MAT syllabus

Sequences defined iteratively and by formulae. Arithmetic and geometric progressions*. Their sums*. Convergence condition for infinite geometric progressions*.

* Part of full A-level Mathematics syllabus.

Revision

- A sequence a_{n} might be defined by a formula for the $n^{\text {th }}$ term like $a_{n}=n^{2}-n$.
- A sequence a_{n} might be defined with an relation like $a_{n+1}=f\left(a_{n}\right)$ for $n \geqslant 0$, if we're given the function $f(x)$ and also given a first term like $a_{0}=1$. (The "first term" might be a_{0} if we feel like counting from zero).
- The sum of the first n terms of a sequence a_{k} can be written with the notation $\sum_{k=0}^{n-1} a_{k}$ (if the first term is a_{0}) or $\sum_{k=1}^{n} a_{k}$ (if the first term is a_{1}).
- An arithmetic sequence is one where the difference between terms is constant. The terms can be written as $a, a+d, a+2 d, a+3 d, \ldots$, where a is the first term and d is the common difference.
- The sum of the first n terms of an arithmetic sequence with first term a and common difference d is $\frac{n}{2}(2 a+(n-1) d)$, which you can remember as "first term plus last term, times the number of terms, divided by two".
- A geometric sequence is one where the ratio between consecutive terms is constant. The terms can be written as $a, a r, a r^{2}, a r^{3}, \ldots$ where a is the first term and r is the common ratio.
- The sum of the first n terms of a geometric sequence with first term a and common ratio r is $\frac{a\left(1-r^{n}\right)}{1-r}$. One way to remember this is to remember what happens if we multiply the sum of the first n terms of a geometric series by $(1-r)$,

$$
\begin{aligned}
(1-r)\left(a+a r+\cdots+a r^{n-1}\right) & =(a-a r)+\left(a r-a r^{2}\right)+\cdots+\left(a r^{n-1}-a r^{n}\right) \\
& =a-a r^{n} .
\end{aligned}
$$

- For a geometric sequence a_{n}, the sum to infinity is written as $\sum_{k=0}^{\infty} a_{k}$. If the common ratio r satisfies $|r|<1$ then this is equal to $\frac{a}{1-r}$. If $|r| \geqslant 1$ then this sum to infinity does not converge (it does not approach any particular real number).

Warm-up

1. A sequence is defined by $a_{n}=n^{2}-n$. What is a_{3} ? What is a_{10} ? Find $a_{n+1}-a_{n}$ in terms of n. Find $a_{n+1}-2 a_{n}+a_{n-1}$ in terms of n.
2. A sequence is defined by $a_{0}=1$ and $a_{n}=a_{n-1}+3$ for $n \geqslant 1$. Find $a_{0}+a_{1}+\cdots+a_{10}$. Find a_{1000}.
3. A sequence is defined by $a_{0}=1$ and $a_{n}=\frac{a_{n-1}}{3}$ for $n \geqslant 1$. Find $a_{0}+a_{1}+\cdots+a_{10}$. Find a_{1000}. Does the sum of all the terms of this sequence converge? If it does, what is the sum to infinity?
4. A sequence is defined by $a_{0}=1$ and $a_{n}=3 a_{n-1}+1$ for $n \geqslant 1$. A sequence b_{n} is defined by $b_{n}=A \times 3^{n}+B$ where A and B are real numbers. Find values for A and B such that $a_{n}=b_{n}$ for all $n \geqslant 0$.
5. A sequence is defined by $a_{n}=A n^{2}+B n+C$ where A, B, and C are real numbers. Find A, B, and C in terms of a_{0}, a_{1}, and a_{2}. Hint: you'll need to solve 3 simultaneous equations.
6. Simplify $2^{1}+2^{2}+2^{3}+\cdots+2^{n}$ for $n \geqslant 1$.
7. Simplify $3^{4}+3^{5}+3^{6}+\cdots+3^{n}$ for $n \geqslant 4$.
8. When does the sum $1+x^{3}+x^{6}+x^{9}+x^{12}+\ldots$ converge? Simplify it in the case that it converges.
9. When does the sum $2-x+\frac{x^{2}}{2}-\frac{x^{3}}{4}+\ldots$ converge? Simplify it in the case that it converges.
10. Consider the sum of the first n terms of an arithmetic sequence $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1}=a$ and $a_{2}=a+d$. Explain why the sum of the $i^{\text {th }}$ term and the $(n+1-i)^{\text {th }}$ term doesn't depend on i, as long as $1 \leqslant i \leqslant n$. By considering separate cases where n is even or where n is odd, deduce that the sum of the first n terms of an arithmetic sequence is n times the average term.
11. Consider the sum of the first n terms of an arithmetic sequence with first term a and constant difference d. Consider the special case $d=0$. Write down the sum in this case. Now consider the case $a=0$. In this case, write the sum in terms of the triangle numbers $T_{n}=1+2+3+\cdots+n=\frac{1}{2} n(n+1)$. Hence write down the sum of the first n terms of an arithmetic sequence. Check that this agrees with the formula above.

MAT questions

MAT 2016 Q1A

A sequence a_{n} has first term $a_{1}=1$, and subsequent terms defined by $a_{n+1}=l a_{n}$ for $n \geqslant 1$. What is the product of the first 15 terms of the sequence?
(a) l^{14},
(b) $15+l^{14}$,
(c) $15 l^{14}$,
(d) $\quad l^{105}$,
(e) $15+l^{105}$.

Hint: note that this question is asking for the product and not the sum. Also note that the first term is a_{1} and not a_{0}, so the first 15 terms will be $a_{1}, a_{2}, \ldots, a_{14}, a_{15}$.

MAT 2016 Q1G

The sequence x_{n}, where $n \geqslant 0$, is defined by $x_{0}=1$ and

$$
x_{n}=\sum_{k=0}^{n-1} x_{k} \quad \text { for } n \geqslant 1 .
$$

The sum

$$
\sum_{k=0}^{\infty} \frac{1}{x_{k}}
$$

equals
(a) 1 ,
(b) $\frac{6}{5}$,
(c) $\frac{8}{5}$,
(d) 3 ,
(e) $\frac{27}{5}$.

Hint: work out a few of the values $x_{1}, x_{2}, x_{3}, \ldots$ before trying to work out the sum to infinity.

MAT 2017 Q1C

A sequence (a_{n}) has the property that

$$
a_{n+1}=\frac{a_{n}}{a_{n-1}}
$$

for every $n \geqslant 2$. Given that $a_{1}=2$ and $a_{2}=6$, what is a_{2017} ?
(a) $\frac{1}{6}$,
(b) $\frac{2}{3}$,
(c) $\frac{3}{2}$,
(d) 2 ,
(e) 3 .

Hint: again, work out a few of the values $x_{1}, x_{2}, x_{3}, \ldots$.

MAT 2016 Q5

This question concerns the sum s_{n} defined by

$$
s_{n}=2+8+24+\cdots+n 2^{n} .
$$

(i) Let $f(n)=(A n+B) 2^{n}+C$ for constants A, B and C yet to be determined, and suppose $s_{n}=f(n)$ for all $n \geqslant 1$. By setting $n=1,2,3$, find equations that must be satisfied by A, B and C.
(ii) Solve the equations from part (i) to obtain values for A, B and C.
(iii) Using these values, show that if $s_{k}=f(k)$ for some $k \geqslant 1$ then $s_{k+1}=f(k+1)$.

You may now assume that $f(n)=s_{n}$ for all $n \geqslant 1$.
(iv) Find simplified expressions for the following sums:

$$
\begin{aligned}
& t_{n}=n+2(n-1)+4(n-2)+8(n-3)+\cdots+2^{n-1} 1, \\
& u_{n}=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\cdots+\frac{n}{2^{2}} .
\end{aligned}
$$

(v) Find the sum

$$
\sum_{k=1}^{n} s_{k} .
$$

Hints: At the start, take a moment to understand the definition of s_{n}. How do the numbers 8 and 24 relate to the $+n 2^{n}$ part of the definition? What are the values of s_{1} and s_{2} and s_{3} ? Be careful: s_{2} is not 8 .

In part (iii) we're being asked to investigate what happens when we go from s_{k} to s_{k+1}. From the definition at the top, what changes when we go from s_{k} to s_{k+1} ? If we do that to $f(k)$, do we get to $f(k+1)$?

In part (iv), it would be good if we could find a link between t_{n} and s_{n}, perhaps by spotting a copy of the sum that defines s_{n} hiding in there. Then we want to find a link between u_{n} and s_{n}, or a link between u_{n} and t_{n}. If that doesn't work, we can go back to the idea in part (i) and try to find a general expression for the $n^{\text {th }}$ term of t_{n} or u_{n} by guessing a function like $(A n+B) 2^{n}+C$ or maybe like $(A n+B) 2^{-n}+C$.

In part (v), we know an expression for s_{k} in terms of things like 2^{k} and $k 2^{k}$. We know how to sum the first of those things, and the sum of the second thing there is oddly familiar from earlier in this question...

Extension

A future session of the Oxford MAT Livestream will be on "recursion", and we'll look at more expressions that are like $a_{n}=f\left(a_{n-1}\right)$ but more complex.

The following material is included for your interest only, and not for MAT preparation.
There's a general formula for sequences where the difference between terms is itself an arithmetic sequence. The sequences are sometimes called quadratic sequences, and they have $a_{n}=A n^{2}+B n+C$ for some A, B, and C. You can probably guess what happens if the difference between terms of a sequence is itself a quadratic sequence.

In MAT 2016 Q5, we found a formula for the sum of the first n terms of the sequence $a_{k}=k 2^{k}$ with one particular method (guess the formula, check the formula). Here's a more direct proof; expand and sum and sum.

- Expand out each term into $2^{k} \mathrm{~s}$, so that we've got

$$
\sum_{k=1}^{n} k 2^{k}=\left(2^{1}\right)+\left(2^{2}+2^{2}\right)+\left(2^{3}+2^{3}+2^{3}\right)+\cdots+(\underbrace{2^{n}+2^{n}+\cdots+2^{n}}_{n})
$$

- Regroup the terms and sum

$$
\begin{aligned}
\sum_{k=1}^{n} k 2^{k} & =\left(2^{1}+2^{2}+\cdots+2^{n}\right)+\left(2^{2}+2^{3}+\cdots+2^{n}\right)+\cdots+\left(2^{n-1}+2^{n}\right)+2^{n} \\
& =2^{1}\left(2^{n}-1\right)+2^{2}\left(2^{n-1}-1\right)+\cdots+2^{n-1}\left(2^{2}-1\right)+2^{n}\left(2^{1}-1\right)
\end{aligned}
$$

- Expand these brackets, bring together all the $2^{n+1} \mathrm{~S}$ and notice that the remaining terms are another geometric series

$$
\begin{aligned}
\sum_{k=1}^{n} k 2^{k} & =n 2^{n+1}-2^{1}-2^{2}-2^{3}-\cdots-2^{n} \\
& =n 2^{n+1}-2^{1}\left(2^{n}-1\right) \\
& =(2 n-2) 2^{n}+2
\end{aligned}
$$

You might be able to adapt this method to similar sums $\sum_{k=1}^{n} k x^{k}$ for other numbers x. (Watch out for a factor of $(x-1)$ from the geometric sums, which is 1 above when $x=2$.)

For the sum to infinity, if $|x|<1$, then we get $x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots=\frac{x}{(1-x)^{2}}$. This agrees with a different, more advanced calculation using calculus; the sum is

$$
x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots=x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(1+x+x^{2}+x^{3}+\ldots\right)=x \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{1}{1-x}\right)=\frac{x}{(1-x)^{2}}
$$

but this calculation uses the "chain rule" for differentiation, which is not on the MAT syllabus!

