On temperature discontinuities in the supercooled Stefan problem with noise

Andreas Søjmark

Department of Statistics Probability in Finance & Insurance London School of Economics

> 18-19th July 2022 PDE CDT Alumni Event University of Oxford

- 1-d model for freezing of a liquid on the positive half-line:
 - \rightsquigarrow At time t > 0, [0, s(t)] is frozen and liquid occupies $(s(t), \infty)$
 - \rightsquigarrow We call $t \mapsto s(t)$ the freezing front

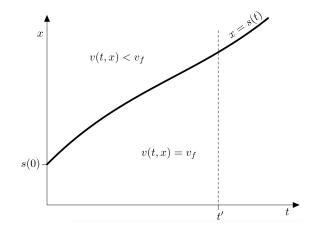
- 1-d model for freezing of a liquid on the positive half-line:
 - \rightsquigarrow At time t > 0, [0, s(t)] is frozen and liquid occupies $(s(t), \infty)$
 - \rightsquigarrow We call $t \mapsto s(t)$ the freezing front
- Let v(t, x) denote the temperature at time $t \ge 0$ and position $x \in (s(t), \infty)$

- 1-d model for freezing of a liquid on the positive half-line:
 - \rightsquigarrow At time t > 0, [0, s(t)] is frozen and liquid occupies $(s(t), \infty)$
 - \rightsquigarrow We call $t \mapsto s(t)$ the freezing front
- Let v(t, x) denote the temperature at time $t \ge 0$ and position $x \in (s(t), \infty)$
- Isothermal phase change: $v = v_f$ at the interface (x = s(t)), where v_f is the equilibrium freezing temperature (take $v_f = 0$)

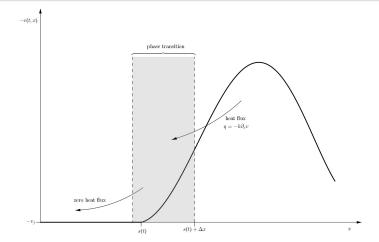
- 1-d model for freezing of a liquid on the positive half-line:
 - \rightsquigarrow At time t > 0, [0, s(t)] is frozen and liquid occupies $(s(t), \infty)$
 - \rightsquigarrow We call $t \mapsto s(t)$ the freezing front
- Let v(t, x) denote the temperature at time $t \ge 0$ and position $x \in (s(t), \infty)$
- Isothermal phase change: $v = v_f$ at the interface (x = s(t)), where v_f is the equilibrium freezing temperature (take $v_f = 0$)
- No temperature gradient in the frozen phase:
 - \rightsquigarrow Constant equilibrium temperature v_f in [0, s(t)].

The freezing front

• Illustration of the advancing *freezing front s* in the (t, x)-plane



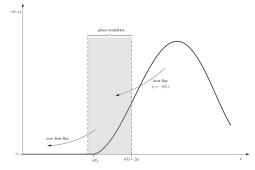
The Stefan condition at the interface



• Flow of energy (heat flux) in the liquid is $q = -k\partial_x v(t,x)$

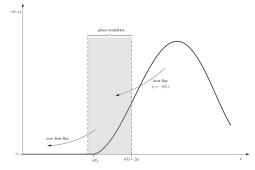
• At phase transition: zero energy escapes into the frozen phase

The Stefan condition at the interface



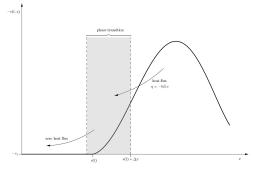
- k thermal conductivity, ℓ latent heat, ρ density of liquid, c specific heat capacity
- Change Δx in freezing front s(t) over Δt amount of time

The Stefan condition at the interface



- k thermal conductivity, ℓ latent heat, ρ density of liquid, c specific heat capacity
- Change Δx in freezing front s(t) over Δt amount of time \rightarrow Heat flux of $q\Delta t = -k\partial_x v\Delta t$ and energy release of $\rho \ell \Delta x$

The Stefan condition at the interface

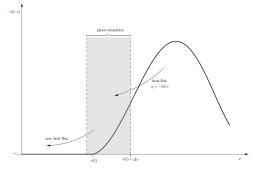


- k thermal conductivity, ℓ latent heat, ρ density of liquid, c specific heat capacity
- Change Δx in freezing front s(t) over Δt amount of time

 \rightsquigarrow Heat flux of $q\Delta t = -k\partial_x v\Delta t$ and energy release of $\rho\ell\Delta x$

 \rightsquigarrow Fourier's law enforces energy balance: $0 - k \partial_x v \Delta t = \rho \ell \Delta x$

The Stefan condition at the interface



- k thermal conductivity, ℓ latent heat, ρ density of liquid, c specific heat capacity
- Change Δx in freezing front s(t) over Δt amount of time

 \rightsquigarrow Heat flux of $q\Delta t = -k\partial_x v\Delta t$ and energy release of $\rho\ell\Delta x$

 \rightsquigarrow Fourier's law enforces energy balance: $0 - k \partial_x v \Delta t = \rho \ell \Delta x$

 \rightarrow Conclude that $\partial_x v(t, s(t)+) = -\lambda \dot{s}(t)$ with $\lambda = \frac{\rho \ell}{k}$

The supercooled Stefan problem

$$\begin{aligned} \partial_t v(t, x) &= \kappa \partial_{xx} v(t, x) \text{ for } x \in (s(t), \infty) \\ v(t, x) &= v_f \text{ for } x \in [0, s(t)) \\ v(t, s(t)) &= v_f, \quad \partial_x v(t, s(t)) = -\lambda \dot{s}(t) \end{aligned}$$

• Here
$$\kappa = rac{k}{c
ho}$$
 and $\lambda = rac{
ho\ell}{k}$

The supercooled Stefan problem

Free boundary problem

$$\begin{cases} \partial_t v(t, x) = \kappa \partial_{xx} v(t, x) & \text{for } x \in (s(t), \infty) \\ v(t, x) = v_f & \text{for } x \in [0, s(t)) \\ v(t, s(t)) = v_f, & \partial_x v(t, s(t)) = -\lambda \dot{s}(t) \end{cases}$$

• Here
$$\kappa = rac{k}{c
ho}$$
 and $\lambda = rac{
ho\ell}{k}$

• Can also argue by *internal energy* $Q = c\rho \bar{v}$, where $\bar{v} = \int v dx$

The supercooled Stefan problem

$$\begin{cases} \partial_t v(t,x) = \kappa \partial_{xx} v(t,x) & \text{for } x \in (s(t),\infty) \\ v(t,x) = v_f & \text{for } x \in [0,s(t)) \\ v(t,s(t)) = v_f, & \partial_x v(t,s(t)) = -\lambda \dot{s}(t) \end{cases}$$

• Here
$$\kappa = rac{k}{c
ho}$$
 and $\lambda = rac{
ho\ell}{k}$

- Can also argue by internal energy $Q = c\rho \bar{v}$, where $\bar{v} = \int v dx$
- It takes *ρℓ* units of energy to advance the freezing front s:
 → Internal energy change of ΔQ from temperature change Δv̄

The supercooled Stefan problem

$$\begin{cases} \partial_t v(t,x) = \kappa \partial_{xx} v(t,x) & \text{for } x \in (s(t),\infty) \\ v(t,x) = v_f & \text{for } x \in [0,s(t)) \\ v(t,s(t)) = v_f, & \partial_x v(t,s(t)) = -\lambda \dot{s}(t) \end{cases}$$

• Here
$$\kappa = rac{k}{c
ho}$$
 and $\lambda = rac{
ho\ell}{k}$

- Can also argue by internal energy $Q = c\rho \bar{v}$, where $\bar{v} = \int v dx$
- It takes ρℓ units of energy to advance the freezing front s:
 → Internal energy change of ΔQ from temperature change Δν̄
 → Freezing front moves by Δs = ΔQ / ρℓ = cρΔν̄ / ρℓ = cℓΔν̄

The supercooled Stefan problem

$$\begin{cases} \partial_t v(t,x) = \kappa \partial_{xx} v(t,x) & \text{for } x \in (s(t),\infty) \\ v(t,x) = v_f & \text{for } x \in [0,s(t)) \\ v(t,s(t)) = v_f, & \partial_x v(t,s(t)) = -\lambda \dot{s}(t) \end{cases}$$

• Here
$$\kappa = rac{k}{c
ho}$$
 and $\lambda = rac{
ho\ell}{k}$

- Can also argue by *internal energy* $Q = c\rho \bar{v}$, where $\bar{v} = \int v dx$
- It takes ρℓ units of energy to advance the freezing front s:
 → Internal energy change of ΔQ from temperature change Δν̄
 → Freezing front moves by Δs = ΔQ / ρℓ = cρΔν̄ / ρℓ = cℓΔν̄
- Agrees with what can be obtained from integration by parts: $\rightarrow \lambda(s(t) - s(r)) = \frac{1}{\kappa} \left(\int_0^\infty v(t, x) dx - \int_0^\infty v(r, x) dx \right)$

Supercooled Stefan problem with noise

Weak formulation of the problem

$$\begin{cases} \int_0^\infty v(t,x)\phi(x-s(t))dx - \int_0^\infty v_0(x)\phi(x-s(0))dx = \\ \int_0^\infty \kappa v(r,x)\partial_{xx}\phi(x-s(r))dxdr - \int_0^t \int_0^\infty v(r,x)\partial_x\phi(x-s(r))ds(r) \\ - \int_0^t \int_0^\infty b v(r,x)\partial_x\phi(x-s(r))dxdW_r \\ \text{and} \quad \lambda(s(t)-s(0)) = \frac{1}{\kappa} \left(\int_0^\infty v(t,x)dx - \int_0^\infty v_0(x)dx\right) \end{cases}$$

• Smooth test functions $\phi \in C^\infty(\mathbb{R})$ with $\phi(0) = 0$

- Initial condition $v_0 \in L^{\infty} \cap L^1$ supported in $(s(0), \infty)$
- Solution $v(t,\cdot) \in L^{\infty} \cap L^1 \ \forall t \geq 0$ with $t \mapsto v(t,\cdot)$ càdlàg

Allowing a temperature discontinuity: $v(t-,x) \curvearrowright v_{ m f}$

• As a mathematical abstraction, one could think of *instantly* freezing a portion of the liquid on $(s(t-), s(t-) + \Delta x]$

- As a mathematical abstraction, one could think of *instantly* freezing a portion of the liquid on $(s(t-), s(t-) + \Delta x]$
- This means allowing temperatures on (s(t-), s(t-) + Δx] to instantly jump to the freezing point v_f close to the interface (at a given time t, for a given δx):

- As a mathematical abstraction, one could think of *instantly* freezing a portion of the liquid on (s(t-), s(t-) + Δx]
- This means allowing temperatures on (s(t-), s(t-) + Δx] to instantly jump to the freezing point v_f close to the interface (at a given time t, for a given δx):

 \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$

- As a mathematical abstraction, one could think of *instantly* freezing a portion of the liquid on (s(t-), s(t-) + Δx]
- This means allowing temperatures on (s(t-), s(t-) + Δx] to instantly jump to the freezing point v_f close to the interface (at a given time t, for a given δx):

 \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$

→ Energy balance: resulting heat change $\Delta \bar{v}$ must advance the front at s(t-) by an amount $\Delta s = \frac{c}{\ell} \Delta \bar{v}$ (need $\Delta x = \frac{c}{\ell} \Delta \bar{v}$)

- As a mathematical abstraction, one could think of *instantly* freezing a portion of the liquid on (s(t-), s(t-) + Δx]
- This means allowing temperatures on (s(t-), s(t-) + Δx] to instantly jump to the freezing point v_f close to the interface (at a given time t, for a given δx):

 \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$

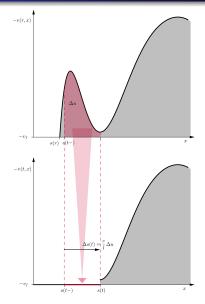
- → Energy balance: resulting heat change $\Delta \bar{v}$ must advance the front at s(t-) by an amount $\Delta s = \frac{c}{\ell} \Delta \bar{v}$ (need $\Delta x = \frac{c}{\ell} \Delta \bar{v}$)
- \rightsquigarrow *Freezing front:* jumps from s(t-) to $s(t) := s(t-) + \Delta s$

- As a mathematical abstraction, one could think of *instantly* freezing a portion of the liquid on (s(t-), s(t-) + Δx]
- This means allowing temperatures on (s(t-), s(t-) + Δx] to instantly jump to the freezing point v_f close to the interface (at a given time t, for a given δx):

 \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$

- → Energy balance: resulting heat change $\Delta \bar{v}$ must advance the front at s(t-) by an amount $\Delta s = \frac{c}{\ell} \Delta \bar{v}$ (need $\Delta x = \frac{c}{\ell} \Delta \bar{v}$)
- \rightsquigarrow *Freezing front:* jumps from s(t-) to $s(t) := s(t-) + \Delta s$
- → Away from the interface: at all positions $x \in (s(t), \infty)$, the temperature remains unchanged v(t, x) = v(t-, x)

Temperature discontinuity: $v(t-,x) \frown v_f$



Allowing the temperature to jump: $v(t,x) \curvearrowright v_f$

- As a mathematical abstraction, one could think of *instantly freezing* a portion of the liquid
- Allow temperatures to *jump instantly* to the *freezing point* v_f *close to the interface* (at some time t):
 - \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$
 - → Energy balance: resulting heat change $\Delta \bar{v}$ must advance the front at s(t-) by $\Delta s = \frac{c}{\ell} \Delta \bar{v}$ (so $\Delta x = \Delta s = \frac{c}{\ell} \Delta \bar{v}$)
 - → At all positions $x \ge s(t-) + \Delta s$, the temperature remains unchanged v(t, x) = v(t-, x)

Allowing the temperature to jump: $v(t,x) \curvearrowright v_f$

- As a mathematical abstraction, one could think of *instantly freezing* a portion of the liquid
- Allow temperatures to *jump instantly* to the *freezing point* v_f *close to the interface* (at some time t):
 - \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$
 - → Energy balance: resulting heat change $\Delta \bar{v}$ must advance the front at s(t-) by $\Delta s = \frac{c}{\ell} \Delta \bar{v}$ (so $\Delta x = \Delta s = \frac{c}{\ell} \Delta \bar{v}$)
 - → At all positions $x \ge s(t-) + \Delta s$, the temperature remains unchanged v(t, x) = v(t-, x)
- Our requirement of energy balance reads as

$$\lambda \Delta s(t) = \lambda \frac{c}{\ell} \Delta \bar{\mathbf{v}} = \frac{1}{\kappa} \left(\int_0^\infty v(t, x) dx - \int_0^\infty v(t, x) dx \right)$$

Allowing the temperature to jump: $v(t,x) \curvearrowright v_f$

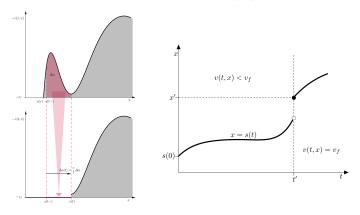
- As a mathematical abstraction, one could think of *instantly freezing* a portion of the liquid
- Allow temperatures to *jump instantly* to the *freezing point* v_f *close to the interface* (at some time t):
 - \rightsquigarrow For $x \in (s(t-), s(t-) + \Delta x]$, let $v(t-, x) \frown v(t, x) = v_f$
 - $\stackrel{\longrightarrow}{\rightarrow} Energy \ balance: \ resulting \ heat \ change \ \Delta \bar{\nu} \ must \ advance \ the front \ at \ s(t-) \ by \ \Delta s = \frac{c}{\ell} \Delta \bar{\nu} \ (so \ \Delta x = \Delta s = \frac{c}{\ell} \Delta \bar{\nu})$
 - → At all positions $x \ge s(t-) + \Delta s$, the temperature remains unchanged v(t, x) = v(t-, x)
- Our requirement of energy balance reads as

 $\lambda \Delta s(t) = \lambda \frac{c}{\ell} \Delta \bar{\mathbf{v}} = \frac{1}{\kappa} \left(\int_0^\infty \mathbf{v}(t, x) dx - \int_0^\infty \mathbf{v}(t, x) dx \right)$

• Which corresponds to an *instant change of heat* of size $\Delta \bar{v} = -\int_{s(t-)}^{s(t-)+\frac{c}{\ell}\Delta \bar{v}} v(t-,x) dx$

Allowing the temperature to jump: $v(t,x) \frown v_f$

- Illustration of the freezing front with a discontinuity
- Recall we need $\Delta s(t) = \frac{1}{\kappa} \Delta \bar{v} = -\int_{s(t-)}^{s(t-)+\frac{c}{\ell} \Delta \bar{v}} v(t-,x) dx$



A possible story for temperature discontinuity

 Exogenous shock: temperatures jump to v_f (v(t−, x) ∩ v_f) in a small Δx-neighbourhood of s(t−) with freezing front moving to s(t−) + Δx

A possible story for temperature discontinuity

 Exogenous shock: temperatures jump to v_f (v(t−, x) ¬ v_f) in a small Δx-neighbourhood of s(t−) with freezing front moving to s(t−) + Δx

 \rightsquigarrow Resulting change in heat $\Delta \bar{v}^{(0)} := -\int_{s(t-)}^{s(t-)+\Delta x} v(t-,y) dy$

A possible story for temperature discontinuity

 Exogenous shock: temperatures jump to v_f (v(t−, x) ¬ v_f) in a small Δx-neighbourhood of s(t−) with freezing front moving to s(t−) + Δx

 \rightsquigarrow Resulting change in heat $\Delta \bar{v}^{(0)} := -\int_{s(t-)}^{s(t-)+\Delta x} v(t-,y) dy$

→ Let this cause a further movement of the freezing front by $\frac{\Delta Q}{\rho \ell} = \frac{c \rho \Delta \bar{v}^{(0)}}{\rho \ell} = \frac{c}{\ell} \Delta \bar{v}^{(0)}$

A possible story for temperature discontinuity

 Exogenous shock: temperatures jump to v_f (v(t−, x) ¬ v_f) in a small Δx-neighbourhood of s(t−) with freezing front moving to s(t−) + Δx

 \rightsquigarrow Resulting change in heat $\Delta \bar{v}^{(0)} := -\int_{s(t-)}^{s(t-)+\Delta x} v(t-,y) dy$

 $\stackrel{\rightsquigarrow}{\overset{\Delta Q}{\underset{\rho \ell}{\longrightarrow}}} \text{ Let this cause a further movement of the freezing front by}$

 \rightsquigarrow Further heat change $\Delta \bar{v}^{(1)} := -\int_{s(t-)+\Delta x}^{s(t-)+\Delta x+\frac{c}{2}\Delta \bar{v}^{(0)}} v(t-,y) dy$

A possible story for temperature discontinuity

 Exogenous shock: temperatures jump to v_f (v(t−, x) ¬ v_f) in a small Δx-neighbourhood of s(t−) with freezing front moving to s(t−) + Δx

 \rightsquigarrow Resulting change in heat $\Delta \bar{v}^{(0)} := -\int_{s(t-)}^{s(t-)+\Delta x} v(t-,y) dy$

→ Let this cause a further movement of the freezing front by $\frac{\Delta Q}{\rho \ell} = \frac{c \rho \Delta \bar{v}^{(0)}}{\rho \ell} = \frac{c}{\ell} \Delta \bar{v}^{(0)}$

 \rightsquigarrow Further heat change $\Delta \bar{v}^{(1)} := -\int_{s(t-)+\Delta x}^{s(t-)+\Delta x+\frac{\epsilon}{2}\Delta \bar{v}^{(0)}} v(t-,y) dy$

 \rightsquigarrow Freezing front moves again by $\frac{\Delta Q}{\rho \ell} = \frac{c \rho \Delta \bar{\nu}^{(1)}}{\rho \ell} = \frac{c}{\ell} \Delta \bar{\nu}^{(1)}$

A possible story for temperature discontinuity

 Exogenous shock: temperatures jump to v_f (v(t−, x) ¬ v_f) in a small Δx-neighbourhood of s(t−) with freezing front moving to s(t−) + Δx

 \rightsquigarrow Resulting change in heat $\Delta \bar{v}^{(0)} := -\int_{s(t-)}^{s(t-)+\Delta x} v(t-,y) dy$

→ Let this cause a further movement of the freezing front by $\frac{\Delta Q}{\rho \ell} = \frac{c \rho \Delta \bar{v}^{(0)}}{\rho \ell} = \frac{c}{\ell} \Delta \bar{v}^{(0)}$

 \rightsquigarrow Further heat change $\Delta \bar{v}^{(1)} := -\int_{s(t-)+\Delta x}^{s(t-)+\Delta x+\frac{\epsilon}{2}\Delta \bar{v}^{(0)}} v(t-,y) dy$

 \rightsquigarrow Freezing front moves again by $\frac{\Delta Q}{\rho \ell} = \frac{c \rho \Delta \bar{\nu}^{(1)}}{\rho \ell} = \frac{c}{\ell} \Delta \bar{\nu}^{(1)}$

• The total change of heat is

$$\sum_{n=0}^{\infty} \Delta \bar{v}^{(n)} = \int_{s(t-)}^{s(t-)+\Delta x + \frac{c}{\ell} \sum_{n=0}^{\infty} \Delta \bar{v}^{(n)}} v(t-,y) dy$$

A possible story for temperature discontinuity

• The total change of heat for the Δx -shock is

$$\sum_{n=0}^{\infty} \Delta \bar{v}^{(n)} = -\int_{s(t-)}^{s(t-)+\Delta x + \frac{c}{\ell} \sum_{n=0}^{\infty} \Delta \bar{v}^{(n)}} v(t-,y) dy$$

A possible story for temperature discontinuity

• The total change of heat for the Δx -shock is

$$\sum_{n=0}^{\infty} \Delta \bar{v}^{(n)} = -\int_{s(t-)}^{s(t-)+\Delta x + \frac{c}{\ell} \sum_{n=0}^{\infty} \Delta \bar{v}^{(n)}} v(t-,y) dy$$

• Take the limit as $\Delta x \rightarrow 0$ and write

$$\Delta \bar{v} := \lim_{\Delta x \to 0} \sum_{n=0}^{\infty} \Delta \bar{v}^{(n)}$$

A possible story for temperature discontinuity

• The total change of heat for the Δx -shock is

$$\sum_{n=0}^{\infty} \Delta \bar{v}^{(n)} = -\int_{s(t-)}^{s(t-)+\Delta x + \frac{c}{\ell} \sum_{n=0}^{\infty} \Delta \bar{v}^{(n)}} v(t-,y) dy$$

• Take the limit as $\Delta x \rightarrow 0$ and write

$$\Delta \bar{\mathbf{v}} := \lim_{\Delta \times \to 0} \sum_{n=0}^{\infty} \Delta \bar{\mathbf{v}}^{(n)}$$

• This way, we indeed end up with energy balance

$$\Delta \bar{\mathbf{v}} = \int_{s(t-)}^{s(t-)+\frac{\mathsf{c}}{\ell}\Delta \bar{\mathbf{v}}} \mathbf{v}(t-,y) \mathsf{d}y$$

Probabilistic representation

- Recall v(t,x) lives on $(t,x) \in [0,\infty) \times [s(t),\infty)$
- Can be represented as $-v(t,x)dx = \mathbb{P}(X_t \in dx, t < \tau \mid W)$

Conditional McKean–Vlasov problem

$$egin{aligned} X_t &= X_0 + 2\sqrt{\kappa}eta B_t + bW_t \ & au &= \inf\{t \geq 0: X_t \leq s(t)\} \ & au(s(t)) = s(0) + rac{1}{\lambda\kappa}\mathbb{P}(au \leq t \mid W) \end{aligned}$$

- Here $\beta = \sqrt{1 (rac{b}{2\sqrt{\kappa}})^2}$ and recall also that $\lambda \kappa = rac{\ell}{c}$
- As before, the freezing front $t\mapsto s(t)$ must satisfy

$$\lambda(s(t) - s(0)) = \frac{1}{\kappa} \left(\int_0^\infty v(t, x) \mathrm{d}x - \int_0^\infty v_0(x) \mathrm{d}x \right)$$

Continuity in time versus heat discontinuities

• For any given weak solution v, consider the first time the temperature undergoes a discontinuity in time:

$$\tau := \inf\{t > 0 : v(t, \cdot) \neq v(t-, \cdot)\}$$

Continuity in time versus heat discontinuities

• For any given weak solution v, consider the first time the temperature undergoes a discontinuity in time:

$$\tau := \inf\{t > 0 : v(t, \cdot) \neq v(t-, \cdot)\}$$

Theorem: finite-time discontinuity

If $v_0(x) > \lambda \kappa = \frac{\ell}{c}$ on an interval somewhere in $(s(0), \infty)$, then $\mathbb{P}(\tau < \infty) > 0.$

Continuity in time versus heat discontinuities

• For any given weak solution v, consider the first time the temperature undergoes a discontinuity in time:

$$\tau := \inf\{t > 0 : v(t, \cdot) \neq v(t-, \cdot)\}$$

Theorem: finite-time discontinuity

If $v_0(x) > \lambda \kappa = \frac{\ell}{c}$ on an interval somewhere in $(s(0), \infty)$, then $\mathbb{P}(\tau < \infty) > 0.$

Theorem: global continuity

If
$$v_0(x) < \lambda \kappa = \frac{\ell}{c}$$
 for all $x \in (s(0), \infty)$, then
 $\mathbb{P}(\tau < \infty) = 0.$

Main idea behind the proof

• Let $v_0(x) \ge \frac{\ell}{c} + \delta$ for all $x \in y + I$, where I := (0, h), y > s(0)

Main idea behind the proof

- Let $v_0(x) \ge \frac{\ell}{c} + \delta$ for all $x \in y + I$, where I := (0, h), y > s(0)
- Suppose, for a contradiction, that there are no discontinuities

Main idea behind the proof

- Let $v_0(x) \ge \frac{\ell}{c} + \delta$ for all $x \in y + I$, where I := (0, h), y > s(0)
- Suppose, for a contradiction, that there are no discontinuities
- Choose $\varepsilon > 0$ small in a particular way depending on above

Main idea behind the proof

- Let $v_0(x) \ge \frac{\ell}{c} + \delta$ for all $x \in y + I$, where I := (0, h), y > s(0)
- Suppose, for a contradiction, that there are no discontinuities
- Choose $\varepsilon > 0$ small in a particular way depending on above
- Let $\nu_t(dx) := \mathbb{P}(X_t s(t) \in dx, t < \tau \mid W)$

Main idea behind the proof

- Let $v_0(x) \geq \frac{\ell}{c} + \delta$ for all $x \in y + I$, where I := (0, h), y > s(0)
- Suppose, for a contradiction, that there are no discontinuities
- Choose $\varepsilon > 0$ small in a particular way depending on above
- Let $\nu_t(dx) := \mathbb{P}(X_t s(t) \in dx, t < \tau \mid W)$
- Show that we can find a W-stopping time s and a particular W-event such that

$$\frac{c}{\ell}\frac{1}{2}\nu_{\varsigma}(I)^{2} \leq \int_{I}x\nu_{\varsigma}(dx) + \varepsilon$$

on this event

Main idea behind the proof

- Let $v_0(x) \ge \frac{\ell}{c} + \delta$ for all $x \in y + I$, where I := (0, h), y > s(0)
- Suppose, for a contradiction, that there are no discontinuities
- Choose $\varepsilon > 0$ small in a particular way depending on above
- Let $\nu_t(dx) := \mathbb{P}(X_t s(t) \in dx, t < \tau \mid W)$
- Show that we can find a W-stopping time s and a particular W-event such that

$$\frac{c}{\ell}\frac{1}{2}\nu_{\varsigma}(I)^{2} \leq \int_{I} x\nu_{\varsigma}(dx) + \varepsilon$$

on this event

• Show that, on this event, we also have

$$u_{\varsigma}(I) \ge \nu_0(c+I) - \varepsilon \quad \text{and} \quad \int_I x \nu_{\varsigma}(dx) \le \int_{c+I} (x-c) \nu_0(dx) + \varepsilon$$

Thank you!