Author
Xu, Y
Krause, A
Van Gorder, R
Journal title
Journal of theoretical biology
DOI
10.1016/j.jtbi.2019.110060
Volume
486
Last updated
2022-03-08T17:30:11.817+00:00
Page
110060-110060
Abstract
Ecosystems often contain multiple species across two or more trophic levels, with a variety of interactions possible. In this paper we study two classes of models for generalist predators that utilize more than one food source. These models fall into two categories: predator - two prey and predator - prey - subsidy models. For the former, we consider a generalist predator which utilizes two distinct prey species, modelled via a Kolmogorov system of equations with Type II response functions. For the latter, we consider a generalist predator which exploits both a prey population and an allochthonous resource which is provided as a subsidy to the system exogenously, again with Type II response functions. This latter class of model is no longer Kolmogorov in form, due to an exogenous forcing term modelling the input of the allochthonous resource into the system. We non-dimensionalize both models, so that their respective parameter spaces may be more easily compared, and study the dynamics possible from each type of model, which will then indicate - for specific parameter regimes - which generalist predator's preferences are more favorable to survival, including the prevalence of coexistence states. We also consider the various non-equilibrium dynamics emergent from such models, and show that the non-Kolmogorov predator - prey - subsidy model of 10 admits more regular dynamics (including steady states and one type of limit cycle), whereas the predator - two prey Kolmogorov model can feature multiple types of limit cycles, as well as multistability resulting in strong sensitivity to initial conditions (with stable limit cycles and steady states both coexisting for the same model parameters). Our results highlight several interesting differences and similarities between Kolmogorov and non-Kolmogorov models for generalist predators.
Symplectic ID
1071412
Publication type
Journal Article
Publication date
2 November 2019
Please contact us with feedback and comments about this page. Created on 13 Nov 2019 - 17:30.