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The question at hand (1)

I Old question in mathematical physics (“IPS”):
continuum limit of interacting particle systems on lattice,
typically regular periodic lattice Td

N .
I At the physical level, it corresponds to searching for a

description at macroscopic scale, i.e. fluid mechanics, of the
microscopic dynamics at particle level.

I Hence called hydrodynamic limit.
I At the mathematical level, it corresponds to proving the

propagation in time of a local law of large number with a local
profile solving an effective limit PDE, under an appropriate
scaling of time and space.

I This means proving that a “local density” of particles
converges, in an appropriate sense, towards a deterministic
profile solution to a PDE.



The question at hand (2)

Many microscopic dynamics are possible, some important
paradigmatic examples that we shall consider are:
I The simple exclusion process (SEP):

Introduced by Spitzer’1970 as a simple stochastic model for
transport phenomena.
Each particle waits a random exponent mean one amount of
time and then attempts a jump on neighbouring sites with
given probability for each directions; however, the jump is
performed only if there is no particle at the target site.

I The zero range process (ZRP):
Also introduced by Spitzer’1970 as well (as far as I know).
Similar to SEP but now (a) the number of particles is
unrestricted at each site and (b) the jump rate depends (only)
on the local particle number.



The question at hand (3)

I The Ginzburg-Landau model with Kawasaki dynamics (GLK):
Origin Glauber’1963 extending Ising’1925 to include time
evolution (non-equilibrium), and Kawasaki’1965.
Spin lattice model: real-valued spins on each site of the lattice
evolve under a single-site potential that induces a gradient
flow between neighbouring sites combined with a diffusion
equalizing spins between neighbouring sites.

I In dimension d = 1, the stochastic trajectories follow

dxi =
N2

2
[
V ′(xi+1) + V ′(xi−1)− 2V ′(xi )

]
dt − N [dBi ,i−1 + dBi ,i+1] .

I Kawasaki dynamics: potential V = V0 + V1 with V0 uniformly
strictly convex and V1 local smooth perturbation.

I Ref books: Liggett’1985, Spohn’1991, Kipnis-Landim’1999.



Existing results and questions (1)

I For the SEP and ZRP two scalings are possible:
- hyperbolic scaling which is non-trivial when the mean
transition rate is non-zero,
- parabolic (diffusive) scaling when the latter is zero.

I For the GLK the parabolic scaling is built in the model.
I The hydrodynamic limit is known at a qualitative level for all

these models/scalings:
- Spitzer’1970 (SEP, ZRP, hyperbolic scaling),
- Guo-Papanicolaou-Varadhan’1988 (ZRP, parabolic scaling),
- Yau’1991 (ZRP, GLK, parabolic scaling, convergence in
relative entropy),
- Rezakhanlou’1991 (SEP, ZRP, hyperbolic scaling, including
shocks),
- and many variants in more recent papers. . .



Existing results and questions (2)

I However (1) none of the previous results were quantitative, (2)
the error in the hydrodynamic limit is not controlled for large
time in the parabolic scaling, (3) the methods used are
beautiful but intricate and must be rebuilt for each model: in
particular they all rely on so-called “block estimates” that take
several dozens of pages in Kipnis-Landim’1999.

I An attempt at exploiting logarithmic Sobolev inequality to
provide quantitative rates and more unified methods was
initiated in GOVW’2009, but latter paper was still not
quantitative. It was finally completely in the particular case of
the Ginzburg-Landau process with Kawasaki dynamics in
dimension 1, in the intricate two-parts work DMOW’2018a
and DMOW’2018b.



The contribution

I We propose in this paper an abstract (but simple) method for
proving such limit quantitatively, and uniformly in time when
the scaling is diffusive. We first present the abstract method
and then sketch applications to the three models above.

I Our results include the previous results above, including the
rate in the particular case treated in DMOW’2018a, through a
conceptually unified method.

I It proves new quantitative errors for SEP, ZRP, as well as GLK
in dimension d ≥ 2, and show that they are uniform in time
when the scaling is parabolic.

I The method does not need logarithmic Sobolev inequalities or
the block estimates and is self-contained. The “local averaging
estimates” are “pushed” onto the local Gibbs measure.



The abstract method: setting (1)

I X is the state space at a given site (number of particles, spin,
etc.), which is here {0, 1} (SEP), N (ZRP) or R (GLK).

I GN is a graph, in practice a lattice graph, and here the regular
d-dimensional periodic lattice graph (discrete torus) GN = Td

N .
I The phase space of particle configurations on the graph is then

XN := XGN .
I We assume that the graph GN is a discrete approximation of a

manifold G∞; here G∞ = Td is the flat torus with unit length.
I Variables in GN are called microscopic and denoted by x , y , z ,

whereas variables in G∞ are called macroscopic and denoted
by u; particle configurations in XN are denoted by η.



The abstract method: setting (2)

I The interacting particle system evolves through a stochastic
process and the time-dependent probability measure describing
the law of η is denoted by µNt ∈ P(XN).

I We embed GN = Td
N into G∞ = Td via Td

N → Td , x 7→ x
N .

So the macroscopic distance between sites of the lattice is 1
N .

I Given a particle configuration η ∈ XN , the empirical measure is

αN
η :=

∑
x∈GN

η(x)δ x
N
∈M+(Td)

whereM+(Td) is the space of non-negative Radon measures
on the torus and

∑
denotes the “average sum”, i.e. the sum

divided by the cardinal of the set it is summed over.



The abstract method: setting (3)
I We then consider evolution systems. At the microscopic level,

we consider a linear operator LN : Cb(XN)→ Cb(XN)
generating uniquely a Feller semigroup on P(XN) so that given
µN0 ∈ P(XN) the solution µNt ∈ P(XN) satisfies

∀Φ ∈ Cb(XN),
d
dt
〈µNt ,Φ〉 = 〈µNt ,LNΦ〉,

where 〈·, ·〉 is the standard duality bracket.
I At the macroscopic level, we consider a (possibly nonlinear)

unbounded operator L∞ :M+(G∞)→M+(G∞) and

∂t ft = L∞ft , ft=0 = f0.

I Goal: Prove that the empirical measure sampled from the law
µNt approximates ft if so at t = 0 (with a rate!)

∀φ ∈ Cb(G∞), ∀ ε > 0, ∀ t ≥ 0, lim
N→∞

µNt

({
|〈αN

η , φ〉 − 〈ft , φ〉| > ε
})

= 0



The abstract method: setting (4)
I A measure µN ∈ P(XN) is called invariant if

∀Φ ∈ Cb(XN),
〈
µN ,LNΦ

〉
= 0.

I A local Gibbs measure on XN associated with some
F : GN → R is a product measure

νNF (η) =
∏

x∈GN

nF (x)(η(x)) (1)

for some nλ ∈ P(X) depending on one parameter only λ ∈ R,
so that νNF is invariant when F constant.

I We assume that there is a function Θ : R+ → R so that

EnΘ(ρ)
[η(x)] = ρ

and so that, given a smooth macroscopic profile f on G∞,

ϑNf (η) := νN
Θ(f ( ·N ))(η)

approximates the macroscopic profile f .



The abstract method: setting (5)

I The two maps η 7→ αN
η and f 7→ ϑNf allow comparisons

between the microscopic and macroscopic scales:

P (XN) P (M+(G∞))
αNη

M+(G∞)

δf (atomic)ϑNf

Figure: The functional setting.



The abstract method: assumptions
(H1) Microscopic stability. There is a coupling operator
L̃N : Cb(X2

N)→ Cb(X2
N) and W ∈ Cb(X2

N) s.t.

L̃N (· ⊗ 1) = LN(·)⊗ 1, L̃N (1⊗ ·) = 1⊗ LN(·),

L̃NW ≤ 0 and W (η, ζ) &
∑
x∈GN

|η(x)− ζ(x)|.

(H2) Macroscopic stability. There is a Banach space
B ⊂M+(G∞) so that if f0 ∈ B then there is T ∈ (0,+∞] and a
unique macroscopic solution in B with supt∈[0,T ) ‖ft‖B . ‖f0‖B.
Moreover when the limit PDE has a unique constant stationary
solution f∞ ∈ B we denote R(t) := ‖ft − f∞‖B for t ∈ [0,T ).

(H3) Consistency. Let W0(ζ) := 〈νN∞,W (·, ζ)〉 (average of W in
the first variable with respect to the invariant measure νN∞). There
is a consistency error E1(N) > 0 (with loss of norm):

d
dt

〈
ϑNft ,W0

〉
−
〈
ϑNft ,LNW0

〉
≤ E1(N) ‖ft‖B .



The abstract result
Theorem. Let φ ∈ C∞c (G∞), µN0 ∈ P(XN), f0 ∈ B, πN0 ∈ P(X2

N)
a coupling between µN0 and νNf0 , and let us denote the initial
sampling and coupling error

E2(N) :=
〈
µN0 ,

∣∣∣(αN
η − f0, φ

)∣∣∣〉+
〈
πN0 ,W

〉
where (·, ·) is the duality bracket (M+(G∞),Cb(G∞)). Then,
assuming (H1)-(H2)-(H3), for all t ∈ [0,T ),〈
µNt ,

∣∣∣(αN
η − ft , φ

)∣∣∣〉 . E1(N)

(∫ t

0
R(s) ds

)
+ E2(N) + N−

d
d+2

where ft solves the limit PDE in B.

Remarks. (1) When f0 smooth enough, one can construct an
initial particle distribution µN0 for which the initial assumptions
hold, namely µN0 := ϑNf0 = νN

Θ(f0( ·N ))
.

(2) The convergence above implies the convergence in probability
of the random variable 〈αN

η , φ〉 to the deterministic object 〈ft , φ〉.



Concrete results: the SEP (1)
I The state space at each site is X = {0, 1}.
I Given the choice of a transition function p ∈ P(Zd), the base

generator (before scaling) writes for Φ ∈ Cb(XN) and η ∈ XN :

LNΦ(η) =
∑
y∈Td

N

p(y − x)η(x)[1− η(y)] [Φ(ηx ,y )− Φ(η)]

where ηx ,y (z) is η(x)− 1 if z = x , η(y) + 1 if z = y , and η(z)
otherwise.

I The local Gibbs measure νNλ is constructed from

nλ(η(x)) := λη(x)(1− λ)1−η(x)

and Θ(z) = z which yields

ϑNf (η) :=
∏
x∈Td

N

f (x)η(x) [1− f (x)]1−η(x) .

I The mean transition rate is

γ :=
∑
x∈Zd

xp(x) ∈ Rd .



Concrete results: the SEP (2)

I When γ 6= 0, the first non-zero asymptotic dynamics as
N →∞ is given by the hyperbolic scaling NLN .

I The corresponding expected limit equation is the nonlinear
transport equation ∂t f = γ · ∇[f (1− f )].

I Due to the nonlinearity, even for smooth initial data, the
solution can develop shocks.

I Our abstract theorem applies but only as long as the limit
solution ft is regular (C 2).

I The macroscopic stability is then guaranteed by the assumed
limit regularity.

I The consistency estimate is a tedious (but not difficult)
calculation based on the regularity of ft .

I The microscopic stability will be discussed later.



Concrete results: the SEP (3)
I When γ = 0, the first non-zero asymptotic dynamics as

N →∞ is the given by the parabolic scaling N2LN .
I The corresponding limit equation is the diffusion equation

∂t f =
d∑

i ,j=1

aij∂
2
ij f with aij :=

∑
x∈Zd

p(x)xixj .

I The microscopic stability is as above, the macroscopic stability
is trivial and the consistency is another tedious calculation.

I The conclusion is that if the quantity

EN(t) :=

∫
XN

∣∣∣∣∣∣∣
∑
x∈Td

N

η(x)φ
( x

N

)
−
∫
Td

ft(u)φ(u) du

∣∣∣∣∣∣∣ dµNt (η)

satisfies EN(0) . N−
d

d+2 , then supt≥0 EN(t) . N−
d

d+2 .



Concrete results: the ZRP (1)
I The state space at each site is X = N.
I Given the choice of a transition function p ∈ P(Td

N) and a
jump rate function g : N→ R+, the base generator writes for
Φ ∈ Cb(XN) and η ∈ XN (with ηx ,y defined as before)

LNΦ(η) =
∑
y∈Td

N

p(y − x)g(η(x)) [Φ(ηx ,y )− Φ(η)] .

I The local Gibbs measure is constructed from

nλ(η(x)) :=
λη(x)

g(η(x))!Z (λ)
with Z (λ) :=

+∞∑
n=0

λn

g(n)!

and the notation g(n)! := g(n)g(n − 1) · · · g(1).
I Θ := σ is the inverse function of R(λ) = λ∂λ lnZ (λ), and
ϑNf = νN

σ(f ( ·N ))
. Note the relation EνN

Θ(α)
[g(η)] = σ(α).

I The mean transition rate is defined as before.



Concrete results: the ZRP (2)

I When γ 6= 0, the first non-zero asymptotic dynamics as
N →∞ is given by the hyperbolic scaling NLN .

I The corresponding expected limit equation is the nonlinear
transport equation ∂t f = γ · ∇[σ(f )].

I When γ = 0, the first non-zero asymptotic dynamics as
N →∞ is the given by the parabolic scaling N2LN .

I The corresponding limit equation is then the nonlinear
diffusion equation

∂t f =
d∑

i ,j=1

aij∂
2
ij [σ(f )] with aij :=

∑
x∈Zd

p(x)xixj .



Concrete results: the ZRP (3)

I We prove these scaling limits under the following assumptions
on the jump rate g :

(ZR1) Non-degeneracy: g(0) = 0 and g(n) > 0 for all n > 0.
(ZR2) Lipschitz-property: sup

n≥0
|g(n + 1)− g(n)| ≤ g∗ < +∞.

(ZR3) Spectral gap: ∃n0 ∈ N∗, δ > 0 s.t. min
n≥j+n0

g(n)− g(j) ≥ δ.

(ZR4) Attractivity: g non-decreasing.

I The conclusion is then similar to the SEP result.
I The macroscopic stability is either assumed again in the

hyperbolic scaling (before shocks) or proved for the nonlinear
diffusion: the assumptions on g imply that σ′ is uniformly
positive and bounded (De Giorgi and Schauder theories).

I The consistency estimate is yet another tedious calculations
based on the regularity of ft .

I The microscopic stability will be discussed later.



Concrete results: the GLK (1)
I The state space at each site is X = R.
I Given the choice of a single-site potential V ∈ C 2(R), the

base generator writes for Φ ∈ Cb(XN) and η ∈ XN :

LNΦ(η) =
1
2

∑
x∼y∈Td

N

(
∂

∂η(x)
− ∂

∂η(y)

)2

− 1
2

∑
x∼y∈Td

N

[
V ′(η(x))− V ′(η(y))

]( ∂

∂η(x)
− ∂

∂η(y)

)

where x ∼ y means that x and y are neighbours.
I The local Gibbs measure is constructed from

nλ(η(x)) :=
eλη(x)

Z (λ)
with Z (λ) :=

∫
R
eλz−V (z) dz

I Θ := σ is the inverse function of ∂λ lnZ (λ), and
ϑNf = νN

σ(f ( ·N ))
.



Concrete results: the GLK (2)
I The hyperbolic scaling is empty and the parabolic scaling

N2LN leads to the nonlinear diffusion equation ∂t f = ∆[σ(f )].
I We assume that V (u) = V0(u) + V1(u) and there exist

C , λ > 0 so that

V ′′0 (u) ≥ λ and ‖V1‖L∞(Td ) ≤ C , ‖V ′1‖L∞(Td ) ≤ C .

This assumption is similar to those in previous works
GOVW’2009, Fathi’2013, DMOW’2018. It includes some
double-well potentials that are strictly convex at infinity.

I Same results as for SEP and ZRP (in their parabolic versions).
I Macroscopic stability proved by studying regularity of the limit

nonlinear diffusion equation (De Giorgi and Schauder):
assumptions imply that σ′ is uniformly positive and bounded.

I The consistency is a tedious calculation once more.
I The microscopic stability is the core and will be discussed later.



Sketch of the abstract proof (1)
The proof proceeds in three steps. Denote by η` for 0 < ` < N, the
local `-averaged configuration η`(x) :=

∑
|y−x |≤` η(y).

Step 1. Quantitative Local Law of Large Numbers
(1) This is proved only for the local Gibbs measure, which is where
we “gain” as compared with block estimates (we separate local
averaging error from correlation error).
(2) Given a certain nonlinear moment relation at each site, we prove
a similar approximate relation in a box at intermediate scale `.

Proposition: Let f ∈ C 1 and θ on X and β on R so that

∀ r ≥ 0, β(r) = EnΘ(r)
(θ(η(x))) then

∑
x∈Td

N

EνN∞⊗ϑNf
[
W (η(x), ζ(x))

∣∣∣(θ ◦ ζ)`(x)− β
[
ζ`(x)

]∣∣∣] . 1
`d/2

+
`

N
.



Sketch of the abstract proof (2)
Step 2. Sampling rate.
Given f ∈ C 1, it is easy to obtain by optimising the intermediate
scale ` = N

2
d+2 in step 1 the following sampling rate

EϑNf

[∣∣∣∣∣∑
x

η(x)φ
( x

N

)
−
∫
Td

f (u)φ(u) du

∣∣∣∣∣
]
. N−

d
d+2 .

Step 3. The complete error estimate.
Given a coupling πN0 between µN0 and ϑNf0 at initial time, we define
πNt solution to, for all Φ ∈ Cb(X2

N)

∂t〈πNt ,Φ〉 = 〈πNt , L̃NΦ〉+ 〈∂tϑNft ,Φ2〉 − 〈ϑNft ,LNΦ2〉

where Φ2(ζ) :=
∫
XN

Φ(η, ζ) dνN∞(η).

Then observe that the first marginal solves the equation for µNt ,
and the second marginal solves an equation to which ϑNft is solution.



Sketch of the abstract proof (3)
Thus πNt is a coupling between µNt and ϑNft at each t ∈ [0,T ), and:

EµNt

[∣∣∣∣∣∑
x

η(x)φ
( x

N

)
−
∫
Td

ft(u)φ(u) du

∣∣∣∣∣
]

=

∫
η,ζ

∣∣∣∣∣∑
x

η(x)φ
( x

N

)
−
∫
Td

ft(u)φ(u) du

∣∣∣∣∣ dπNt

≤
∫
η,ζ

∣∣∣∣∣∑
x

(η(x)− ζ(x))φ
( x

N

)∣∣∣∣∣ dπNt

+

∫
ζ

∣∣∣∣∣∑
x

ζ(x)φ
( x

N

)
−
∫
Td

ft(u)φ(u) du

∣∣∣∣∣ dϑNft

.
∫
η,ζ

W (η, ζ) dπNt + N−
d

d+2

.
∫
η,ζ

W (η, ζ) dπN0 +

(∫ t

0
R

)
E1(N) + N−

d
d+2



Microscopic stability: the coupling operators (1)
For the SEP (with c(x , y) := b(η(x), η(y)) ∧ b(ζ(x), ζ(y)))

L̃NΦ(η, ζ) :=
∑
x ,y

p(y − x)c(x , y)
[
Φ(ηxy , ζxy )− Φ(η, ζ)

]
+
∑
x ,y

p(y − x)
(
b(η(x), η(y))− c(x , y)

)[
Φ(ηxy , ζ)− Φ(η, ζ)

]
+
∑
x ,y

p(y − x)
(
b(ζ(x), ζ(y))− c(x , y)

)[
Φ(η, ζxy )− Φ(η, ζ)

]
.

For the ZRP (with c(x) := g(η(x)) ∧ g(ζ(x)))

L̃NΦ(η, ζ) :=
∑
x ,y

p(y − x)c(x)
[
Φ(ηxy , ζxy )− Φ(η, ζ)

]
+
∑
x ,y

p(y − x)
(
g(η(x))− c(x)

)[
Φ(ηxy , ζ)− Φ(η, ζ)

]
+
∑
x ,y

p(y − x)
(
g(ζ(x))− c(x)

)[
Φ(η, ζxy )− Φ(η, ζ)

]
.



Microscopic stability: the coupling operators (2)

I The two coupling operators for the SEP and ZRP go back to
Liggett’1985 and are widely used in optimal transport.

I They correspond to choosing the coupling so that jumps
happen as simultaneously as possible, thus keeping the cost of
transporting from one measure to the other minimum.

I Reminiscent also of Tanaka’1973-1978 in the case of binary
collisions for the Kac random walk.

I In the hyperbolic limit, the type of Wasserstein estimates we
use correspond to Kruzhhov’1970 estimates for scalar
conservation laws, and in the parabolic limit, they correspond
to the counterpart Carrillo’1999 for nonlinear diffusions.

I The latter theories are based on the “doubling of variable
argument”, which has conceptual connexion with coupling
argument, as shown for instance in Bolley-Brenier-Loeper’2005.



Microscopic stability: the coupling operators (3)
For the GLK we propose the following coupling operator.

Denote Dx ,y
η := ∂

∂η(x) −
∂

∂η(y) and Dx ,y
ζ := ∂

∂ζ(x) −
∂

∂ζ(y) .

Define (Dx ,y
η )∗ = −Dx ,y

η + [V ′(η(x))− V ′(η(y))] (adjoint wrt νN∞)
so that

LN = −1
2

∑
x∼y

(Dx ,y
η )∗Dx ,y

η

Finally we define:

L̃NΦ(η, ζ) :=− 1
2

∑
x∼y

[(
Dx ,y
η

)∗ (
Dx ,y
η

)
⊗ 1
]

Φ(η, ζ)

− 1
2

∑
x∼y

[
1⊗

(
Dx ,y
ζ

)∗ (
Dx ,y
ζ

)]
Φ(η, ζ)

+ (2 + K )
∑
x∼y

(
Dx ,y
η

)
⊗
(
Dx ,y
ζ

)
Φ(η, ζ)



Microscopic stability: the coupling operators (4)

Observe first that it is a coupling operator:
(1) if Φ = Φ(η), then L̃NΦ(η, ζ) = LNΦ(η)
(2) if Φ = Φ(ζ), then L̃NΦ(η, ζ) = LNΦ(ζ).

Then given the weight W (η, ζ) :=
∑

x
|η(x)− ζ(x)|2 we compute

L̃N

(∑
x

|η(x)− ζ(x)|2
)

=
1
2

∑
x

[
− λ|η(x)− ζ(x)|2 + C |η(x)− ζ(x)| − 4K

]
where λ > 0 is the convexity constant of V0 (bound from below on
V ′′0 ) and C is the bound from above on V ′1.
This can be made non-positive for a suitable choice of K .


