Date
Thu, 25 Nov 2021
Time
12:00 - 13:00
Location
L3
Speaker
Sean Vittadello
Organisation
University of Melbourne

The complexity of biological systems necessitates that we develop mathematical models to further our understanding of these systems. Mathematical models of these systems are generally based on heterogeneous sets of experimental data, resulting in a seemingly heterogeneous collection of models that ostensibly represent the same system. To understand the system, and to reveal underlying design principles, we therefore need to understand how the different models are related to each other with a view to obtaining a unified mathematical description. This goal is complicated by the number of distinct mathematical formalisms that may be employed to represent the same system, making direct comparison of the models very difficult. In this talk I will discuss two general methodologies, namely comparison by distance and comparison by equivalence, that allow us to compare model structures in a systematic way by representing models as labelled simplicial complexes. The distance can be obtained either directly from the simplicial complexes, or from the persistence intervals obtained by employing persistent homology with a flat filtration. Model equivalence is used to determine the conceptual similarity of models and can be automated by using group actions on the simplicial complexes. We apply our methodology for model comparison to demonstrate a particular equivalence between a positional-information model and a Turing-pattern model from developmental biology, which constitutes a novel observation for two classes of models that were previously regarded as unrelated. We also discuss an alternative framework for model comparison by representing models as groups, which allows for the application of group-theoretic techniques within our model comparison methodology.

Further Information

Sean Vittadello joined the Theoretical Systems Biology Group at The University of Melbourne as a Postdoctoral Research Fellow in April 2020. His research interests are broadly in the study of biological systems with mathematics, using both analytical and algebraic techniques.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.