On temperature discontinuities in the
supercooled Stefan problem with noise

Andreas Sgjmark

Department of Statistics
Probability in Finance & Insurance
London School of Economics

18-19th July 2022

PDE CDT Alumni Event
University of Oxford

1/17



Physical derivation of the Stefan problem

Freezing of a supercooled liquid

@ 1-d model for freezing of a liquid on the positive half-line:
~ At time t > 0, [0, s(t)] is frozen and liquid occupies (s(t), o0)
~+ We call t — s(t) the freezing front

2/17



Physical derivation of the Stefan problem

Freezing of a supercooled liquid

@ 1-d model for freezing of a liquid on the positive half-line:
~ At time t > 0, [0, s(t)] is frozen and liquid occupies (s(t), o0)
~+ We call t — s(t) the freezing front

o Let v(t,x) denote the temperature at time t > 0 and position
x € (s(t),00)

2/17



Physical derivation of the Stefan problem

Freezing of a supercooled liquid

@ 1-d model for freezing of a liquid on the positive half-line:
~ At time t > 0, [0, s(t)] is frozen and liquid occupies (s(t), o0)
~+ We call t — s(t) the freezing front
o Let v(t,x) denote the temperature at time t > 0 and position
x € (s(t), 00)

@ Isothermal phase change: v = vf at the interface (x = s(t)),
where v¢ is the equilibrium freezing temperature (take v¢ = 0)

2/17



Physical derivation of the Stefan problem

Freezing of a supercooled liquid

@ 1-d model for freezing of a liquid on the positive half-line:
~ At time t > 0, [0, s(t)] is frozen and liquid occupies (s(t), o0)
~+ We call t — s(t) the freezing front

o Let v(t,x) denote the temperature at time t > 0 and position
x € (s(t),00)

@ Isothermal phase change: v = vf at the interface (x = s(t)),
where v¢ is the equilibrium freezing temperature (take v¢ = 0)

@ No temperature gradient in the frozen phase:
~~ Constant equilibrium temperature v¢ in [0, s(t)].
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Physical derivation of the Stefan problem

The freezing front

o lllustration of the advancing freezing front s in the (t, x)-plane

Q)
//9’\

v(t,z) < vf

v
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Physical derivation of the Stefan problem

The Stefan condition at the interface

\‘(,,) s(t) + Az z

@ Flow of energy (heat flux) in the liquid is g = —kJyv(t, x)

@ At phase transition: zero energy escapes into the frozen phase
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Physical derivation of the Stefan problem

The Stefan condition at the interface

t
o)+ A

@ k thermal conductivity, ¢ latent heat, p density of liquid, ¢
specific heat capacity
o Change Ax in freezing front s(t) over At amount of time
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Physical derivation of the Stefan problem

The Stefan condition at the interface

t
o)+ A

@ k thermal conductivity, ¢ latent heat, p density of liquid, ¢
specific heat capacity
o Change Ax in freezing front s(t) over At amount of time

~~ Heat flux of gAt = —kOd,vAt and energy release of p/Ax
~ Fourier's law enforces energy balance: 0 — kOxvAt = plAx

~+ Conclude that d,v(t,s(t)+) = —As(t) with A = %
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Physical derivation of the Stefan problem

The supercooled Stefan problem

Free boundary problem

Orv(t, x) = KOxxv(t, x) for x € (s(t),0)
v(t,x) = v¢ for x € [0,s(t))
v(t,s(t)) = vr, Oxv(t,s(t)) = —As(t)

oHeref::Land)\:%
cp
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Physical derivation of the Stefan problem

The supercooled Stefan problem

Free boundary problem
Orv(t, x) = KOxxv(t, x) for x € (s(t),0)
v(t,x) = v¢ for x € [0,s(t))
v(t,s(t)) = vr, Oxv(t,s(t)) = —As(t)

o Here x = X and \ = 2
cp k

e Can also argue by internal energy () = cpv, where v = [vdx

@ It takes p¢ units of energy to advance the freezing front s:
~ Internal energy change of from temperature change Av

~» Freezing front moves by As = o= CPP%V = ;Av

@ Agrees with what can be obtained from integration by parts:
~ Ms(t) —s(r)) = 1(/ v(t, x)dx —/ v(nx)dx)
K 0 0
6/17



The supercooled Stefan problem with noise

Supercooled Stefan problem with noise

( /Ooov(t,x)¢(x—s(t))dx — /OOVO(X)¢(X—5(O))dX =

0
/ (1, X)Buc(x — 5(r))dxdr — / / rX)Bu(x—s()ds(r)
//bvrx Db (x—s(r))dxdW,

and  A(s(t) — 5(0)) = 1(/0 (t,x)dx—/ooovo(x)dx>

K

@ Smooth test functions ¢ € C*(R) with ¢(0) =
e Initial condition vo € L N L' supported in (s(0), 00)

e Solution v(t,-) € LN LY Vt > 0 with t +— v(t,-) cadlag
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The supercooled Stefan problem with noise

Allowing a temperature discontinuity: v(t—, x) m vf

@ As a mathematical abstraction, one could think of instantly
freezing a portion of the liquid on (s(t—),s(t—) + Ax]
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Allowing a temperature discontinuity: v(t—, x) m vf

@ As a mathematical abstraction, one could think of instantly
freezing a portion of the liquid on (s(t—),s(t—) + Ax]

@ This means allowing temperatures on (s(t—),s(t—) + Ax] to
instantly jump to the freezing point v¢ close to the interface
(at a given time t, for a given dx):

~ For x € (s(t—),s(t—) + Ax], let v(t—,x) ~ v(t,x) = v¢

~~ Energy balance: resulting heat change AV must advance the
front at s(t—) by an amount As = $AV (need Ax = $AV)

~+ Freezing front: jumps from s(t—) to s(t) := s(t—) + As

~> Away from the interface: at all positions x € (s(t),c0), the
temperature remains unchanged v(t,x) = v(t—, x)
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The supercooled Stefan problem with noise

Temperature discontinuity: v(t—,x) ~ v¢
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The supercooled Stefan problem with noise

Allowing the temperature to jump: v(t,x) N vf

@ As a mathematical abstraction, one could think of instantly
freezing a portion of the liquid
@ Allow temperatures to jump instantly to the freezing point v¢
close to the interface (at some time t):
~ For x € (s(t—),s(t—) + Ax], let v(t—,x) ~ v(t,x) = v¢
~ Energy balance: resulting heat change AV must advance the
front at s(t—) by As = AV (so Ax = As = §AV)
~» At all positions x > s(t—) 4+ As, the temperature remains
unchanged v(t,x) = v(t—, x)
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Allowing the temperature to jump: v(t,x) N vf

@ As a mathematical abstraction, one could think of instantly
freezing a portion of the liquid

@ Allow temperatures to jump instantly to the freezing point v¢
close to the interface (at some time t):
~ For x € (s(t—),s(t—) + Ax], let v(t—,x) ~ v(t,x) = v¢
~ Energy balance: resulting heat change AV must advance the
front at s(t—) by As = AV (so Ax = As = §AV)
~» At all positions x > s(t—) 4+ As, the temperature remains
unchanged v(t,x) = v(t—, x)
@ Our requirement of energy balance reads as
Ms(t) = AAT = L( [ v(t, x)dx — [° v(t—, x)dx)

@ Which corresponds to an instant change of heat of size
AV
AV = —f + "v(t—, x)dx
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The supercooled Stefan problem with noise

Allowing the temperature to jump: v(t,x) N vf

o lllustration of the freezing front with a discontinuity

s(t— )+ Av

o Recall we need As(t) = 1AV = —f v(t—, x)dx

’

5(0)+
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The supercooled Stefan problem with noise

A possible story for temperature discontinuity

e Exogenous shock: temperatures jump to v¢ (v(t—,x) ™ vf)
in a small Ax-neighbourhood of s(t—) with freezing front
moving to s(t—) + Ax
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in a small Ax-neighbourhood of s(t—) with freezing front
moving to s(t—) 4+ Ax

~ Resulting change in heat A7(?) = — fss((tt__))+AX v(t—,y)dy
~» Let this cause a further movement of the freezing front by

7(0)
AQ _ cpAVT _ ¢ A 5(0)
pl pl - EAV

_ x+<Ap©
~~ Further heat change A7) ;= — fss((tt;))«:_AAx_FEA v(t—,y)dy

. . 70 _
~> Freezing front moves again by o= % = %Av(l)

@ The total change of heat is
S(t=)+Ax+G 352, AT

> A :/ v(t—,y)dy
n=0 s

(t-)
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The supercooled Stefan problem with noise

A possible story for temperature discontinuity

@ The total change of heat for the Ax-shock is
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The supercooled Stefan problem with noise

A possible story for temperature discontinuity

@ The total change of heat for the Ax-shock is

o0 s(t=)+Dx+5 302, A7)
> avt) = —/ v(t—,y)dy
n=0 s(t—)

@ Take the limit as Ax — 0 and write

vi= 1 Al
Ay A;ﬂoZ "
@ This way, we indeed end up with energy balance

s(t—)+5Av
Av = / v(t—,y)dy
s(

~I0
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Probabilistic representation and heat discontinuity

Probabilistic representation

@ Recall v(t,x) lives on (t,x) € [0,00) x [s(t),00)
@ Can be represented as —v(t, x)dx = P(X; € dx,t < 7| W)

Conditional McKean—Vlasov problem

Xt = XO + 2\/EﬁBt + bWt
T=inf{t >0: X; <s(t)}

s(t) = s(0) + iP(T <t|w)

L

@ Here s =,/1 and recall also that \x = c

oy
@ As before, the freezing front t — s(t) must satisfy
1 o oo
A(s(t) — s(0)) = f( / v(t, x)dx — / vo(x)dx)
0 0

K
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Probabilistic representation and heat discontinuity

Continuity in time versus heat discontinuities

e For any given weak solution v, consider the first time the
temperature undergoes a discontinuity in time:

Ti:=inf{t >0:v(t,") #v(t—, )}
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e For any given weak solution v, consider the first time the
temperature undergoes a discontinuity in time:

Ti:=inf{t >0:v(t,") #v(t—, )}

Theorem: finite-time discontinuity

If vo(x) > A = £ on an interval somewhere in (s(0), 00), then

P(T < 00) > 0.

| A\

Theorem: global continuity

If vo(x) < Ak = % for all x € (s(0), 00), then
P(T < 00) = 0.
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Probabilistic representation and heat discontinuity

Main idea behind the proof

o Let vo(x) > £+ forall x € y + 1, where | := (0, h),y > s(0)
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Probabilistic representation and heat discontinuity

Main idea behind the proof

Let vo(x) > £ 46 for all x € y + I, where | := (0, h), y > s(0)

Suppose, for a contradiction, that there are no discontinuities

Choose € > 0 small in a particular way depending on above

Let v¢(dx) :==P(Xe — s(t) e dx, t < 7 | W)
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Main idea behind the proof

o Let vo(x) > £+ forall x € y + 1, where | := (0, h),y > s(0)
@ Suppose, for a contradiction, that there are no discontinuities
@ Choose € > 0 small in a particular way depending on above

o Let vi(dx) :=P(X¢ — s(t) € dx, t <7 | W)

@ Show that we can find a W-stopping time ¢ and a particular
W-event such that

on this event

@ Show that, on this event, we also have

ve(l) > vo(c+1)—e and /vag(dx) < /+I(X—C)l/o(dx)—|—€
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Probabilistic representation and heat discontinuity

Thank you!
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