The link surgery formula and plumbed 3-manifolds

17 January 2022
15:30
Ian Zemke
Abstract

Lattice homology is a combinatorial invariant of plumbed 3-manifolds due to Nemethi. The definition is a formalization of Ozsvath and Szabo's computation of the Heegaard Floer homology of plumbed 3-manifolds. Nemethi conjectured that lattice homology is isomorphic to Heegaard Floer homology. For a restricted class of plumbings, this isomorphism is known to hold, due to work of Ozsvath-Szabo, Nemethi, and Ozsvath-Stipsicz-Szabo. By using the Manolescu-Ozsvath link surgery formula for Heegaard Floer homology, we prove the conjectured isomorphism in general. In this talk, we will talk about aspects of the proof, and some related topics and extensions of the result.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).