Fri, 25 May 2018

14:00 - 15:00
L3

Delay differential equations with threshold-type delays

Professor Stephen Gourley
(Dept of Mathematics University of Surrey)
Abstract

I will discuss some properties of delay differential equations in which the delay is not prescribed a-priori but is determined from a threshold condition. Sometimes the delay depends on the solution of the differential equation and its history. A scenario giving rise to a threshold type delay is that larval insects sometimes experience halting or slowing down of development, known as diapause, perhaps as a consequence of intra-specific competition among larvae at higher densities. Threshold delays can result in population dynamical models having some unusual properties, for example, if the model has an Allee effect then diapause may cause extinction in some parameter regimes even where the initial population is high.

Please  note that this talk is only suitable for Mathematicians.

Fri, 11 May 2018

14:00 - 15:00
L3

Intracellular coordination of microswimming by flagella

Dr Kirsty Wan
(Living Systems Institute University of Exeter)
Abstract

Since the invention of the microscope, scientists have known that pond-dwelling algae can actually swim – powering their way through the fluid using tiny limbs called cilia and flagella. Only recently has it become clear that the very same structure drives important physiological and developmental processes within the human body. Motivated by this connection, we explore flagella-mediated swimming gaits and stereotyped behaviours in diverse species of algae, revealing the extent to which control of motility is driven intracellularly. These insights suggest that the capacity for fast transduction of signal to peripheral appendages may have evolved far earlier than previously thought.

Fri, 04 May 2018

14:00 - 15:00
L3

Computing reliably with molecular walkers

Professor Marta Kwiatkowska
(Dept of Computer Science University of Oxford)
Abstract

DNA computing is emerging as a versatile technology that promises a vast range of applications, including biosensing, drug delivery and synthetic biology. DNA logic circuits can be achieved in solution using strand displacement reactions, or by decision-making molecular robots-so called 'walkers'-that traverse tracks placed on DNA 'origami' tiles.

 Similarly to conventional silicon technologies, ensuring fault-free DNA circuit designs is challenging, with the difficulty compounded by the inherent unreliability of the DNA technology and lack of scientific understanding. This lecture will give an overview of computational models that capture DNA walker computation and demonstrate the role of quantitative verification and synthesis in ensuring the reliability of such systems. Future research challenges will also be discussed.

Fri, 27 Apr 2018

14:00 - 15:00
L3

Revisiting Jeffery orbits; the importance of shape for micro-organism transport

Dr Rachel Bearon
(Dept of Mathematical Sciences University of Liverpool)
Abstract

Classical work of Jeffery from 1922 established how at low Reynolds number, ellipsoids in steady shear flow undergo periodic motion with non-uniform rotation rate, termed 'Jeffery orbits'.  I will present two problems where Jeffery orbits play a critical role in understanding the transport and aggregation of rod-shaped organisms.  I will discuss the trapping of motile chemotactic bacteria in high shear, and the sedimentation rate of negatively buoyant plankton. 

Thu, 03 May 2018
16:00
C5

TBA

Joshua Jackson
(Oxford University)
Mon, 21 May 2018

16:00 - 17:00
L4

Recent advances in analysis of critical points of Landau-de Gennes energy in 2D and 3D

Georgy Kitavtsev
(Oxford)
Abstract

In the first part of this talk the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general k-radial symmetric boundary conditions, will be analysed. It will be shown that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2. Analysis of the associated harmonic map type problem arising in the limit of small elastic constants allows to identify three types of radial profiles: with two, three or full five components. In the second part of the talk different paths for emergency of non-radially symmetric solutions and their analytical structure in 2D as well as 3D cases will be discussed. These results is a joint work with Jonathan Robbins, Valery Slastikov and Arghir Zarnescu.
 

Wed, 28 Feb 2018

16:00 - 17:00
C5

Dehn functions of one-relator groups

Giles Gardam
(Technion – Israel Institute of Technology)
Abstract

It is a classical theorem of Magnus that the word problem for one-relator groups is solvable; its precise complexity remains unknown. A geometric characterization of the complexity is given by the Dehn function. I will present joint work with Daniel Woodhouse showing that one-relator groups have a rich collection of Dehn functions, including the Brady--Bridson snowflake groups on which our work relies.
 

Wed, 09 May 2018
16:00
C5

Traces and hermitian objects in higher category theory

Jan Steinebrunner
(Oxford University)
Abstract

Given an endomorphism f:X --> X of a 'dualisable' object in a symmetric monoidal category, one can define its trace Tr(f). It turns out that the trace is 'universal' among the scalars we can produce from f. To prove this we will think of the 1d framed bordism category as the 'walking dualisable object' (using the cobordism hypothesis) and then apply the Yoneda lemma.
Employing similar techniques we can define 'hermitian' objects (generalising hermitian vector spaces) and prove that there is a 1-1 correspondence between Hermitian structures on a fixed object X and self-adjoint automorphisms of X. If time permits I will sketch how this relates to hermitian K-theory.

While all results of the talk hold for infinity-categories, they work equally well for ordinary categories. Therefore no knowledge of higher category theory is needed to follow the talk.

Subscribe to