Past Seminars

19 October 2021
12:30
Abstract

Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. In this talk, we will describe a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain. Our aim is to delay or advance a given branch point to a target parameter value. The algorithm consists of solving a shape optimization problem constrained by an augmented system of equations, called the Moore–Spence system, that characterize the location of the branch points. We will demonstrate the effectiveness of this technique on several numerical experiments on the Allen–Cahn, Navier–Stokes, and hyperelasticity equations.

  • Junior Applied Mathematics Seminar
19 October 2021
12:00
Leonhard Kehrberger
Abstract

Penrose's proposal of smooth conformal compactification is not only of geometric elegance, it also makes concrete predictions on physically measurable objects such as the "late-time tails" of gravitational waves.  At the same time, the physical motivation for a smooth null infinity remains itself unclear. In this talk, building on arguments due to Christodoulou, Damour and others, I will show that, in generic gravitational collapse, the "peeling property" of gravitational radiation is violated (so one cannot attach a smooth null infinity). Moreover, I will explain how this violation of peeling is in principle measurable in the form of leading-order deviations from the usual late-time tails of gravitational radiation.

This talk is based on https://arxiv.org/abs/2105.08079, https://arxiv.org/abs/2105.08084 and... .

It will be a hybrid seminar on both zoom and in-person in L5. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

18 October 2021
16:00

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
18 October 2021
16:00
Elia Bruè
Abstract

I will present a new existence result for isoperimetric sets of  large volume on manifolds with nonnegative Ricci curvature and  Euclidean volume growth, under an additional assumption on the structure of tangent cones at infinity. After a brief discussion on the sharpness of the additional  assumption, I will show that it is always verified on manifolds with nonnegative sectional curvature. I will finally present the main ingredients of proof emphasizing the key role of nonsmooth techniques tailored for the study of RCD  spaces, a class of metric measure structures satisfying a synthetic notion of Ricci curvature bounded below. This is based on a joint work with G. Antonelli, M. Fogagnolo and M. Pozzetta.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Partial Differential Equations Seminar
18 October 2021
16:00
GREG PAVLIOTIS
Abstract

I will present recent results on the statistical behaviour of a large number of weakly interacting diffusion processes evolving under the influence of a periodic interaction potential. We study the combined mean field and diffusive (homogenisation) limits. In particular, we show that these two limits do not commute if the mean field system constrained on the torus undergoes a phase transition, i.e., if it admits more than one steady state. A typical example of such a system on the torus is given by mean field plane rotator (XY, Heisenberg, O(2)) model. As a by-product of our main results, we also analyse the energetic consequences of the central limit theorem for fluctuations around the mean field limit and derive optimal rates of convergence in relative entropy of the Gibbs measure to the (unique) limit of the mean field energy below the critical temperature. This is joint work with Matias Delgadino (U Texas Austin) and Rishabh Gvalani (MPI Leipzig).

 

 

  • Stochastic Analysis & Mathematical Finance Seminars
18 October 2021
15:45
Arman Darbinyan
Abstract

Topologically speaking, left-orderable countable groups are precisely those countable groups that embed into the group of orientation preserving homeomorphisms of the real line. A recent advancement in the theory of left-orderable groups is the discovery of finitely generated left-orderable simple groups by Hyde and Lodha. We will discuss a construction that extends this result by showing that every countable left-orderable group is a subgroup of such a group. We will also discuss some of the algebraic, geometric, and computability properties that this construction bears. The construction is based on novel topological and geometric methods that also will be discussed. The flexibility of the embedding method allows us to go beyond the class of left-orderable groups as well. Based on a joint work with Markus Steenbock.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

18 October 2021
14:15
Richard Thomas
Abstract

Fix a Calabi-Yau 3-fold X. Its DT invariants count stable bundles and sheaves on X. The generalised DT invariants of Joyce-Song count semistable bundles and sheaves on X. I will describe work with Soheyla Feyzbakhsh showing these generalised DT invariants in any rank r can be written in terms of rank 1 invariants. By the MNOP conjecture the latter are determined by the GW invariants of X.
Along the way we also show they are determined by rank 0 invariants counting sheaves supported on surfaces in X. These invariants are predicted by S-duality to be governed by (vector-valued, mock) modular forms.

  • Geometry and Analysis Seminar
18 October 2021
12:45
Joao Silva
Abstract

We discuss the Mellin amplitude formalism for Conformal Field Theories
(CFT's).  We state the main properties of nonperturbative CFT Mellin
amplitudes: analyticity, unitarity, Polyakov conditions and polynomial
boundedness at infinity. We use Mellin space dispersion relations to
derive a family of sum rules for CFT's. These sum rules suppress the
contribution of double twist operators. We apply the Mellin sum rules
to: the epsilon-expansion and holographic CFT's.

  • String Theory Seminar
15 October 2021
15:00
Justin Curry
Abstract

In this talk I will present four case studies of sheaves and cosheaves in topological data analysis. The first two are examples of (co)sheaves in the small:

(1) level set persistence---and its efficacious computation via discrete Morse theory---and,

(2) decorated merge trees and Reeb graphs---enriched topological invariants that have enhanced classification power over traditional TDA methods. The second set of examples are focused on (co)sheaves in the large:

(3) understanding the space of merge trees as a stratified map to the space of barcodes and

(4) the development of a new "sheaf of sheaves" that organizes the persistent homology transform over different shapes.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar

Pages