Viscous Core-Annular Flows: A Laboratory Playground for Dispersive Hydrodynamics

Mark Hoefer Applied Mathematics, University of Colorado, Boulder Oxford University, September 22, 2022

Dispersive Hydrodynamics Laboratory

Collaborators

- Gennady EI, Northumbria University, UK
- Dionyssis Mantzavinos, U Kansas, Lawrence
- Yifeng Mao, U Colorado, Boulder
- Sathya Chandramouli, Florida State University
- Michelle Maiden, U Colorado, Boulder
- Nicholas Lowman, NC State U, Raleigh

Dispersive Hydrodynamics

Superfluids

[Cornell JILA group 2004-2006]

Surface Waves

[Hamner et al 2011]

Nonlinear optics

[Bienaimé et al 2021]

Internal Waves

[Clarke 1997]

0.6 (a)

r = 0.16

[Xu et al 2017]

Magnetic Spin Waves

Dissipationless, Dispersive Fluid Dynamics

... an applied mathematician's perspective:

$$\mathbf{\underline{u}}_t + \nabla \cdot \mathbf{F}(\mathbf{\underline{u}}) = \nabla \cdot \mathbf{D}[\mathbf{\underline{u}}], \quad \mathbf{u}(\mathbf{x}, t) \in \mathbb{R}^n$$

1st order system of higher order, conservation laws dispersive operator

Mathematical models of BEC, optics, shallow water waves, internal waves in ocean and atmosphere, cold plasma,

Dispersive regularization of conservation laws

Dispersive Hydrodynamics Programme

- Goal: accurate description of dispersive hydrodynamics
- Mathematical approaches:
 - PDE (functional) analysis
 - Integrable systems
 - Modulation theory
- Problems:
 - Physical applications
 - Randomness (soliton gas)
 - Boundary value problems
 - Non-convexity
 - Multiple dimensions

Dispersive Hydrodynamics Program Isaac Newton Institute, Cambridge, UK July 4–December 16

Ex: Viscous Core-Annular Flow

Physical setting:

two viscous fluids, inner fluid forms axisymmetric conduit

Exterior fluid:

Interior fluid:

 $\begin{array}{c} V \\ \mu \end{array}^{(i)} & \mu^{(i)} - \text{viscosity} \\ \rho \end{array}^{(i)} & \rho^{(i)} - \text{density} \end{array}$

Key relations:

$$\begin{split} \rho & \rho^{(i)} < \rho^{(e)} \text{- buoyant flow} \\ \mu^{(i)} \ll \mu^{(i)} \ll \mu^{(e)} \\ \text{Re} &= \frac{T_{\text{momentum}}}{T_{\text{inertial}}} \approx 10^{-1} \quad \text{Pe} = \frac{T_{\text{mass}}}{T_{\text{inertial}}} \approx 10^5 \end{split}$$

Multiscale Model Hierarchy

Physical requirements: (1) Miscibility (2) Buoyancy (3) High viscosity contrast (4) Stokes regime (5) Weak mass diffusion

Microscopic continuum model: two-fluid Stokes equations

$$A_t + (A^2)_z - (A^2 (A^{-1} A_t)_z)_z =$$

 $\nabla \cdot \mathbf{u} = 0$

 $\nabla p = \mu \Delta \mathbf{u}$

 $(\overline{A})_t + \left(\overline{A^2} - 2k\omega\overline{A_\theta^2}\right)_z = 0$

 $k_t + \omega_z = 0$

 $\left(\overline{A^{-1}} + k^2 \overline{A^{-2} A_{\theta}^2}\right)_{\star} - \left(2\overline{\ln A}\right)_z = 0$

Macroscopic modulated nonlinear wavetrains: Whitham equations

Megascopic soliton gas: kinetic equation

 $f_t + (Sf)_x = 0$ $S(a) = s(a) + \int_0^\infty K(a, a') f(a') [S(a) - S(a')] da'$

Conduit Equation

$$A_{t} + (A^{2})_{z} = \left(A^{2} \left(A^{-1}A_{t}/A^{2}\right)_{z}\right)_{z}$$

- A(x, t): conduit cross-sectional area
- Long wave approximation of Stokes equations w/ no amplitude restriction: scalar analog of Serre-Green-Naghdi, Choi-Camassa, ...
- Nonlocal, nonlinear dispersion: generalizes BBM equation
- Well-studied model, e.g.,
 - •Asymptotic solitary wave stability [Simpson, Weinstein SIMA 2008]
 - Stability of periodic traveling waves [Maiden, Hoefer *Proc Roy Soc A* 2016; Johnson, Perkins *SIMA* 2020]
 - Generalizes to models of magma [Scott, Stevenson 1984] and channelized glacier water flow [Stubblefield, Spiegelman, Creyts 2020]

Conduit experiment

drain

- Inject lighter, viscous fluid into column of more viscous fluid
- Variable flow rate generates interfacial waves (wavemaker)

Initial, boundary value problem:

$$A(0,t) = \begin{cases} A(0,t+T), & t > 0\\ 1, & t \le 0 \end{cases}$$

Flow rate $Q(t) = Q_0 A(0,t)^2$

Nondimensionalization:

Vertical length scale:

$$L = \frac{R_0}{\sqrt{8\epsilon}} \sim 0.2 - 0.3 \quad [\rm cm]$$

Speed scale:

$$U = \frac{g R_0^2 \Delta}{8 \mu^{(i)}} \sim 0.3 - 0.5 \quad \text{[cm/s]}$$

Vertical long time scale:

$$T = \sqrt{\frac{8}{\epsilon}} \frac{\mu^{(i)}}{gR_0\Delta} \sim 0.4 - 1.0 \quad [s]$$

Example Dynamics/Solutions

Conduit Solitary Waves

Lowman, Hoefer, El, J Fluid Mech 2014

Two Solitons in a Viscous Fluid Conduit

KdV 2-Soliton Lax Categories

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XXI, 467-490 (1968)

Integrals of Nonlinear Equations of Evolution and Solitary Waves*

PETER D. LAX

Sec 1: $L_t = BL - LB = [B, L] \iff u_t = K(u)$ $L = \partial_{xx} + \frac{1}{6}u, \quad B = 24\partial_{xxx} + 3u\partial_x + 3\partial_x u, \quad K(u) = -uu_x - u_{xxx}$

THEOREM 2.1. For any pair of speeds c_1 and c_2 there exists a double wave, i.e., a solution d(x, t) of the KdV equation such that

Sec 2:

(2.36)
$$d(x,t) - s(x - c_1 t - \theta_1^{\pm}; c_1) - s(x - c_2 t - \theta_2^{\pm}; c_2)$$

tends to zero uniformly as $t \rightarrow \pm \infty$.

bimodal
$$\frac{c_1}{c_2} < \frac{3+\sqrt{5}}{2}$$
 bi-uni-bi-uni-bimodal $\frac{3+\sqrt{5}}{2} < \frac{c_1}{c_2} < 3$
bi-uni-bimodal $3 < \frac{c_1}{c_2}$

Soliton interaction geometries [Lowman, Hoefer, El JFM 2014]

Interaction Type Observations

Soliton Gas

The Wavemaker Problem

Mao, Hoefer arXiv 2022; Hoefer, Mao, Mantzavinos in preparation 2022

Modeling Experiment $A_t + 2AA_z - AA_{zzt} + A_tA_{zz} = 0$ **IBVP** A(z,0) = 1, z > 0, A(0,t) = q(t), t > 0, q(0) = 0solitary q(t) =1=03 wave dispersive 1=05 q(t) =shock wave periodic q(t) =

traveling wave

Linear Waves

linearized problem $\begin{aligned} A(z,t) &= 1 + u(z,2t), \quad |u| \ll 1 \quad \Rightarrow \quad u_{\tau} + u_{z} - u_{zz\tau} = 0\\ u(z,0) &= 0, \quad z > 0, \quad u(0,\tau) = -\sin(\omega_{0}\tau), \quad \tau > 0 \end{aligned}$

linear $u(z,\tau) = e^{i(kz-\omega\tau)} \Rightarrow \omega(k) = \frac{k}{1+k^2}, \quad k_{\pm}(\omega) = \frac{1 \pm \sqrt{1-\omega^2}}{\omega}$ dispersion

expect traveling wave with $k_{\pm}(\omega_0)$ but which branch?

$$\omega = \omega_0 + i\epsilon, \ 0 < \epsilon \ll \omega_0 \ \Rightarrow \ u(0,\tau) = e^{-i\omega_0\tau}e^{\epsilon\tau}$$

 $k(\omega_0 + i\epsilon) \sim k(\omega_0) + i\epsilon \frac{\mathrm{d}k}{\mathrm{d}\omega}(\omega_0) = k(\omega_0) + \frac{i\epsilon}{c_o(\omega_0)}$

$$u(z,\tau) = e^{\epsilon(\tau - z/c_g)} e^{i(kz - \omega_0 \tau)}, \quad u(\infty,\tau) = 0 \implies c_g(\omega_0) > 0$$

$$\omega_0 < \frac{1}{2} \qquad 1 \left/ \frac{\mathrm{d}k_{\pm}}{\mathrm{d}\omega}(\omega_0) = \frac{1}{2} \left(1 - 4\omega_0^2 \mp \sqrt{1 - 4\omega_0^2} \right) \Rightarrow k = k_-(\omega_0)$$

Propagating Linear Waves

Spatially Decaying Linear Waves

 $\omega_0 = 0.46$

0.66

observed *upshift* in critical frequency explained by full 2-Stokes dispersion

Modulation Theory

$$u_{\tau} + u_z - u_{zz\tau} = 0$$

seek slowly varying, periodic traveling wave

compatibility

$$\begin{split} u(z,\tau) &= a(Z,T)\cos(\Theta/\epsilon) + \epsilon u_1(\Theta,Z,T) + \cdots, \quad \epsilon \ll 1 \\ \Theta_Z &= k(Z,T), \quad \Theta_T = -\omega(Z,T), \quad Z = \epsilon z, \quad T = \epsilon \tau \end{split}$$

$$\Theta_{ZT} = \Theta_{TZ} \implies k_T + \omega_Z = 0$$

$$\mathcal{O}(1) \text{ and } \mathcal{O}(\epsilon) \qquad \omega(Z,T) = \frac{k(Z,T)}{1+k(Z,T)^2} \qquad \left(a^2\right)_T + \left(\omega_k(k)a^2\right)_Z = 0$$

Long Time Asymptotics

$$u_{\tau} + u_{z} - u_{\tau z z} = 0, \quad z \ge 0, \tau \ge 0, u(z,0) = 0, \quad z \ge 0, u(0,\tau) = \sin(-\omega_{0}\tau), \quad \tau \ge 0.$$

solution via Unified transform

$$u(z,\tau) = \frac{1}{2\pi} \int_{\mathscr{C}} F(k;\omega_0) e^{\tau \phi(k;\xi)} dk \qquad F(k;\omega_0) = \frac{1}{k^2(1-2\omega_0^2) - \omega_0^2(1+k^4)} \\ \phi(k;\xi) = ik\xi - i\frac{k}{1+k^2}$$

Vasan, Deconinck *Disc Cont Dyn Sys A* 2013; Fokas *A unified approach to boundary value problems* SIAM 2008

 \mathscr{C} : a small contour around k = i

Depends on both ω_0 and $\xi = z/\tau$ Essential singularity: k = i

 $\omega_0(1-k^2)$

4 poles of *F*:
$$\kappa_j = \frac{\pm 1 \pm \sqrt{1 - 4\omega_0^2}}{\omega_0}$$

ent
4 saddles $\phi_k = 0$: $k_j = \pm \sqrt{-1 - \frac{1 \pm \sqrt{1 + 8\xi}}{2\xi}}$

use the method of steepest descent

Contour Deformation

Contour Deformation

Contour Deformation

Approximate Solution

Sinusoidal plane wave solution

$$u(z,\tau) = \sin\left[\left(k(\omega_0)\xi - \omega_0\right)\tau\right] + \mathcal{O}(\tau^{-1/2}),$$
$$k(\omega_0) = \frac{1 - \sqrt{1 - 4\omega_0^2}}{2\omega_0}$$

II, III Algebraically decaying oscillatory solution of $\mathcal{O}(\tau^{-1/2})$

IV Damped sinusoidal wave

$$u(z,\tau) = \exp\left[-k_{\rm Im}\xi\tau\right] \sin\left[\left(k_{\rm Re}\xi - \omega_0\right)\tau\right] + \mathcal{O}(\tau^{-1/2})$$
$$k_{\rm Im}(\omega_0) = \frac{\sqrt{4\omega_0^2 - 1}}{2\omega_0}, \quad k_{\rm Re}(\omega_0) = \frac{1}{2\omega_0}$$

V Exponentially decaying solution of $\mathcal{O}(\tau^{-1/2}e^{-\tau})$

VI Damped sinusoidal wave with a $\mathcal{O}(\tau^{-1/2}e^{-\tau})$ correction

Comparison with Experiment

1

0.95

0.9

0.85

200

 $\tau/\tau = 0.25$

150

 \vdash

80

60

40

20

50

100

z

Generalizations

 $\phi(\theta) =$ periodic traveling wave solution, cnoidal-like waves

Soliton + Cnoidal Wave = Breather

Mao, Chandramouli, Hoefer in preparation 2022

Breather = Solitary Wave + Cnoidal-like Wave

Bright Breather

Dark Breather

Dark Breather Phase Shift

Breather solutions of model equation

$$A_t + 2AA_z - AA_{zzt} + A_t A_{zz} = 0$$

stable bright breather solution

stable dark breather solution

Conclusions

- Viscous core-annular flows: versatile system for dispersive hydrodynamics
- Can test sophisticated mathematics in an accessible system
- Multiscale modeling: microscopic (Navier-Stokes), mesoscopic (conduit eq.), macroscopic (Whitham eqs.), and megascopic (kinetic eq.) scales
- Excellent agreement between theory and experiment

Thank you for your interest