by deleting from any of its vectors one coordinate. Given the size of $A$, how should we choose $A$ to minimise its deletion shadow? And what happens if instead we may delete only a coordinate that is zero? We discuss these problems, and give an exact solution to the second problem.

Tue, 18 Feb 2020
14:00
L6

On the size of subsets of F_p^n without p distinct elements summing to zero

Lisa Sauermann
(Stanford)
Abstract

Let us fix a prime $p$. The Erdős-Ginzburg-Ziv problem asks for the minimum integer $s$ such that any collection of $s$ points in the lattice $\mathbb{Z}^n$ contains $p$ points whose centroid is also a lattice point in $\mathbb{Z}^n$. For large $n$, this is essentially equivalent to asking for the maximum size of a subset of $\mathbb{F}_p^n$ without $p$ distinct elements summing to zero.

In this talk, we discuss a new upper bound for this problem for any fixed prime $p\geq 5$ and large $n$. Our proof uses the so-called multi-colored sum-free theorem which is a consequence of the Croot-Lev-Pach polynomial method, as well as some new combinatorial ideas.

Tue, 04 Feb 2020
14:00
L6

An asymptotic version of the prime power conjecture

Sarah Peluse
(Oxford)
Abstract

A subset $D$ of a finite cyclic group $\mathbb{Z}/m\mathbb{Z}$ is called a "perfect difference set" if every nonzero element of $\mathbb{Z}/m\mathbb{Z}$ can be written uniquely as the difference of two elements of $D$. If such a set exists, then a simple counting argument shows that $m=n^2+n+1$ for some nonnegative integer $n$. Singer constructed examples of perfect difference sets in $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ whenever $n$ is a prime power, and it is an old conjecture that these are the only such $n$ for which $\mathbb{Z}/(n^2+n+1)\mathbb{Z}$ contains a perfect difference set. In this talk, I will discuss a proof of an asymptotic version of this conjecture.

Tue, 28 Jan 2020
14:00
L6

Edge-sampling and modularity

Fiona Skerman
(Bristol University)
Abstract

Modularity is a function on graphs which is used in algorithms for community detection. For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in $G$. The (max) modularity $q^\ast(G)$ of the graph $G$ is defined to be the maximum over all vertex partitions of the modularity score, and satisfies $0 \leq q^\ast(G) \leq 1$.

We analyse when community structure of an underlying graph can be determined from an observed subset of the graph. In a natural model where we suppose edges in an underlying graph $G$ appear with some probability in our observed graph $G'$ we describe how high a sampling probability we need to infer the community structure of the underlying graph.

Joint work with Colin McDiarmid.

Tue, 21 Jan 2020
14:00
L6

Extremal problems of long cycles in random graphs

Gal Kronenberg
(University of Oxford)
Abstract

In this talk, we consider the random version of some classical extremal problems in the context of long cycles. This type of problems can also be seen as random analogues of the Turán number of long cycles, established by Woodall in 1972.

For a graph $G$ on $n$ vertices and a graph $H$, denote by $\text{ex}(G,H)$ the maximal number of edges in an $H$-free subgraph of $G$. We consider a random graph $G\sim G(n,p)$ where $p>C/n$, and determine the asymptotic value of $\text{ex}(G,C_t)$, for every $A\log(n)< t< (1- \varepsilon)n$. The behaviour of $\text{ex}(G,C_t)$ can depend substantially on the parity of $t$. In particular, our results match the classical result of Woodall, and demonstrate the transference principle in the context of long cycles.

Using similar techniques, we also prove a robustness-type result, showing the likely existence of cycles of prescribed lengths in a random subgraph of a graph with a nearly optimal density (a nearly ''Woodall graph"). If time permits, we will present some connections to size-Ramsey numbers of long cycles.

Based on joint works with Michael Krivelevich and Adva Mond.

Tue, 03 Dec 2019

14:00 - 15:00
L6

Characterisation of quasirandom permutations by a pattern sum

Yanitsa Pehova
(University of Warwick)
Further Information

We say that a sequence $\{\Pi_i\}$ of permutations is quasirandom if, for each $k\geq 2$ and each $\sigma\in S_k$, the probability that a uniformly chosen $k$-set of entries of $\Pi_i$ induces $\sigma$ tends to $1/k!$ as $i$ tends to infinity. It is known that a much weaker condition already forces $\{\Pi_i\}$ to be quasirandom; namely, if the above property holds for all $\sigma\in S_4$. We further weaken this condition by exhibiting sets $S\subseteq S_4$, such that if a randomly chosen $k$-set of entries of $\Pi_i$ induces an element of $S$ with probability tending to $|S|/24$, then $\{\Pi_i\}$ is quasirandom. Moreover, we are able to completely characterise the sets $S$ with this property. In particular, there are exactly ten such sets, the smallest of which has cardinality eight. 
This is joint work with Timothy Chan, Daniel Kráľ, Jon Noel, Maryam Sharifzadeh and Jan Volec.

Tue, 26 Nov 2019

14:00 - 15:00
L6

Partial Associativity in Latin Squares

Jason Long
(University of Oxford)
Further Information

Latin squares arise from the multiplication tables of groups, but the converse is not true in general. Given a Latin square A, we can define a group operation giving A as its multiplication table only when A satisfies a suitable associativity constraint. This observation leads to a natural question concerning the '1%' version: if A is only partially associative, can we still obtain something resembling a group structure? I will talk about some joint work with Tim Gowers on this question.

Tue, 19 Nov 2019

14:00 - 15:00
L6

Phase transitions in random regular graphs

Endre Csóka
Further Information

We analyze the asymptotic relative size of the largest independent set of a random d-regular graph on n → ∞ vertices. This problem is very different depending on d because of a surprising phase transition. This is somewhat similar to finding the density of ``water'' above and below its freezing point. These phase transitions are related to algorithmic thresholds, mixing properties, counting, graph reconstruction, graph limits and other questions. We are still far from a complete understanding of all these questions. Our tools are partially coming from statistical physics. 

Tue, 12 Nov 2019

14:00 - 15:00
L6

Partition universality of G(n,p) for degenerate graphs

Julia Boettcher
(London School of Economics)
Further Information

The r-​colour size-​Ramsey number of a graph G is the minimum number of edges of a graph H such that any r-​colouring of the edges of H has a monochromatic G-​copy. Random graphs play an important role in the study of size-​Ramsey numbers. Using random graphs, we establish a new bound on the size-​Ramsey number of D-​degenerate graphs with bounded maximum degree.

In the talk I will summarise what is known about size-​Ramsey numbers, explain the connection to random graphs and their so-​called partition universality, and outline which methods we use in our proof.

Based on joint work with Peter Allen.  
 

Tue, 05 Nov 2019

14:00 - 15:00
L6

Combinatorial discrepancy and a problem of J.E. Littlewood

Julian Sahasrabudhe
(University of Cambridge)
Further Information

Given a collection of subsets of a set X, the basic problem in combinatorial discrepancy theory is to find an assignment of 1,-1 to the elements of X so that the sums over each of the given sets is as small as possible. I will discuss how the sort of combinatorial reasoning used to think about problems in combinatorial discrepancy can be used to solve an old conjecture of J.E. Littlewood on the existence of ``flat Littlewood polynomials''.

This talk is based on joint work with Paul Balister, Bela Bollobas, Rob Morris and Marius Tiba.
 

Tue, 29 Oct 2019

14:00 - 15:00
L6

Covering random graphs by monochromatic subgraphs, and related results

Daniel Korandi
(University of Oxford)
Further Information

How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given r-edge-colored graph G? Such questions go back to the 1960's and have been studied intensively in the past 50 years. In this talk, I will discuss what we know when G is the random graph G(n,p). The problem turns out to be related to the following question of Erdős, Hajnal and Tuza: What is the largest possible cover number of an r-uniform hypergraph where any k edges have a cover of size l.

The results I mention give new bounds for these problems, and answer some questions by Bal and DeBiasio, and others. The talk is based on collaborations with Bucić, Mousset, Nenadov, Škorić and Sudakov.

Tue, 22 Oct 2019

14:00 - 15:00
L6

Homomorphisms from the torus

Matthew Jenssen
(Oxford)
Further Information

We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus Z_m^n, where m is even, to any fixed graph. Our main result establishes the "phase coexistence" phenomenon in a strong form: it shows that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some "dominant phase". This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper q-colourings of Z_m^n (so in particular, the discrete hypercube). For the proof we develop a `Cluster Expansion Method', which we expect to have further applications, by combining machinery from statistical physics, entropy and graph containers. This is joint work with Peter Keevash.