Let $\mathrm{BMOA}_{\mathcal{NP}}$ denote the space of operator-valued analytic functions $\phi$ for which the Hankel operator $\Gamma_\phi$ is $H^2(\mathcal{H})$-bounded. Obtaining concrete characterizations of $\mathrm{BMOA}_{\mathcal{NP}}$ has proven to be notoriously hard. Let $D^\alpha$ denote differentiation of fractional order $\alpha$. Motivated originally by control theory, we characterize $H^2(\mathcal{H})$-boundedness of $D^\alpha\Gamma_\phi$, where $\alpha>0$, in terms of a natural anti-analytic Carleson embedding condition. We obtain three notable corollaries: The first is that $\mathrm{BMOA}_{\mathcal{NP}}$ is not characterized by said embedding condition. The second is that when we add an adjoint embedding condition, we obtain a sufficient but not necessary condition for boundedness of $\Gamma_\phi$ . The third is that there exists a bounded analytic function for which the associated anti-analytic Carleson embedding is unbounded. As a consequence, boundedness of an analytic Carleson embedding does not imply that the anti-analytic ditto is bounded. This answers a question by Nazarov, Pisier, Treil, and Volberg.

# Past Functional Analysis Seminar

Given a locally compact group G, the group C*-algebra is defined by taking the completion of $L^1(G)$ with respect to the C*-norm given by the irreducible unitary representations of G. However, if the group is not abelian, there is no known concrete description of its group C*-algebra. In my talk, I will briefly introduce the group C*-algebras and then give some examples arisen from solvable Lie groups

Our long term plan is to develop a unified approach to prove decomposition theorems in different structures. In our anti-dual pair setting, it would be useful to have a tool which is analogous to the so-called Schur complementation. To this aim, I will present a suitable generalization of the classical known Krein - von Neumann extension.

The classical Ingham-Karamata Tauberian theorem has many applications in different fields of mathematics, varying from number theory to $C_0$-semigroup theory and is considered to be one of the most important Tauberian theorems. We will discuss how to obtain remainder estimates in the theorem if one strengthens the assumptions on the Laplace transform. Moreover, we will give new (remainder) versions of this theorem under the more general one-sided Tauberian condition of $\rho(x) \ge −f(x)$ where $f$ is an arbitrary function satisfying some regularity assumptions. The talk is based on collaborative work with Jasson Vindas.

We present recent results on the connections existing between the facial

structure of the unit ball in a JB*-triple and the lattice of tripotents in its

bidual.

For reasonable domains $\Omega\subseteq\mathbb{R}^{d+

1}$, and given some boundary data $f\in C(\partial\Omega)$, we can solve the Dirichlet problem and find a harmonic function $u_{f}$ that agrees with $f$ on $\partial\Omega$. For $x_{0}\in \Omega$, the association $f\rightarrow u_{f}(x_{0})$. is a linear functional, so the Riesz Representation gives us a measure $\omega_{\Omega}^{x_{0}}$ on $\partial\Omega$ called the harmonic measure with pole at $x_{0}$. One can also think of the harmonic measure of a set $E\subseteq \partial\Omega$ as the probability that a Brownian motion of starting at $x_{0}$ will first hit the boundary in $E$. In this talk, we will survey some very recent results about the relationship between the measure theoretic behavior of harmonic measure and the geometry of the boundary of its domain. In particular, we will study how absolute continuity of harmonic measure with respect to $d$-dimensional Hausdorff measure implies rectifiability of the boundary and vice versa.

We present some recent results on the study of Schatten-von Neumann properties for

operators on compact manifolds. We will explain the point of view of kernels and full symbols. In both cases

one relies on a suitable Discrete Fourier analysis depending on the domain.

We will also discuss about operators on $L^p$ spaces by using the notion of nuclear operator in the sense of

Grothendieck and deduce Grothendieck-Lidskii trace formulas in terms of the matrix-symbol. We present examples

for fractional powers of differential operators. (Joint work with Michael Ruzhansky)