Past Seminars

8 June 2021
14:00
Mihai Cucuringu
Abstract

We consider the problem of clustering in two important families of networks: signed and directed, both relatively less well explored compared to their unsigned and undirected counterparts. Both problems share an important common feature: they can be solved by exploiting the spectrum of certain graph Laplacian matrices or derivations thereof. In signed networks, the edge weights between the nodes may take either positive or negative values, encoding a measure of similarity or dissimilarity. We consider a generalized eigenvalue problem involving graph Laplacians, with performance guarantees under the setting of a signed stochastic block model. The second problem concerns directed graphs. Imagine a (social) network in which you spot two subsets of accounts, X and Y, for which the overwhelming majority of messages (or friend requests, endorsements, etc) flow from X to Y, and very few flow from Y to X; would you get suspicious? To this end, we also discuss a spectral clustering algorithm for directed graphs based on a complex-valued representation of the adjacency matrix, which is able to capture the underlying cluster structures, for which the information encoded in the direction of the edges is crucial. We evaluate the proposed algorithm in terms of a cut flow imbalance-based objective function, which, for a pair of given clusters, it captures the propensity of the edges to flow in a given direction. Experiments on a directed stochastic block model and real-world networks showcase the robustness and accuracy of the method, when compared to other state-of-the-art methods. Time permitting, we briefly discuss potential extensions to the sparse setting and regularization, applications to lead-lag detection in time series and ranking from pairwise comparisons.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

8 June 2021
12:00
Michael Baker
Abstract

Dark matter is known to exist, but no-one knows what it is or where it came
from.  We describe a new production mechanism of particle dark matter, which
hinges on a first-order cosmological phase transition.  We then show that
this mechanism can be slightly modified to produce primordial black holes.

While solar mass and supermassive black holes are now known to exist,
primordial black holes have not yet been seen but could solve a number of
problems in cosmology.  Finally, we demonstrate that if an evaporating
primordial black hole is observed, it will provide a unique window onto
Beyond the Standard Model physics.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Quantum Field Theory Seminar
7 June 2021
16:00
YUCHONG ZHANG
Abstract

Following the risk-taking model of Seel and Strack, n players decide when to stop privately observed Brownian motions with drift and absorption at zero. They are then ranked according to their level of stopping and paid a rank-dependent reward. We study the optimal reward design where a principal is interested in the average performance and the performance at a given rank. While the former can be related to reward inequality in the Lorenz sense, the latter can have a surprising shape. Next, I will present the mean-field version of this problem. A particular feature of this game is to be tractable without necessarily being smooth, which turns out to offer a cautionary tale. We show that the mean field equilibrium induces n-player ε-Nash equilibria for any continuous reward function— but not for discontinuous ones. We also analyze the quality of the mean field design (for maximizing the median performance) when used as a proxy for the optimizer in the n-player game. Surprisingly, the quality deteriorates dramatically as n grows. We explain this with an asymptotic singularity in the induced n-player equilibrium distributions. (Joint work with M. Nutz)

  • Stochastic Analysis & Mathematical Finance Seminars
7 June 2021
16:00
Catherine Ray
Abstract

The action of the automorphisms of a formal group on its deformation space is crucial to understanding periodic families in the homotopy groups of spheres and the unsolved Hecke orbit conjecture for unitary Shimura varieties. We can explicitly pin down this squirming action by geometrically modelling it as coming from an action on a moduli space, which we construct using inverse Galois theory and some representation theory (a Hurwitz space). I will show you pretty pictures.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Junior Number Theory Seminar
7 June 2021
16:00
Anna Dall'Acqua
Abstract

There is a striking relationship between Willmore surfaces of revolution and elastic curves in hyperbolic half-space. Here the term elastic curve refer to a critical point of the energy given by the integral of the curvature squared. In the talk we will discuss this relationship and use it to study long-time existence and asymptotic behavior for the L2-gradient flow of the Willmore energy, under the condition that the initial datum is a torus of revolution. As in the case of Willmore flow of spheres, we show that if an initial datum has Willmore energy below 8 \pi then the solution of the Willmore flow converges to the Clifford Torus, possibly rescaled and translated. The energy threshold of 8 \pi turns out to be optimal for such a convergence result. 

The lecture is based on joint work with M. Müller (Univ. Freiburg), R. Schätzle (Univ. Tübingen) and A. Spener (Univ. Ulm).

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Partial Differential Equations Seminar
7 June 2021
15:45
Mladen Bestvina
Abstract

Most of the talk will be about the Farrell-Jones conjecture from the point of view of an outsider. I'll try to explain what the conjecture is about, why one wants to know it, and how to prove it in some cases. The motivation for the talk is my recent work with Fujiwara and Wigglesworth where we prove this conjecture for (virtually torsion-free hyperbolic)-by-cyclic groups. If there is time I will outline the proof of this result.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

7 June 2021
14:15
Michael Hallam
Abstract

A celebrated result in geometry is the Kobayashi-Hitchin correspondence, which states that a holomorphic vector bundle on a compact Kähler manifold admits a Hermite-Einstein metric if and only if the bundle is slope polystable. Recently, Dervan and Sektnan have conjectured an analogue of this correspondence for fibrations whose fibres are compact Kähler manifolds admitting Kähler metrics of constant scalar curvature. Their conjecture is that such a fibration is polystable in a suitable sense, if and only if it admits an optimal symplectic connection. In this talk, I will provide an introduction to this theory, and describe my recent work on the conjecture. Namely, I show that existence of an optimal symplectic connection implies polystability with respect to a large class of fibration degenerations. The techniques used involve analysing geodesics in the space of relatively Kähler metrics of fibrewise constant scalar curvature, and convexity of the log-norm functional in this setting. This is work for my PhD thesis, supervised by Frances Kirwan and Ruadhaí Dervan.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Geometry and Analysis Seminar
7 June 2021
12:45
Matthias Gaberdiel
Abstract

A proposal for the worldsheet string theory that is dual to free N=4 SYM in 4d will be explained. It is described by a free field sigma model on the twistor space of AdS5 x S5, and is a direct generalisation of the corresponding model for tensionless string theory on AdS3 x S3. I will explain how our proposal fits into the general framework of AdS/CFT, and review the various checks that have been performed.
 

  • String Theory Seminar
4 June 2021
16:00
Paolo Milan
Abstract

In this talk I will present a gravitational interpretation for the superconformal index of N = 4 SYM theory in the large N limit. I will start by reviewing the so-called Bethe Ansatz formulation of the field theory index and its large N expansion (which includes both perturbative and non-perturbative corrections in 1/N). In the gravity side, according the rules of AdS/CFT correspondence, the index—interpreted as the supersymmetric partition function of N = 4 SYM—should be equivalent to the gravitational partition function on AdS_5 x S^5. The latter is classically evaluated as a sum over Euclidean gravity solutions with appropriate boundary conditions. In this context, I will show that (in the case of equal angular momenta) the contribution to the index of each Bethe Ansatz solution that admits a proper large N limit is captured by a complex black hole solution in the gravity side, which reproduces both its perturbative and non-perturbative behavior. More specifically, the number of putative black hole solutions turns out to be much larger than the number of Bethe Ansatz solutions. A resolution of this issue is found by requiring the gravity solutions to be “stable” under the non-perturbative corrections. This ensures that all the extra gravity solutions are ruled out and leads to a precise match between field theory and gravity.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • String Theory Journal Club

Pages