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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

Freezing of a supercooled liquid

1-d model for freezing of a liquid on the positive half-line:

 At time t > 0, [0, s(t)] is frozen and liquid occupies (s(t),∞)

 We call t 7→ s(t) the freezing front

Let v(t, x) denote the temperature at time t ≥ 0 and position
x ∈ (s(t),∞)

Isothermal phase change: v = vf at the interface (x = s(t)),
where vf is the equilibrium freezing temperature (take vf = 0)

No temperature gradient in the frozen phase:

 Constant equilibrium temperature vf in [0, s(t)].
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

The freezing front

Illustration of the advancing freezing front s in the (t, x)-plane
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

The Stefan condition at the interface

Flow of energy (heat flux) in the liquid is q = −k∂xv(t, x)

At phase transition: zero energy escapes into the frozen phase
4 / 17



Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

The Stefan condition at the interface

k thermal conductivity, ` latent heat, ρ density of liquid, c
specific heat capacity
Change ∆x in freezing front s(t) over ∆t amount of time

 Heat flux of q∆t = −k∂xv∆t and energy release of ρ`∆x

 Fourier’s law enforces energy balance: 0− k∂xv∆t = ρ`∆x

 Conclude that ∂xv(t, s(t)+) = −λṡ(t) with λ = ρ`
k

5 / 17



Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

The Stefan condition at the interface

k thermal conductivity, ` latent heat, ρ density of liquid, c
specific heat capacity
Change ∆x in freezing front s(t) over ∆t amount of time

 Heat flux of q∆t = −k∂xv∆t and energy release of ρ`∆x

 Fourier’s law enforces energy balance: 0− k∂xv∆t = ρ`∆x

 Conclude that ∂xv(t, s(t)+) = −λṡ(t) with λ = ρ`
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k

5 / 17



Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

The supercooled Stefan problem

Free boundary problem
∂tv(t, x) = κ∂xxv(t, x) for x ∈ (s(t),∞)

v(t, x) = vf for x ∈ [0, s(t))

v(t, s(t)) = vf , ∂xv(t, s(t)) = −λṡ(t)

Here κ = k
cρ and λ = ρ`

k

Can also argue by internal energy Q = cρv̄ , where v̄ =
∫
vdx

It takes ρ` units of energy to advance the freezing front s:
 Internal energy change of ∆Q from temperature change ∆v̄

 Freezing front moves by ∆s = ∆Q
ρ` = cρ∆v̄

ρ` = c
`∆v̄

Agrees with what can be obtained from integration by parts:

 λ(s(t)− s(r)) =
1

κ

(∫ ∞
0

v(t, x)dx −
∫ ∞

0

v(r , x)dx
)
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Here κ = k
cρ and λ = ρ`

k

Can also argue by internal energy Q = cρv̄ , where v̄ =
∫
vdx

It takes ρ` units of energy to advance the freezing front s:
 Internal energy change of ∆Q from temperature change ∆v̄

 Freezing front moves by ∆s = ∆Q
ρ` = cρ∆v̄

ρ` = c
`∆v̄

Agrees with what can be obtained from integration by parts:

 λ(s(t)− s(r)) =
1

κ

(∫ ∞
0

v(t, x)dx −
∫ ∞

0

v(r , x)dx
)

6 / 17



Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

The supercooled Stefan problem

Free boundary problem
∂tv(t, x) = κ∂xxv(t, x) for x ∈ (s(t),∞)

v(t, x) = vf for x ∈ [0, s(t))

v(t, s(t)) = vf , ∂xv(t, s(t)) = −λṡ(t)
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

Supercooled Stefan problem with noise

Weak formulation of the problem

∫ ∞
0
v(t, x)φ(x−s(t))dx −

∫ ∞
0
v0(x)φ(x−s(0))dx =∫ ∞

0
κv(r , x)∂xxφ(x−s(r))dxdr −

∫ t

0

∫ ∞
0
v(r , x)∂xφ(x−s(r))ds(r)

−
∫ t

0

∫ ∞
0
bv(r , x)∂xφ(x−s(r))dxdWr

and λ(s(t)− s(0)) =
1

κ

(∫ ∞
0

v(t, x)dx −
∫ ∞

0
v0(x)dx

)
Smooth test functions φ ∈ C∞(R) with φ(0) = 0

Initial condition v0 ∈ L∞ ∩ L1 supported in (s(0),∞)

Solution v(t, ·) ∈ L∞ ∩ L1 ∀t ≥ 0 with t 7→ v(t, ·) càdlàg
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

Allowing a temperature discontinuity: v(t−, x) y vf

As a mathematical abstraction, one could think of instantly
freezing a portion of the liquid on (s(t−), s(t−) + ∆x ]

This means allowing temperatures on (s(t−), s(t−) + ∆x ] to
instantly jump to the freezing point vf close to the interface
(at a given time t, for a given δx):

 For x ∈ (s(t−), s(t−) + ∆x ], let v(t−, x) y v(t, x) = vf

 Energy balance: resulting heat change ∆v̄ must advance the
front at s(t−) by an amount ∆s = c

`∆v̄ (need ∆x = c
`∆v̄)

 Freezing front: jumps from s(t−) to s(t) := s(t−) + ∆s

 Away from the interface: at all positions x ∈ (s(t),∞), the
temperature remains unchanged v(t, x) = v(t−, x)
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

Temperature discontinuity: v(t−, x) y vf
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

Allowing the temperature to jump: v(t, x) y vf

As a mathematical abstraction, one could think of instantly
freezing a portion of the liquid

Allow temperatures to jump instantly to the freezing point vf
close to the interface (at some time t):

 For x ∈ (s(t−), s(t−) + ∆x ], let v(t−, x) y v(t, x) = vf
 Energy balance: resulting heat change ∆v̄ must advance the

front at s(t−) by ∆s = c
`∆v̄ (so ∆x = ∆s = c

`∆v̄)

 At all positions x ≥ s(t−) + ∆s, the temperature remains
unchanged v(t, x) = v(t−, x)

Our requirement of energy balance reads as

λ∆s(t) = λ c
`∆v̄ = 1

κ

(∫∞
0 v(t, x)dx −

∫∞
0 v(t−, x)dx

)
Which corresponds to an instant change of heat of size

∆v̄ = −
∫ s(t−)+ c

`
∆v̄

s(t−) v(t−, x)dx
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

Allowing the temperature to jump: v(t, x) y vf

Illustration of the freezing front with a discontinuity

Recall we need ∆s(t) = 1
κ∆v̄ = −

∫ s(t−)+ c
`

∆v̄

s(t−) v(t−, x)dx
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Physical derivation of the Stefan problem
The supercooled Stefan problem with noise

Probabilistic representation and heat discontinuity

A possible story for temperature discontinuity

Exogenous shock: temperatures jump to vf (v(t−, x) y vf )
in a small ∆x-neighbourhood of s(t−) with freezing front
moving to s(t−) + ∆x

 Resulting change in heat ∆v̄ (0) := −
∫ s(t−)+∆x

s(t−)
v(t−, y)dy

 Let this cause a further movement of the freezing front by
∆Q
ρ` = cρ∆v̄ (0)

ρ` = c
`∆v̄ (0)

 Further heat change ∆v̄ (1) := −
∫ s(t−)+∆x+ c

` ∆v̄ (0)

s(t−)+∆x v(t−, y)dy

 Freezing front moves again by ∆Q
ρ` = cρ∆v̄ (1)

ρ` = c
`∆v̄ (1)

The total change of heat is

∞∑
n=0

∆v̄ (n) =

∫ s(t−)+∆x+
c
`
∑∞

n=0 ∆v̄ (n)

s(t−)
v(t−, y)dy
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∆v̄ := lim
∆x→0
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n=0
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This way, we indeed end up with energy balance
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c
`∆v̄
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Probabilistic representation

Recall v(t, x) lives on (t, x) ∈ [0,∞)× [s(t),∞)

Can be represented as −v(t, x)dx = P(Xt ∈ dx , t < τ |W )

Conditional McKean–Vlasov problem
Xt = X0 + 2

√
κβBt + bWt

τ = inf{t ≥ 0 : Xt ≤ s(t)}

s(t) = s(0) +
1

λκ
P(τ ≤ t |W )

Here β =
√

1− ( b
2
√
κ

)2 and recall also that λκ = `
c

As before, the freezing front t 7→ s(t) must satisfy

λ(s(t)− s(0)) =
1

κ

(∫ ∞
0

v(t, x)dx −
∫ ∞

0
v0(x)dx

)
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Continuity in time versus heat discontinuities

For any given weak solution v , consider the first time the
temperature undergoes a discontinuity in time:

τ := inf{t > 0 : v(t, ·) 6= v(t−, ·)}

Theorem: finite-time discontinuity

If v0(x) > λκ = `
c on an interval somewhere in (s(0),∞), then

P(τ <∞) > 0.

Theorem: global continuity

If v0(x) < λκ = `
c for all x ∈ (s(0),∞), then

P(τ <∞) = 0.
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Probabilistic representation and heat discontinuity

Main idea behind the proof

Let v0(x) ≥ `
c + δ for all x ∈ y + I , where I := (0, h), y > s(0)

Suppose, for a contradiction, that there are no discontinuities

Choose ε > 0 small in a particular way depending on above

Let νt(dx) := P(Xt − s(t) ∈ dx , t < τ |W )

Show that we can find a W -stopping time ς and a particular
W -event such that

c

`

1

2
νς(I )

2 ≤
∫
I
xνς(dx) + ε

on this event

Show that, on this event, we also have

νς(I ) ≥ ν0(c + I )−ε and

∫
I
xνς(dx) ≤

∫
c+I

(x−c)ν0(dx)+ε
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Thank you!
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