Forthcoming events in this series


Thu, 20 Jun 2019
14:00
L3

On integral representations of symmetric groups

Susanne Danz
(Katholische Universitat Eichstätt-Ingolstadt)
Abstract

Abstract:  As is well known, every rational representation of a finite group $G$ can be realized over $\mathbb{Z}$, that is, the corresponding $\mathbb{Q}G$-module $V$ admits a $\mathbb{Z}$-form. Although $\mathbb{Z}$-forms are usually far from being unique, the famous Jordan--Zassenhaus Theorem shows that there are only finitely many $\mathbb{Z}$-forms of any given $\mathbb{Q}G$-module, up to isomorphism. Determining the precise number of these isomorphism classes or even explicit representatives is, however, a hard task in general. In this talk we shall be concerned with the case where $G$ is the symmetric group $\mathfrak{S}_n$ and $V$ is a simple $\mathbb{Q}\mathfrak{S}_n$-module labelled by a hook partition. Building on work of Plesken and Craig we shall present some results as well as open problems concerning the construction of the
integral forms of these modules. This is joint work with Tommy Hofmann from Kaiserslautern.

Thu, 13 Jun 2019
14:00
L3

Affine Hecke Algebras for p-adic classical groups, local Langlands correspondence and unipotent representations

Volker Heiermann
(Université d'Aix-Marseille)
Abstract

I will review the equivalence of categories of a Bernstein component of a p-adic classical group with the category of right modules over a certain affine Hecke algebra (with parameters) that I obtained previously. The parameters can be made explicit by the parametrization of supercuspidal representations of classical groups obtained by C. Moeglin, using methods of J. Arthur. Via this equivalence, I can show that the category of smooth complex representations of a quasisplit $p$-adic classical group and its pure inner forms is naturally decomposed into subcategories that are equivalent to the tensor product of categories of unipotent representations of classical groups (in the sense of G. Lusztig). All classical groups (general linear, orthogonal, symplectic and unitary groups) appear in this context.
 

Thu, 16 May 2019

14:00 - 15:00
L3

Self-dual cuspidal and supercuspidal representations

Jeff Adler
(American University)
Abstract

According to the Harish-Chandra philosophy, cuspidal representations are the basic building blocks in the representation theory of finite reductive groups.  Similarly for supercuspidal representations of p-adic groups.  Self-dual representations play a special role in the study of parabolic induction.  Thus, it is of interest to know whether self-dual (super)cuspidal representations exist.  With a few exceptions involving some small fields, I will show precisely when a finite reductive group has irreducible cuspidal representations that are self-dual, of Deligne-Lusztig type, or both.  Then I will look at implications for the existence of irreducible, self-dual supercuspidal representations of p-adic groups.  This is joint work with Manish Mishra.

Thu, 26 Jan 2017
14:00
L4

A Ringel duality formula inspired by Knörrer equivalences for 2d cyclic quotient singularities

Martin Kalck
(Edinburgh)
Abstract

We construct triangle equivalences between singularity categories of
two-dimensional cyclic quotient singularities and singularity categories of
a new class of finite dimensional local algebras, which we call Knörrer
invariant algebras. In the hypersurface case, we recover a special case of Knörrer’s equivalence for (stable) categories of matrix factorisations.
We’ll then explain how this led us to study Ringel duality for
certain (ultra strongly) quasi-hereditary algebras.
This is based on joint work with Joe Karmazyn.

Thu, 10 Nov 2016

14:00 - 15:00
L4

Derived Hecke algebras

Prof. Peter Schneider
(University of Muenster)
Abstract

The smooth representation theory of a p-adic reductive group G

with characteristic zero coefficients is very closely connected to the

module theory of its (pro-p) Iwahori-Hecke algebra H(G). In the modular

case, where the coefficients have characteristic p, this connection

breaks down to a large extent. I will first explain how this connection

can be reinstated by passing to a derived setting. It involves a certain

differential graded algebra whose zeroth cohomology is H(G). Then I will

report on a joint project with

R. Ollivier in which we analyze the higher cohomology groups of this dg

algebra for the group G = SL_2.

Thu, 10 Nov 2016
14:00
L4

Derived Hecke algebras

Peter Schneider
(Muenster)
Abstract

The smooth representation theory of a p-adic reductive group G with characteristic zero coefficients is very closely connected to the module theory of its (pro-p) Iwahori-Hecke algebra H(G). In the modular case, where the coefficients have characteristic p, this connection breaks down to a large extent. I will first explain how this connection can be reinstated by passing to a derived setting. It involves a certain differential graded algebra whose zeroth cohomology is H(G). Then I will report on a joint project with R. Ollivier in which we analyze the higher cohomology groups of this dg algebra for the group G = SL_2.

Thu, 09 Jun 2016

15:00 - 16:00
L4

A Decomposition of the Set of Enhanced Langlands Parameters for a p-adic Reductive Group

Anne-Marie Aubert
(Paris Jussieu)
Abstract

Enhanced Langlands parameters for a p-adic group G are pairs formed by a Langlands parameter for G and an irreducible character of a certain component group attached to the parameter. We will first introduce a notion
of cuspidality for these pairs. The cuspidal pairs are expected to correspond to the supercuspidal irreducible representations of G via the local Langlands correspondence.
We will next describe a construction of  a cuspidal support map for enhanced Langlands parameters, the key tool of which is an extension to disconnected complex Lie groups of the generalized Springer correspondence due to Lusztig.
Finally, we will use this map to decompose  the set of enhanced Langlands parameters into Bernstein series.
This is joint work with Ahmed Moussaoui and Maarten Solleveld.

Thu, 26 May 2016

13:00 - 14:00
L4

Crystal, PBW, and canonical bases for quantized enveloping algebras

Gerald Cliff
(University of Alberta)
Abstract

Let U be the quantized enveloping algebra coming from a semi-simple finite dimensional complex Lie algebra. Lusztig has defined a canonical basis B for the minus part of U- of U. It has the remarkable property that one gets a basis of each highest-weight irreducible U-module V, with highest weight vector v, as the set of all bv which are not 0, as b varies in B. It is not known how to give the elements b explicitly, although there are algorithms.


For each reduced expression of the longest word in the Weyl group, Lusztig has defined a PBW basis P of U-, and for each b in B there is a unique p(b) in P such that b = p(b) + a linear combination of p' in P where the coefficients are in qZ[q]. This is much easier in the simply laced case. I show that the set of p(b)v, where b varies in B and bv is not 0, is a basis of V, and I can explicitly exhibit this basis in type A, and to some extent in types B, C, D.

It is known that B and P are crystal bases in the sense of Kashiwara. I will define Kashiwara operators, and briefly describe Kashiwara's approach to canonical bases, which he calls global bases. I show how one can calculate the Kashiwara operators acting on P, in types A, B, C, D, using tableaux of Kashiwara-Nakashima.

Tue, 12 Apr 2016

14:00 - 15:00
C2

Loop Groups, K-theory and Noncommutative Geometry

Sebastiano Carpi
(The University of Chieti-Pescara)
Abstract

We describe the representation theory of loop groups in
terms of K-theory and noncommutative geometry. For any simply
connected compact Lie group G and any positive integer level l we
consider a natural noncommutative universal algebra whose 0th K-group
can be identified with abelian group generated by the level l
positive-energy representations of the loop group LG.
Moreover, for any of these representations, we define a spectral
triple in the sense of A. Connes and compute the corresponding index
pairing with K-theory. As a result, these spectral triples give rise
to a complete noncommutative geometric invariant for the
representation theory of LG at fixed level l. The construction is
based on the supersymmetric conformal field theory models associated
with LG and it can be generalized, in the setting of conformal nets,
to many other rational chiral conformal field theory models including
loop groups model associated to non-simply connected compact Lie
groups, coset models and the moonshine conformal field theory. (Based
on a joint work with Robin Hillier)

Thu, 04 Feb 2016
15:00
L4

Basic aspects of n-homological algebra

Peter Jorgensen
(Newcastle)
Abstract

Abstract: n-homological algebra was initiated by Iyama
via his notion of n-cluster tilting subcategories.
It was turned into an abstract theory by the definition
of n-abelian categories (Jasso) and (n+2)-angulated categories
(Geiss-Keller-Oppermann).
The talk explains some elementary aspects of these notions.
We also consider the special case of an n-representation finite algebra.
Such an algebra gives rise to an n-abelian
category which can be "derived" to an (n+2)-angulated category.
This case is particularly nice because it is
analogous to the classic relationship between
the module category and the derived category of a
hereditary algebra of finite representation type.