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Identify an image with a pair P = (€2, ¢), where Q2 C R",
IS @ bounded Lipschitz domain, and ¢ : €2 — R™ js a
map describing image features (grey-scale, colours ...).

Usually n = 2 (photograph), n = 3 (tomogram) or
n = 4 (dynamic tomogram), but perhaps larger n
could be relevant for continuum approximations to

data clouds.
Cluster analysis

Persistent homology




Want to compare two images

P = (Q21,¢c1), Po = (S22,¢0)

by means of a nonlinear elasticity based functional.

Other approaches use machine learning and neural nets,
optimal transport and fluid flow.

Models based on linear elasticity are quite common. Non-
linear elasticity provides a conceptually clearer and more
general framework, respecting rotational invariance.

Other nonlinear elasticity approaches due to Droske & Rumpf
(2004), Lin, Dinov, Toga & Vese (2010), Rumpf (2009), Rumpf
& Wirth (2011), Burger, Modersitski & Ruthotto (2013), Ozeré,
Gout & Le Guyader (2015), Simon, Sheorey, Jacobs & Basri
(2017), Debroux & Le Guyader (2018).



Define a ‘distance’ d(Py, P>) > 0 between Py, P> by

d( Py, P>) = infIp p,(y),

where the inf is over invertible maps y : €21 — R"
such that y(21) = -, and

Ipy py(0) = [ (er(@), e2(y(@)), Dy()) do.

where ¢ : R x RS x MZI”L_X” — [0, ), and

GLT(n,R)
{real n x n matrices A with det A > 0}.

nXxXn
MYy

Note that we do not specify y on 921, only that y(21) = .
Thus we allow ‘sliding at the boundary’. This is not typically
done in the computer vision literature, but is considered in the

context of elasticity by Iwaniec & Onninen (2009).



Ipy () = [ 9(e1(@),e2(y(@)), Dy(@)) da
y . Q21 — 25 invertible with y(£21) = -.

Properties of .
(i) Invariance under rotation and translation

For two images P = (£2,¢) and P/ = (2, ) write P ~ P’
if P, P are related by a rigid translation and rotation, i.e.

Q' = EQ, d(Ez) = c(z)

for some proper rigid transformation EFx = a4+ Rz, a € R",
R € SO(n).



If P ~ P{, P, ~ P), with corresponding rigid transfor-
mations Fix = a1 + Rix, Eox = ao + Rox, we require
that

—1
[Pl,PQ(y) — Ip{,pé(EQ oyo by ),

or, equivalently,
/Ql W(c1(z), co(y(x)), RoDy(z)RY) dx
= Q. W(e1(x), co(y(x)), Dy(x)) dx.

This holds for all P;, P> and invertible y : €21 — {25 with
y(Ql) = (25 iff w(cl,CQ, ) IS isotropic, i.e.

P(cy,c0, QAR) = Y(c1,c0, A)
for all c1,co € R, A € Mzr_xn,R,Q c SO(n).



A Standard result oT nonlinear elastiCity dglves that
W(eq, o, ) is isotropic iff

Y(c1,c0,A) = H(cy,co,v1(A),...,vn(A))

with H symmetric with respect to permutations of the
last n arguments, where the v;,(A) are the singular values
of A (that is, the eigenvalues of VAL A).

Furthermore we require that
W(e1,¢e0,A) =0 iff c1 = co and A € SO(n).

Then IPLPQ(y) = 0 for some y : €21 — {25 with y(Ql) = {25
iff Py ~ P>. Indeed if Ip, p,(y) = 0 then Dy(x) € SO(n) a.e.
and so under some regularity on y (which we will assume)
Dy(xz) = R a.e. forsome R € SO(n), and thus y(z) = a+ Rx
and ci1(x) = co(a + Rx), so that Py ~ P».



(ii) Symmetry with respect to interchanging images
We require that Ip, p.(y) = Ip, p,(y~1).

That is
/Qlw<c1<w>,cz<y<x>>,0y<w>>dw
= QQw(cz(y),q(w(y)),Dw(y))dy

= [, #(ea(u(@)),e1(a), Dy(a) ™) det Dy(x) d.

Taking c1,co constant and y(x) = Az this holds iff

w(clv C2, A> — ¢(027 C1, A_1> det A.



Examples
Let

¢(617627A> — \U(A) + f(C]_,CQ, det A)a
where

(i) W > 0 is isotropic, W(A) =detA-w(A~1), v—1(0) = SO(n),
(ii) f >0, f(c1,¢0,6) =3f(ca,c1,67 1), fler,e0,1) = 0 iff c; = co.

In particular we can take

fle1,¢2,8) = (14 68)|er — eo|?,
or
fle1,60,8) = |eq — e28|? 4+ 67 e16 — eo]?,

which are both convex in §.



Existence of minimizers

We suppose that €21 and Q5 are diffeomorphic. Let p > n and

A={yeWHP(Q1,R") 1y : Q2 — Q5 a homeomorphism,

y~1 e Whr(Qy, RM)}.
Hypotheses on .

(H1) ¢ : RS x R® x M_Tﬁxn — [0, 00) is continuous,
(H2) ¥(c,d, A) > C(JAIP + det A - |A~1|P) + h(det A)
for all ¢,d € R%, A € M_Tf_xn, where h = h(§) is bounded

below and lims_,g4 h(d) = oo,
(H3) (e, d,-) is polyconvex for each c¢,d € RS, i.e. there

is a function g : RS x RS x R%(") x (0, 00) — R with g(c,d,-)
convex, such that

g(c,d,J,,_1(A),det A) = ¢ (c,d, A) for all A e Mixn,
where J,,_1(A) is the list of all minors of A of order < n-—1
and o(n) is the number of such minors,

(H4) cq € L*°(21,R%), ¢c» € L°>°(25,R%).



Theorem Under the hypotheses (H1)-(H4) there exists an
absolute minimizer in A of

Ipy p(0) = [ (e1(e), e2(y(2)), Dy(a)) da.

Proof. This follows the usual pattern for proving existence
of minimizers in nonlinear elasticity for a polyconvex stored-
energy function. However there are some extra issues.

We use the change of variables formula of Marcus and
Mizel (1973), which gives that

/y(E) p(2) dz = /E p(y(z)) det Dy(z) dx

for all ¢ € L1(5), y € A, and measurable E C 1,
whenever one side is meaningful. In particular

ly(E)| = /E det Dy(z) dz.



It follows from this that c>(y(-)) is measurable and indepen-

dent a.e. of the representative of c,, so that the integral is
well-defined.

Since ©1,$, are diffeomorphic A is nonempty. Let ()

be a minimizing sequence for Ip, p, in A with correspond-
ing inverses ¢U)(y). From (H2) we can suppose that

y) =y in WhP(Q,RY), €9) — ¢ in WHP(2,RY).

Passing to the limit in

y (D (2) =2, DD (@) ==

we see using the compact embeddings of W1P(Q, R") in
C9(8;,R™) that y € A with inverse &.



From the weak continuity of minors we have that
(J(DyY)),det Dy\P) — (J(Dy),det Dy) in L1(q; ROMTY),
so that we need to prove that
Ip,p() = | g(er,ea(y), J(Dy), det Dy) da

1

< liminf g(cl,CQ(y(j)),J(Dy(j)),detDy(j))da:

o ]—)OO Ql
p— |iminffp1 pz(y(j)).
]—>00 ’

For this, by the convexity of g(c,d,-) and a standard lower semi-
continuity result, it is enough to show that for a subsequence
cr (¥ (2)) = ex(y(z)) a.e.. As pointed out by Rumpf (2009) this
IS not so obvious for ¢, discontinuous, and he gives conditions on
co> under which this holds. However an argument using the change
of variables formula and weak continuity of the determinant shows
that it holds for any ¢, € L°°, completing the proof. []



Properties of minimizers. Are minimizers weak solutions
of the Euler-Lagrange equation? Are they smooth? Do
they satisfy O < u < detDy(x) < M < oo a.e.? Can the

Lavrentiev phenomenon occur?

These are all open questions, as they are for nonlinear
elasticity.



Parenthetical comment on existence hypotheses

In Ball (1976) an apparently stronger polyconvexity hy-

pothesis was made, namely that for all A € M}*"

P(A) = g(Jp_1(A),det A) ()

where g : R7(W) x R — R U {co} is continuous convex and
g(H,§) = oo for § < 0.

However in B/Murat (1984) this condition was appar-
ently weakened to those just given (dropping the de-
pendence on c¢1,c¢r), namely there is a convex function
g : R(M) % (0,00) — R such that () holds, and

W(A) - o0 as detA —- 0+.




But is this condition weaker? Namely are there convex
functions g : J,,_1 X [0,00) — [0, 0] with g(H,0) # oo for
some H and

W(A) =¢g(J,,_1(A),det A) — oo as det A — 047

Such g can be constructed using the following result:

Proposition. For any proper lower semicontinuous con-
vex function ® : R — (—oo,00] there is a Isc convex
extension ¢ : [0,00) X R — (—o00, 0] such that
(i) o = p(x,y) is finite and smooth for x > 0
(i) lim ¢(x,y) = p(0,y) = P(y) for each y € RO.

x— 0+
O, y=20
oo, y#+=0"

2
convex extension is p(x,y) = %

Example. ®(y) = { for which a smooth



Magnification and linear transformations

Suppose P; = (21,c1) and P, = (25,¢o) are linearly
related, i.e. for some M & M_”FX” we have

Qo = M1, co(Mz) = c1(x).

Can we choose 9 such that the unique minimizer y of
Ip, p, is y(x) = M=x7?

For simplicity consider i of the form
W(er, e, A) = W(A) + (1 + det A)|e; — cp|?
Thus we require that for all invertible y with y(€21) = M4
Jo, (WDy(@)) + (1 + det Dy(@)les (2) — e2(y(@)I?) do
> W (M) dz

= Jo,
with equality iff y(z) = M=z.



In particular, if this holds for all ¢; we have that

7[91 W(Dy) dz > W(M)

for y invertible with y(€21) = M1, a stronger version of
quasiconvexity at M, in which the usual requirement that
y(x) = Mz for x € 021 is weakened.

We show that we can satisfy this condition if M = A1,
A > 0 (or more generally if M = AR, R € S50(n)), so that
P> is a magnification of P;. For simplicity we give the
construction for n = 2, and let

W(A) = o] +v5 + vivo (Ul—a -+ Uz—a> + h(vivo),

where v; = v;(A) are the singular values of A, o > 2, and
h = h(d) = 6h(6—1) is C1, convex and bounded below,
with /(1) = —2 and lims_,g4 h(d) = oo.



Then W is isotropic, W(A) = detA - w4~ 1), v > 0,
w—1(0) = SO(2), and ¢ satisfies (H1)-(H4).

Let y be invertible with y(Q21) = AQ;. By the AM>GM
iInequality we have that, since det Dy = vqvo,
/ W(Dy)de > / (2(det Dy)3 + 2(det Dy)*~3
2 2
+h(det Dy)) dz
— / H(det Dy(z)) dx
23

1\
>

1
H (— det Dy(x) da:)
€21] /€2

H(\?)
W(A1),

[
%

||
%

as required.



Note that we have equality only when v = v, = A, l.e.
Dy(x) = AR(x) for R(x) € SO(2), which implies that
R(x) = R is constant and a + ARQ21 = A21, which for
generic 291 implies ¢ = 0 and R =1, hence y(x) = \x.

What about general M7
T heorem

7[91 W(Dy) d > W (M)

for all invertible y with y(27) = M and for every 21

and M ¢ Mj’_x“ iff

W(A) = H(det A)

for some convex H.



Sketch of proof. If y = Mx is a minimizer, then we
can construct a variation that slips at the boundary, so
that the tangential component at the boundary of the
‘Cauchy stress’ is zero, i.e.

DY (MYMT = p(M)1,

from which it follows that W corresponds to an elastic
fluid, i.e. W(M) = H(detM). But then H(detM) is

quasiconvex, and so H is convex.

Conversely, if H is convex then

€21] /4
= ({21 H(detM).

/Q H(det Dy(xz))dx > |$21 H(i det Dy(x) da:)




Comparing parts of images

Regard P; = (21,¢1) as a template image and
P> = (£25,¢5) as the target.

Possibilities

(i) Minimize Ip, p, with the constraint y(£21) = €25 re-
placed by y(21) C 5.

(ii) Minimize both over subdomains 2 = a+ AR C 2o,
where a € R"*, R € SO(n), a < X < B, and maps
y Q1 — Q.



Thanks for listening



