

Gravitational Collapse for Newtonian stars

M.R.I. SCHRECKER

Department of Mathematics University College London

Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;

Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;
- Possible collapse? Supernova?

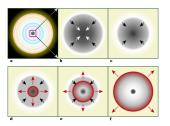


Figure: Image credit: R.J. Hall

Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:

$$\begin{cases} \partial_{t}\rho + \operatorname{div}_{\mathbf{x}}(\rho\mathbf{u}) = 0, & (t,\mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{3}, \\ \rho(\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla_{\mathbf{x}}\rho(\rho) = -\rho\nabla\Phi, & (t,\mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{3}, \\ \Delta\Phi = 4\pi\rho, & (t,\mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{3}. \end{cases}$$
(1)

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, ${\bf \Phi}$ is gravitational potential. We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:

$$\begin{cases} \partial_{t}\rho + \operatorname{div}_{\mathbf{x}}(\rho\mathbf{u}) = \mathbf{0}, & (t,\mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{3}, \\ \rho(\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u}) + \nabla_{\mathbf{x}}\rho(\rho) = -\rho\nabla\Phi, & (t,\mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{3}, \\ \Delta\Phi = 4\pi\rho, & (t,\mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{3}. \end{cases}$$
(1)

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, ${\bf \Phi}$ is gravitational potential. We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Example adiabatic exponents

 $\gamma=\frac{5}{3}$ – monatomic gas, used for fully convective star cores (e.g. red giants); $\gamma=\frac{4}{3}$ – high mass white dwarf stars, main-sequence stars (e.g. the Sun). In general, as γ decreases, density is increasingly weighted towards centre.

Collapse

Collapse is the formation of a *singularity* at the origin, i.e.

$$\rho(t,0) \to \infty$$
 as $t \to 0$.

- For $\gamma > \frac{4}{3}$, no finite mass and energy collapse possible.
- For $\gamma = \frac{4}{3}$, Goldreich–Weber collapse unsuitable model for outer core.

Supernova expansion

Figure: GIF credit: NASA

Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.

- Stellar collapse;
- Formation/expansion of shock waves;
- Shock reflection;
- Droplet pinch-off;
- Bacterial growth;
- Geometric wave equations;
- Yang–Mills;
- ...

Self-similar singularity formation

Self-similarity and singularities interact in a wide range of problems.

- Stellar collapse;
- Formation/expansion of shock waves;
- Shock reflection;
- Droplet pinch-off;
- Bacterial growth;
- Geometric wave equations;
- Yang–Mills;
- •

Key Features:

- Non-linearity;
- Intertwining of spatial and time scales;
- Good initial data leads to badly behaved solutions!

Scaling and Self-similarity

Scaling

Let $\rho=\rho(t,r)$, $\mathbf{u}=u(t,r)\frac{\mathbf{x}}{|\mathbf{x}|}$, $r=|\mathbf{x}|$, solve Euler-Poisson, $\lambda>0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right)$$

is also a solution. (NB: This is a *unique* scaling!)

Scaling and Self-similarity

Scaling

Let $\rho=\rho(t,r)$, $\mathbf{u}=u(t,r)\frac{\mathbf{x}}{|\mathbf{x}|}$, $r=|\mathbf{x}|$, solve Euler-Poisson, $\lambda>0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right)$$

is also a solution. (NB: This is a unique scaling!)

Self-similarity

We define a self-similar variable

$$y=\frac{r}{(-t)^{2-\gamma}},$$

and search for

$$\rho(t,r) = (-t)^{-2} \tilde{\rho}(y), \quad u(t,r) = (-t)^{1-\gamma} \tilde{u}(y).$$

Natural notions of mass and energy for Euler-Poisson:

$$M[
ho] = \int_0^\infty
ho \, r^2 \mathrm{d} r, \quad E[
ho, u] = \int_0^\infty \left(
ho u^2 + rac{
ho^\gamma}{\gamma - 1} + rac{1}{2}
ho \Phi
ight) r^2 \mathrm{d} r,$$

where Φ solves $\Delta\Phi=4\pi\rho$ is the gravitational potential. Under scaling,

$$M[\rho_{\lambda}] = \lambda^{\frac{4-3\gamma}{2-\gamma}} M[\rho], \quad E[\rho_{\lambda}, u_{\lambda}] = \lambda^{\frac{6-5\gamma}{2-\gamma}} E[\rho, u].$$

Thus $\gamma = \frac{4}{3}$ is mass-critical, $\gamma = \frac{6}{5}$ is energy-critical.

ODE system

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\tilde{\rho}' = \frac{y\tilde{\rho}h(\tilde{\rho},\omega)}{\gamma\tilde{\rho}^{\gamma-1} - y^2\omega^2},$$

$$\omega' = \frac{4 - 3\gamma - 3\omega}{y} - \frac{y\omega h(\tilde{\rho},\omega)}{\gamma\tilde{\rho}^{\gamma-1} - y^2\omega^2},$$
(2)

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

ODE system

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\tilde{\rho}' = \frac{y\tilde{\rho}h(\tilde{\rho},\omega)}{\gamma\tilde{\rho}^{\gamma-1} - y^2\omega^2},$$

$$\omega' = \frac{4 - 3\gamma - 3\omega}{y} - \frac{y\omega h(\tilde{\rho},\omega)}{\gamma\tilde{\rho}^{\gamma-1} - y^2\omega^2},$$
(2)

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

Definition (Sonic point)

Let $(\tilde{\rho}(\cdot), \omega(\cdot))$ be a C^1 -solution to the self-similar Euler-Poisson system on the interval $(0, \infty)$. A point $y_* \in (0, \infty)$ such that

$$G(y, \tilde{\rho}, \omega) := \gamma \tilde{\rho}^{\gamma - 1}(y_*) - y_*^2 \omega^2(y_*) = 0$$

is called a sonic point.

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0)>0,\quad \omega(0)=rac{4-3\gamma}{3},$$
 $ilde{
ho}(y)\sim y^{-rac{2}{2-\gamma}} ext{ as } y o\infty,\quad \lim_{y o\infty}\omega(y)=2-\gamma.$

NB: this forces the existence of a sonic point!

Theorem

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0)>0,\quad \omega(0)=rac{4-3\gamma}{3},$$
 $ilde{
ho}(y)\sim y^{-rac{2}{2-\gamma}} ext{ as } y o\infty,\quad \lim_{y o\infty}\omega(y)=2-\gamma.$

NB: this forces the existence of a sonic point!

Theorem (Guo-Hadzic-Jang-S. '21)

For each $\gamma \in (1, \frac{4}{3})$, there exists a global, real-analytic solution $(\tilde{\rho}, \omega)$ of self-similar Euler-Poisson with a single sonic point y_* such that:

$$\tilde{
ho}(y) > 0 ext{ for all } y \in [0,\infty), \quad -rac{2}{3}y < u(y) < 0 ext{ for all } y \in (0,\infty).$$

In addition, both ρ and ω are strictly monotone:

$$\tilde{\rho}'(y) < 0$$
 for all $y \in (0, \infty)$, $\omega'(y) > 0$ for all $y \in (0, \infty)$.

Connection to previous literature

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in \left[\frac{6}{5}, \frac{4}{3}\right]$;
- Maeda—Harada '01: numerical evidence towards mode stability of Larson—Penston.

Connection to previous literature

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in [\frac{6}{5}, \frac{4}{3})$;
- Maeda—Harada '01: numerical evidence towards mode stability of Larson—Penston.

Recent works

- Merle–Raphaël–Rodnianski–Szeftel '19: existence of a imploding self-similar solutions for Euler;
- Guo–Hadzic–Jang '20: construction of LP solution.

Overview of key difficulties

Regularity

Expect stability tied to regularity (MRRS '19). Requires smoothness through sonic point.

Overview of key difficulties

Regularity

Expect stability tied to regularity (MRRS '19). Requires smoothness through sonic point.

Non-linearity

Methods need to be adapted to specific non-linearities (no general recipe for solving such problems).

Overview of key difficulties

Regularity

Expect stability tied to regularity (MRRS '19). Requires smoothness through sonic point.

Non-linearity

Methods need to be adapted to specific non-linearities (no general recipe for solving such problems).

Non-autonomous system

Non-autonomous forces evolving phase portrait. No fixed phase portrait analysis for invariant regions.

Reference solutions and sonic point

Two explicit solutions

Far-field solution (ρ_f, ω_f) and Friedman solution (ρ_F, ω_F) :

$$(\rho_f(y),\omega_f(y))=(k_{\gamma}y^{-\frac{2}{2-\gamma}},2-\gamma), \qquad (\rho_F(y),\omega_F(y))=(\frac{1}{6\pi},\frac{4}{3}-\gamma).$$

Reference solutions and sonic point

Two explicit solutions

Far-field solution (ρ_f, ω_f) and Friedman solution (ρ_F, ω_F) :

$$(\rho_f(y), \omega_f(y)) = (k_{\gamma}y^{-\frac{2}{2-\gamma}}, 2-\gamma), \qquad (\rho_F(y), \omega_F(y)) = (\frac{1}{6\pi}, \frac{4}{3}-\gamma).$$

- Sonic points at $y_f(\gamma) < y_F(\gamma)$.
- Far-field satisfies asymptotic boundary condition as $y \to \infty$.
- Friedman satisfies boundary condition at origin.

Idea: Use $\omega_f = 2 - \gamma$, $\omega_F = \frac{4}{3} - \gamma$ as barriers.

Proposition (Local Solution)

For all $\gamma \in (1, \frac{4}{3})$, there exists $\nu > 0$ such that for all $y_* \in [y_f(\gamma), y_F(\gamma)]$, there exists an analytic solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ to self-similar Euler-Poisson on $(y_* - \nu, y_* + \nu)$ with a single sonic point at y_* .

Idea: By formal Taylor expansion and selection of physical first order coefficient

Proposition (Local Solution)

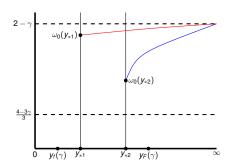
For all $\gamma \in (1, \frac{4}{3})$, there exists $\nu > 0$ such that for all $y_* \in [y_f(\gamma), y_F(\gamma)]$, there exists an analytic solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ to self-similar Euler-Poisson on $(y_* - \nu, y_* + \nu)$ with a single sonic point at y_* .

Idea: By formal Taylor expansion and selection of physical first order coefficient

Lemma (Solving to the right)

For each $\gamma \in (1, \frac{4}{3})$, each $y_* \in [y_f(\gamma), y_F(\gamma)]$, the local solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ obtained by Taylor expansion extends globally to the right on $[y_*, \infty)$, remains supersonic, and satisfies the asymptotic boundary conditions.

Solving to the right



Key ideas

- Use structure of $h(\rho, \omega)$ and $G(y; \rho, \omega)$ to derive dynamical invariances to the right.
- Show ω remains trapped between $\frac{4}{3} \gamma$ and 2γ .
- Extend dynamical invariance to show flow remains supersonic.
- Asymptotics follow easily from structure of flow.

Solving to the left

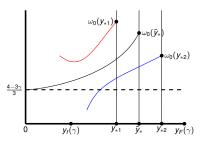
Aim: Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y=0. Look for solution with

$$\frac{4}{3} - \gamma \leq \omega(y; \bar{y}_*) < 2 - \gamma, \qquad \lim_{y \to 0} \omega(y; \bar{y}_*) = \frac{4}{3} - \gamma.$$

Solving to the left

Aim: Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y=0. Look for solution with

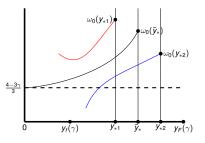
$$\frac{4}{3} - \gamma \leq \omega(y; \bar{y}_*) < 2 - \gamma, \qquad \lim_{y \to 0} \omega(y; \bar{y}_*) = \frac{4}{3} - \gamma.$$



Solving to the left

Aim: Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y=0. Look for solution with

$$\frac{4}{3} - \gamma \leq \omega(y; \bar{y}_*) < 2 - \gamma, \qquad \lim_{y \to 0} \omega(y; \bar{y}_*) = \frac{4}{3} - \gamma.$$



Try:
$$\bar{y}_* = \inf Y = \inf \left\{ y_* \in (y_f, y_F) \mid \exists y \text{ such that } \omega(y; y_*) = \frac{4 - 3\gamma}{3} \right\}.$$

Key idea: Prove monotonicity for both $\rho(\cdot; y_*)$ and $\omega(\cdot; y_*)$ as long as $y_* \in Y$ and $\omega(\cdot; y_*) \ge \frac{4}{3} - \gamma$.

Future Programme

Linear Stability

- Appropriate self-similar coordinates;
- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity).

Future Programme

Linear Stability

- Appropriate self-similar coordinates;
- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity).

Future directions

- Non-linear stability;
- Einstein-Euler (relativistic self-similar fluid implosion) and its stability (cf. Guo–Hadžić–Jang '21).
- Continuation and expansion?

Thank you!

