
Julian Kranz
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
E. Gardella, S. Geffen, J. Kranz, P. Naryshkin, and A. Vaccaro. Tracially amenable actions and purely infinite crossed products. arXiv:2211.16872, 2022.
S. Chakraborty, S. Echterhoff, J. Kranz, and S. Nishikawa. K-theory of non-commutative Bernoulli Shifts. Math. Ann., 2023.
J. Kranz and S. Nishikawa. K-theory of Bernoulli shifts of finite groups on UHF-algebras. arXiv:2210.00061, 2022.
J. Kranz. Amenability for actions of étale groupoids on C*-algebras and Fell bundles. Trans. Amer. Math. Soc., 2023.
E. Gardella, S. Geffen, J. Kranz, and P. Naryshkin. Classifiability of crossed products by nonamenable groups. J. Reine Angew. Math., 2023(797):285–312, 2023.
J. Kranz and T. Siebenand. Partial tensor-product functors and crossed-product functors. Proc. Amer. Math. Soc., 150(12):5359–5367, 2022.
J. Kranz. The weak containment problem for étale groupoids which are strongly amenable at infinity. J. Oper. Theory, 89(2):349–360, 2023.
J. Kranz. An identification of the Baum-Connes and Davis-Lück assembly maps. Münster J. of Math., 14(2):509–536, 2021.
My research interests include C*-algebras, C*-dynamical systems, amenable groupoids, K-theory and the Baum-Connes conjecture. I am also interested in some aspects of geometric group theory and algebraic topology.
Feodor-Lynen Fellowship of the Humboldt Foundation