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1 Introduction

After the dust of the 2007-2008 financial crisis had settled, many contributing causes were
given. One of these was complex mathematical modelling. The financial model that came
under particularly strong criticism was the Gaussian copula. This is a statistical tool that
was used to price and manage the risk of Collatarised Debt Obligations (CDOs). These
complex financial products were the spark to the eventual roaring fire of “the Crisis” [0]
(as it shall be referred to henceforth).

One influential article that lay the blame for the Crisis squarely at the feet of the
Gaussian copula was Felix Salmon’s ‘The Formula that Killed Wall Street’[1§]. In this
widely published article he describes the Gaussian copula as a “recipe for disaster”.
He considers it a mathematically “beautiful”, but fatally flawed, model adopted for its
simplicity and tractability that inflated a colossal bubble in CDOs, that kept on growing
until the model “fell apart” in 2007-08, leading to trillions of dollars of losses.

In this paper, the Gaussian copula will be investigated in the context of the Crisis
and its suitably as a model for CDOs discussed. It will be compared with other copulas
that have been proposed as alternative, more “representative” models. An alternative
hypothesis will also be investigated: that the main cause of the catastrophic losses in
CDOs was not the copula choice but the gaming of credit ratings based on incorrect
correlation estimations; a so-called “cooking of the books” to extend Felix Salmon’s
gastronomic metaphor.

The paper is structured as follows: first CDOs and their role in the Crisis will be
summarised. Next, in Section 3, copulas will be introduced and how to use them to
model CDOs explained. During this section the Gaussian copula and alternative copulas
will be proposed and their suitability considered. Then in Section 4 these copula models
will be used to actually price an idealised CDO and their performance compared. In
Section 5 the alternative hypothesis above will be investigated. This includes assessing
the performance of the idealised CDO under differing correlation assumptions. Finally
we conclude.

2 The Financial Crisis

A complete overview of the Crisis is naturally far beyond the scope of this paper. How-
ever, it is widely accepted that the root of the crisis was Collaterized Debt Obligations
(CDOs) of Asset Backed Securities (ABSs) that mainly consisted of American subprime
mortgages[4]. We will summarise the pertinent aspects of the Crisis here, based on Don-
nelly & Embrechts[d], Mackenzie & Spears[12], and Lewis[9]

2.1 The Ingredients

Mortgage Backed Securities (MBSs) first appeared in the seventies. Bankers produce an
MBS by “securitising” mortgages, i.e. pooling mortgages together and selling securities
that receive parts of the total mortgage payments from the pool. This diversifies the



risk and allows investors to gain exposure to mortgages without taking on idiosyncratic
risk. Not long after MBSs came Collaterised Mortgage Obligations (CMOs). These
were similar to MBSs but instead of just passing through payments to investors and
splitting them evenly, the payments were tranched to produce securities with a range of
risk profiles.

ABSs and CDOs have similar structures to MBSs and CMOs but instead of only
having mortgages as underlyings, they can have any appropriate asset or debt. It is
common for CDOs to contain ABSs, or even other CDOs (at least before the Crisis).

Banks were motivated to produce CDOs as they remove risky underlyings from their
books and return cash. Doing this helped satisfy capital requirements while also produc-
ing fat fees.

Many institutional investors are limited to purchasing products with a high credit
rating (AAA or AA) by a Credit Rating Agency (CRA) such as S&P, Moody’s or Fitch.
Sometimes there are not enough such products available to satisty demand. CDOs pro-
vided a (very lucrative) solution to this pent up demand. Risky assets, rated BBB or
lower for example, could be bundled together to produce large AAA rated super-senior
tranches that could be sold to deep-pocketed, risk averse investors.

So why did it take over a decade and a half for the CDO market to get big? One of the
significant impediments was modelling. CDOs are complex products with interconnected
cashflows and, as such, are difficult to model, and therefore price, accurately. In the
nineties this, along with other factors, limited the issuances.

2.2 The Recipe

The problem is correlation. If all the underlying assets of the CDO were independent
the modelling would be straightforward: assess the default distribution of each individual
asset separately and multiply them together to produce the joint distribution[]. Of course,
in reality the underlyings, no matter how diversified, are never fully independent (as the
financial crisis so painfully proved).

Even estimating the correlation of two assets with long histories is not a simple task.
This difficulty is quickly exacerbated with a CDO since there are n(n — 1)/2 correlations
between n underlyings, compounded with the fact that most obligors are idiosyncratic
with limited public data (e.g. mortgages).

Various models for CDOs were proposed pre-millenium, such as Vasicek’s analytical
KMV and J.P.Morgan’s Monte Carlo CreditMetrics. However, KMV’s homogeneous
pool was impractical and the CreditMetrics model has difficult to estimate parameters
as well as being limited to a one-period framework. Then in 1999 a Chinese quant
in Canada, David Li, published a paper[10] proposing a straightforward, tractable and
easy to parameterise model for dependent defaults, used by actuaries to solve the broken
heart syndromd?] This was the, now infamous, Gaussian copula. With parallels to Black-

! This is actually the independence copula we will discuss in Section
2This is the well documented effect where the life expectancy of a person shortens when their spouse
dies.



Scholes, Li’s model also provided delta hedging ratios for single-tranche CDOs. Traders
were quick to adopt it.

Armed with this new model, banks could issue CDOs at a much faster paceﬂ and
hedge them. Importantly for its popularity, it allowed traders to book day one P&L
boosting their bonuses. Also, crucially, the CRAs adopted the Gaussian copula to rate
CDO tranched!

2.3 Growth in Popularity

In the early 2000s, the adoption of the Gaussian copula to model CDOs coincided with
low interest rates leading to high demand for yield on safe assets. It was possible to
create senior CDO tranches that could offer higher yields than alternative products while
having the rating of treasuries, thus they were in great demand.

The growth in the CDO market was not completely smooth. In 2005 there was a
so-called “correlation crisis”. Much like the volatility skew in options, CDO tranches
also exhibited a “correlation skew”. The market prices of a CDQO’s tranches did not
all match the same correlation parameter. In May 2005 General Motors and Ford were
both downgraded to junk status despite benign economic conditions. This idiosyncratic
risk caused equity tranche protection to increase and mezzanine protection to fall, sharply
steepening the correlation skew. This crisis only lasted a few days and was barely reported
on. The CDO market continued to grow unabated.

At the beginning of 2000, when Li’s article was published, the total issuance of CDOs
was worth less than $70 billion. By 2006 and 2007, at the height of the CDO bubble,

global issuance had grown to over $500 billion per year.

2.4 Hygiene standards decline

Soon the number of available risky assets to collaterize was running low so banks looked
for more and more risky assets. This led to a boom in the subprime mortgage market. As
CDOs snapped up subprime ABSs the more experienced and thorough ABS investors were
side-lined. But the bankers in the “assembly line” producing CDOs were not as careful
as the traditional investors. They were focused on achieving the best CRA ratings, by
gaming the CRAs’ models, and were not concerned with the accuracy of these rating since
the risk would be sold on. The standard of subprime mortgage underwriting started to
fall.

The chain between original loan and eventual holder had become so long and com-
plicated it was nigh on impossible to actually understand what was going onE]. This
led to investors in CDOs and, more alarmingly, CDO managers often relying purely on

3In only a matter of days according to Mackenzie[12]

4Moody’s adopted it in August of 2004. Only a week later S&P changed its methodology as well[7].
It appears there is high correlation between the actions of CRAs.

°In The Big Short[9], when Michael Burry says he’s looking at the mortgages underlying MBSs and
actually reading the contracts the reply from his investor is “No one reads them. Only the lawyers who
put them together read them?”.



the CRA’s ratings, obtained using the Gaussian copula model, to judge tranche risk.
In Mackenzie [12] it’s remarked that in an interview with a senior figure at a firm that
managed ABS CDOs Mackenzie was shocked to find out the firm had no model of its
own. This meant that if the CRAs were wrong, as they turned out to be, huge swathes
of the market were also wrong.

Then in mid-2007, subprime mortgages started to default en masse. This was due to
a combination of a change in bankruptcy laws as well as adjustable teaser-rates ending.
Despite mortgages being widely modelled as consisting of an economic factor and idiosyn-
cratic factor, large numbers defaulted even though the economy was doing relatively well.

This is when Salmon|[18] says the Gaussian copula model started to show cracks “that
eventually became gaping chasms”. It was no longer possible to match market prices
using the model, no matter what correlation parameter was used.

2.5 Disaster

In the late 2000s, default rates reached above 14% in America, a number many in-
vestors had claimed was “impossible” [9]. Huge numbers of mezzanine tranches of CDOs,
crammed with subprime mortgages, defaulted, despite being rated low risk by CRAs.
80% of ABS CDOs issued in 2007 had a default event. Then all the synthetic CDOs
based on the same underlyings defaulted as well. Banks lost billions. Citigroup lost $34
billion on ABS CDOs, Merrill Lynch $26 billion, UBS $22 billion and AIG lost $33 billion
(receiving the equivalent of 1% of US GDP to bail it out)[I2]. This lead to the largest
financial crash since the Great Depression, earning the Financial Crisis its capital letters.

There were many concordant problems in finance that led to the Crisis but the one
this paper is concerned with is that clearly CDO risks were horrifically underestimated®]
With this we turn to how to price CDOs.

3 CDO Pricing Models

For this paper we will focus on Copula models that define the default time dependence
structure. This is within the “bottom up approach for pricing CDOs, wherein “tranche
premiums depend upon the individual credit risk of names in the underlying portfolio
and the dependence structure between default times” [3]. This is unlike the “top down”
approach which starts by modeling the aggregate loss process and from this derive the
behaviour of the individual underlyings.

The copula approach was the industry standard in the run up to the Crisis and
continues to be, although in a modified form. The early CDO pricing models such as
Vasicek’s KMV and the CreditMetrics model actually indirectly use a Gaussian copula.

Before Li’s “recipe” was published, banks could model the individual marginal default
probability of each underlying and they could model a large homogeneous pool but they
couldn’t combine the knowledge from both. The genius in Li’s idea was to use copulas to

6Mackenzie[1T] reports that the realised incidence of default for CDOs issued in 2005-2007 was hun-
dreds of times higher than that predicted by one of the CRAs’ models.
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create a bridge between the marginal default distributions and the joint default distribu-
tion. This bridge would “couple” together the constituent elements, thus specifying the
dependence structure. This allows the dependence structure to be modelled separately
from the marginal distributions.

3.1 Introduction to Copulas

A copula (from the Latin for “link”) is a mapping from univariate marginals to their
multivariate distribution. As Li defines it[I0]: for n uniform random variables U;, ..., Uy,
the joint distribution function C, defined as

C(Ul, --'aunap> = P(UI S Uy, 7Un S un)

can be called a copula function. Then, for n given univariate marginal distributions
Fi(z1), ..., F(x,), the copula function

C(Fi(z1), ..., Fu(xn)) = F(x1, ..., Tp)

results in a multivariate distribution function with univariate marginal distributions as
specified. The simplest copula is the independence copula:

C(ury ooy tp) = I_IuZ

Correspondingly the copula for perfectly correlated variables is:
C(uh ) U’TL) = mln(“l)

One of the most popular copulas, and the one proposed by Li, is the Gaussian copula:

Crr(uy,...;uy) = P g (<I>_1(u1), s <I>_1(un))

where ®,, r denotes the joint cumulative distribution function of a multivariate Gaussian
distribution with mean vector zero and n x n correlation matrix R. ®=!' denotes the
inverse cumulative distribution function of a standard univariate normal distribution.

Other copulas will be discussed shortly but before that: how does one use a copula
to model a CDO?

3.2 Modelling a CDO

A CDO consists of n underlyings of notionals K;, ¢ = 1,2,...,n, with corresponding
recovery rates of ; and exposure at default E;. When the i** underlying obligor defaults
there is a loss of K;E;(1—0;). We denote the cumulative fractional loss of the underlying
pool at time ¢ by L(t).

For a CDO with a standard waterfall structure, each tranche has a simple payoff
function that is dependent on L(t). Let K; denote the attachment point of the tranche.
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If L(t) < K then the tranche suffers no losses. Let K, denote the detachment point. If
L(t) > K5 then the tranche is completely wiped out with 100% loss. Thus the width of
the tranche is K5 — K. Therefore the fractional loss of the tranche at time ¢ is

max(L(t) — K1,0) — max(L(t) — K>,0)
K2 — K1

L(t, Ky, K,) =

For cash CDOs, the payoffs come from the actual cashflows of the underlyings. For
synthetic CDOs however, since they are based on CDSs, tranches receive premiums (the
premium leg) for assuming the risk of loss on the tranche (the protection leg) which
must be covered in the case of tranche default. The value of these are the risk neutral
discounted expected cashflows (ignoring charges and margins etc.).

Therefore the present value of the premium leg at time zero is:

Nt
Premium leg PV = S(K7, K5) Z Atz t)Z(t)E |1 —

i=1

L(ti,17K17 KZ) + L(ti7K17 KQ)
2

where S(K, K5) is the spread or coupon paid (usually quarterly) on the surviving notional
of the tranche, Ny is number of coupon payments within 7'; A(¢;_1,t;) is the year fraction
between t;_; and t;, and Z(t) is the price of a zero-coupon bond maturing at ¢[6]. This
only applies when K5 is less than the maximum loss, as otherwise the tranche protection
payer would continue to pay premiums even after all the underlyings have defaulted.
Therefore when K is is greater than the maximum loss we instead use

L (t,Kl,min (KQ, 1-— L(t)%))

in the expectation of the premium leg PV. This means we reduce the total notional by
the recovered amount upon each default. Thus premiums are not paid on the riskless
recovered notional.

The protection leg just pays out the trance losses at the time of loss:

T
Protection leg PV = / Z(s)E[dL(s, K1, K5)]
0

where dL(t, K1, K3) is the amount lost over a small period dt[6].

Therefore the fair price of tranche protection can be found by setting the spread
S(K;, K3) such that both legs are equal. The values of both legs are functions of the
expected fractional tranche loss which is equivalent to the probability of tranche default.

To find this one can use any model that gives the the distribution of defaults (e.g.
Vasicek’s single factor model), loss fraction distribution (e.g. the Large Homogeneous
Portfolio approximation), or can be used for Monte Carlo simulations of defaults (e.g.
copula models).



3.3 Using a copula to model a CDO

Copulas can be used to model a CDO by modelling defaults of the underlyings. Li’s
proposal[10] was a semi-dynamic model. In this type of model the term structure of each
obligor’s survival probability is given. Each underlying defaults at time 7;[] We denote
the marginal probability of default and survival of each underlying by:

Fi(t;)) =P(n <t;), Si(t;) =P(r >t;)

where P is a suitable pricing probability measure. The joint distribution function and
survival function are similarly denoted:

F(tl, ,tn) = P(Tl <ti,...,7n < tn), S(th ,tn) = P(Tl >ty e, T > tn)

The chosen copula, in Li’s case a Gaussian copula, is used to generate Uy, ..., U,,, which
have a uniform marginal distribution. These are used the default times are found vid
7 =F ' (U)
From this the loss distribution can be obtained either from analytic or semi-analytic
solutions or via Monte Carlo simulation, depending on complexity and assumptions.
The marginal survival and default probability distributions can be estimated using an
intensity-based model, calibrated to data. If the intensity, A, is assumed to be constant

(as it will be for the simulations later) it can easily be backed out from the spread, S, of

CDSs on the obligor:

S
A_1—5

From this the risk-neutral probability of survival and default up to time ¢ is:
S(t) =P(r > t) =exp(=At), F(t)=P(r <t)=1—exp(—At)

Therefore, given U from the copula we can solve for 7:

1
T=—=In(l1-0) (1)
A
With the default times of each underlying it is straightforward to infer the pool losses
within the life of the CDO contract. From this the tranche payoffs can be calculated as
in Section 3.2.

"It must be noted that could occur at any future time, which may be beyond the lifetime of the CDO.
8For symmetric copulas such as Gaussian or Student-t either the survival or default probability can
be used.



3.4 Suitable Copulas

There is an infinite number of copulas that can be chosen. However not all of these are
suitable for CDO modelling. For example, the copulas for independent and perfectly
correlated variables are naturally unsuitable for practical applications.

Due to its familiarity and tractability, the Gaussian copula was a natural choice for
Li to use as an exampld’} There is also a mathematical justification for using it from
information theory, as it is an entropy maximising distribution, see [2]. However, with
strong parallels to Brownian motion and Black-Scholes, in real financial data, heavier tails
than in a normal distribution are often observed|[I4]. Multivariate normal distributions
of credit risk, such as produced by the Gaussian copula, fail to capture default clustering;
in times of crisis if one obligor defaults then it is likely that other obligors also default
within a short period of time[4].

The tail behaviour of a copula can be examined via its tail dependence. The Gaussian
copula is tail independent. For credit risk, this means that olbigor defaults become
independent as their size of default increases[4]. This is unrealistic.

The natural alternative would therefore be the Student-t copula as it is similar to the
Gaussian but it has positive tail dependence[6]. However it introduces another parameter
to estimate, the degrees of freedom v. This makes it useful for risk management since as
v increases the Student-t becomes closer to the Gaussian. Therefore one can start with a
high v and lower it to observe the effect of fattening tails[2]. But it also makes it difficult
to calibrate to data.

The Student-t copula is symmetric which means it has both upper and tail depen-
dence. However, there is not an equivalent of default clustering at the other end of the
spectrum. We expect that large negative co-movements are much more likely in real-life
than large positive co-movements. Thus it is natural to consider copulas with only lower
tail dependence.

The Clayton copula is a common proposal (see [2], [3], and [I5]) since it possesses
lower tail dependence. It is an Archimedean copula, which is a family of copulas that
take the form

Clu, ooy tin) = 7 ((ur) + o 4 ¥ (un))

¥ (x) is the so-called “generator” of the copula. In the case of the Clayton copula the

generator is
Yo(zr)=27%—1, 6>0

The parameter 6 controls the dependence with dependence increasing as 6 increases.

Other copulas have also been proposed such as the Marshall-Olkin copula and double-
t copulas, see [3]. However this paper will focus on the three copulas above as these are
the most common modelling choices discussed pre-crisis. Therefore they are the ones to
investigate if a different copula choice could have averted the Crisis.

9In his seminal paper[I0] he does also discuss other copulas, such as the Frank copula, and does not
comment on the Gaussian copula’s validity as a modelling choice for financial applications.



Rating at issuance AAA AA+ AA  AA- A+ A A- BBB+ BBB

5-yr default probability (%) 0.05 0.19 0.26 036 0.56 0.62 0.92 1.20 1.89
Rating at issuance BBB- BB+ BB BB- B+ B B-  CCC+ CCC
5-yr default probability (%) 3.63 574 811 12.50 17.09 21.36 27.08 33.64 37.64

Table 1: Part of Fitch’s CDO default matrix.

Tranche (Rating) | Attachment Points

Senior (AAA) 42% - 100%
Mezzanine 1 (AA-) 34% - 42%
Mezzanine 2 (A-) 28% - 34%
Mezzanine 3 (BBB-) 20% - 28%
Mezzanine 4 (BB-) 11% - 20%
Equity (NA) 0% - 11%

Table 2: Example CDO tranches, chosen to be as large as possible for their rating.

4 Comparing Copulas

In order to judge the effect a different choice of CDO pricing model may have had in
averting the Crisis, we look at an artificial, stylized ABS CDO. This CDO consists of 100
homogeneous, underlying ABSs, each of notional 1 and constant spread of 100bps{1—_0]. The
underlyings are modelled with a simple intensity model, as described in Section 3.3. For
simplicity we will assume the exposure at default is 1 and that default rates are constant.
We will also set the risk free rate to zero as it has little effect on results. The CDO
contract is for five years, a typical contract length. The code used for the simulations is
provided in the appendix along with all the simulation results.

The CDO tranches were constructed by following the example of banks and credit
rating agencies pre-crisis. That is by starting with the pre-crisis industry standard mod-
elling choices of Gaussian copula, recovery rate of 40%, and p = 30%][12]. Then, using
simulations finding the largest tranches that will be given each rating by a credit rating
agency according to calculated default probability. The rating requirements used were
according to Fitch’s CDO matrix[I7], listed in Table[I] The resulting tranches are listed
in Table [2

The behaviour of this CDO using alternative copula models was investigated. These
alternative copulas, as recommended in Section 3.4, were the Clayton copula and the
Student-t copula with 5, 10 and 15 degrees of freedomm To simulate default times with
the Gaussian and Student-t copula the inbuilt MATLAB function copularnd was used
to generate variables with uniform marginal distribution. For the Clayton copula the

10This spread is in the ballpark of actual MBS spreads around 2007 according to Investopedial[S].
1Tt was found that it was not possible to back out implied correlations for Student-t copulas with
lower degrees of freedom, as performed later, so they were not considered
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algorithm from Bluhm and Overbeck[2] was used:
1. Generate i.i.d random variables Uy, ..., U, ~ U([0, 1]).
2. Generate random variable X ~ I'(1/6,1) independent of all the other variables.
3. Using these variables calculate for each i, v = —In(U;)/X.
4. Convert this to a uniformly distributed variable by ¢, (v) = (1 + v)~/¢

The default times were then found using equation from Section 3.3.

In order to compare this CDO under these different copulas, we need to use equivalent
parameters. Linear correlation is unsuitable for comparing non-linear copulas. Therefore,
following the example of Bluhm and Overbeck[2], we used the copula parameters with
the same Kendall’s tau. This was found using MATLAB’s inbuilt functions copulastat
and copulaparam. For a correlation of 30%, the Gaussian and Student-t copulas have a
tau of 0.194. The 6 that gives the same tau for the Clayton copula is 0.4813.

The example CDO was then reevaluated using these alternative copulas instead of
the Gaussian copula. The resulting probabilities of default for each tranche under each
copula are plotted on figure [, The change of copula affects the ratings that would be
given by Fitch if they were to evaluate this CDO, as displayed in Table [4]

The results reveal that the choice of copula does have a significant effect on tranche
pricing and ratings. As the tail dependence increases, the riskiness of the equity tranche
decreases whereas it increases for all of the more senior tranches. This is intuitive as
increasing tail dependence increases the probability that lots of underlyings fail at the
same time, pushing the expected losses further up the tranches and away from the equity
tranche. The choice of copula significantly affects the rating of the tranches, particularly
for the more senior tranches. In the most extreme case causing the Mezzanine 1 tranche
to be downgraded down six ratings! Both Mezzanine 2 and 3 are downgraded from
investment grade to junk.

What instead of inputting chosen parameters we instead inferred them from market
prices? What effect does the copula choice make then? To investigate this the dependence
parameter that gave the same equity tranche premiums was found for each copula. As
shown by Burtschell et al.[3], this is mathematically valid as equity tranche premiums are
monotonic with respect to the copulas parameter. It also practically makes sense since
one can think of it as backing out base correlations. The resulting parameters are listed
in Table B

Using these parameters the CDO was again reevaluated for each copula. The results
are given in figure[2)and table[5] This time we see copula choice makes much less difference
to tranche default probabilities. It has no effect at all on ratings. These results are in
accordance with those of Burtschell et al.[3] who also found that Gaussian, Student-t and
Clayton copulas produce similar spreads for CDO tranches.

This implies that if one wishes to price a synthetic CDO tranche using base correlations
implied from the market, these three copulas will produce similar results.

10



Copula Parameter

Gaussian 30% 55% 80%
Student t - 15 | 25%  52%  79%
Student t - 10 | 23%  50% 78%
Student t - 5 | 15% 45% 5%

Clayton 0.20 046 1.00

Table 3: Copula parameters that match equity tranche premiums.

5 Correlation

We have seen that choice of copula does make a difference when pricing a CDO from
the ground up. But what about the other vital modelling choice when using copula
models, the input parameter? Pre-crisis papers criticising CDO modelling practices,
such as Adelson[I], often only discuss correlation, with no mention of copulas. As the
saying goes, “garbage in, garbage out”, so it is worth investigating the hypothesis that
the mispricing of CDOs was not due to the choice of copula but instead to the estimation
of correlation.

This is an especially compelling argument since the huge losses were in CDOs of
subprime ABSs. Whereas CDOs of corporate debt did suffer losses in the Crisis, they
were not catastrophic[12]. This implies that the fatal flaw may have been correlation
estimation.

Since ABSs were a relatively new security and they defaulted rarely (pre-crisis) there
was little econometric data available[11]. Thus credit rating agencies relied largely on
judgement-based ABS correlation estimates. When S&P introduced their Gaussian cop-
ula CDO rating system in 2001, CDO FEvaluator, ABSs from the same sector (e.g. based
on subprime mortgages) were estimated to have the same correlation (30%) as was used
for corporations in the same industry[I2]. This was actually seen as conservative at the
time. The average correlation between the losses on pairs of pools of American residential
mortgages between 1995 and 2002 was reported as only 0.06[11].

However, this was during a prolonged bull market in the U.S. housing market, marked
with low default rates. Additionally the U.S.A. had not had a widespread crash in the
housing market since the Great Depression, thus the risk in mortgages had mostly been
idiosyncratic rather than systemic. This allows the diversification in an ABS to be a
“free lunch”. But as Mackenzie remarks in his paper[I1], “the lunch was frequently being
eaten twice”. By this he means that ABSs diversified away idiosyncratic (particularly
geographic) risk and then CDOs diversified away ABS risk due to (assumed) modest
correlation between them.

This double luncheoning was allowed by the credit rating agencies as, due to the
copula approach, the ABSs and the CDO were normally rated separately by different
teams. This separation of labour meant that holistic assessments were not made. This
proved fatal as ABSs started being packed with sub-prime mortgages. ABS risk became

11



more and more systemic as these mortgages were all exposed to the same factors: a
fall in house prices, a rise in interest rates, or contractual (e.g. teaser rates expiring).
Therefore the correlation between ABSs increased and the ratings given to CDOs for
their diversification were no longer justifiable.

Mackenzie reported that in 2006, CDO specialists at a CRA actually performed a
complete drilldown assessment of an ABS CDO as an intellectual curiosity[11]. Using
only Vasicek’s model to pools of mortgages they calculated the correlation between each
pair of ABS tranches. They discovered the correlation to be in the region of 80%, much
higher than the “conservative” 30% used for ratings. Unfortunately for organisational
reasons this did not affect the CRAs methodologyf]

So how would our ABS CDO example perform under more conservative (and poten-
tially more accurate) correlation assumptions? The CDO was reevaluated for correlations
of 30%, 42.5%, 55%, 67.5% and 80%. The results are displayed in Table [6] and Figure [3|
From this we can see that increasing the correlation affects the tranche ratings and proba-
bility of default significantly. With a correlation of 80%), as recommended by the anecdote
above, the probability of default for the senior tranche is over eighty times higher and it
has dropped nine ratings. Naturally by increasing dependence we see similar behaviour
as we saw by increasing the tail dependence by changing copula, with the equity tranche
becoming safer and the senior less so.

These results imply that it is vital to estimate the magnitude of correlation correctly,
or at the very least use high dependence when stress testing CDOs.

6 Conclusion

There are flaws with the copula approach to modelling CDOﬂ, such as the correlation
skew and the separate calibration of marginal distributions and copula parameter. But
one of the largest flaws is that there is no systematic method to choose which copula
to use. As shown in Section 4, this choice is influential particularly for Credit Rating
Agencies.

However, in the Crisis the probability of default predicted by the CRAs were wrong by
a factor of a hundred[12]. Changing copula did not produce the magnitude of change in
default probability to match this. Thus even if CRAs had adopted an alternative copula,
the Crisis would most likely not have been averted.

It resulted that dependence, in the form of correlation choice, impacted the probability
of default for tranches even more than copula choice. The changes in probability of default
here were more of the Crisis triggering magnitude.

In both cases the gaming of tranche sizes proved to make the ratings very unstable.
That is, other than for the Mezzanine 4 tranche, curiously, which remained quite stable

12Mackenzie also mentions that in 2006 Goldman Sachs also started modelling ABS CDOs with a
drilldown approach, which may have influenced their crucial decision to liquidate or hedge its mortgage-
related positions|TT].

13See [14] for a good summary.
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for all calculations. It would be interesting to investigate whether it is possible instead
to game tranche sizes for stability to reduce model risk for a synthetic CDO tranche.

These results support the arguments of Donnelly & Embrechts[4] and Mackenzie &
Spears[12], that Li and the Gaussian copula were not to blame for the Crisis. As an
interviewee in Mackenzie & Spears[12] said, “the base corr guys [users of Gaussian copula
base correlation models| are still standing...I am not sure that there was anything in
terms of an Armageddon for the models”. Instead it appears that the gaming of the
model beyond its original assumptions, the outsourcing of CDO risk management to
credit rating agencies, and the failure to perform holistic risk assessment seem far more
to blame.

The Gaussian copula continues to be used in practice, although it is often now ex-
tended to compensate for some of its deficiencies. This is done, for example, by incorpo-
rating stochastic correlation[5], time-varying copulas[I3], or dynamic recovery rates[3].

The simulation results in this paper show that it is more important to focus on
parameter estimation than copula choice. This leads to the observation that when it
comes to mathematical financial modelling: in order to avoid a disaster, the cooking is
more important than the recipe.
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Appendix A Simulation results

The probabilities of default and Fitch ratings for tranches of the stylised CDO obtained

via

simulations run for:
e Different copulas and the same Kendall’s tau
e Different copulas and the same equity tranche premium

e The Gaussian copulas and different correlation parameter value
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Figure 1: Probability of default for each tranche of the example CDO, as calculated by
different copulas with the same Kendall’s tau.
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Figure 2: Probability of default for each tranche of the example CDO, as calculated using
different copulas with the same equity tranche premium.
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Figure 3: Probability of default for each tranche of the example CDO, as calculated by
the Gaussian copulas with varying correlation.
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Tranche Gaussian Student-t 15 | Student-t 10 | Student-t 5 | Clayton
Senior 0.0004 AAA | 0.0009 AA+ 0.0013 AA+ 0.0025 AA 0.0082 A-
Mezzanine 1 | 0.0029 AA- | 0.0047 A+ 0.0058 A 0.0094 BBB+ | 0.0211 BBB-
Mezzanine 2 | 0.0080 A- 0.0127 BBB 0.0136 BBB 0.0205 BBB- | 0.0369 BB+
Mezzanine 3 | 0.0297 BBB- | 0.0382 BB+ 0.0397 BB+ 0.0508 BB+ | 0.0704 BB
Mezzanine 4 | 0.1200 BB- | 0.1286 B+ 0.1296 B+ 0.1372 B+ 0.1467 B+
Equity 0.8566 NA 0.8191 NA 0.7991 NA 0.7409 NA 0.6056 NA

Table 4: Probability of default and Fitch rating of tranches calculated using different
copulas with the same Kendall’s tau.

Tranche Gaussian Student-t 15 | Student-t 10 | Student-t 5 | Clayton
Senior 0.0004 AAA | 0.0004 AAA 0.0003 AAA 0.0002 AAA | 0.0003 AAA
Mezzanine 1 | 0.0029 AA- | 0.0027 AA- 0.0026 AA- 0.0022 AA- 0.0026 AA-
Mezzanine 2 | 0.0080 A- 0.0080 A- 0.0086 A- 0.0074 A- 0.0081 A-
Mezzanine 3 | 0.0297 BBB- | 0.0295 BBB- | 0.0301 BBB- | 0.0295 BBB- | 0.0299 BBB-
Mezzanine 4 | 0.1200 BB- | 0.1197 BB- 0.1211 BB- 0.1247 BB- 0.1230 BB-
Equity 0.8566 NA 0.8580 NA 0.8504 NA 0.8385 NA 0.8482 NA

Table 5: Probability of default and Fitch rating of tranches calculated using different
copulas with the same equity tranche premium.

Tranche p = 30% p = 42.5% p = 55% p = 67.5% p = 80%
Senior 0.0004 AAA | 0.0030 AA- 0.0093 BBB+ | 0.0192 BBB- | 0.0335 BBB-
Mezzanine 1 | 0.0029 AA- | 0.0097 BBB+ | 0.0214 BBB- | 0.0345 BBB- | 0.0503 BB+
Mezzanine 2 | 0.0080 A- 0.0210 BBB- | 0.0366 BB+ 0.0505 BB+ | 0.0646 BB
Mezzanine 3 | 0.0297 BBB- | 0.0497 BB+ 0.0674 BB 0.0797 BB 0.0883 BB-
Mezzanine 4 | 0.1200 BB- 0.1350 B+ 0.1421 B+ 0.1391 B+ 0.1316 B+
Equity 0.8566 NA 0.7503 NA 0.6341 NA 0.5101 NA 0.3796 NA

Table 6: Probability of default and Fitch rating of tranches calculated using the Gaussian
copula with different correlation.
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Appendix B MATLAB Code

function results = CDOmonte(n,p,cop,para,s,delta ,tranches T)
% Function to run Monte Carlo simulations of CDO tranche prices

%

% Inputs: cop — desired copula:

% 0: Gaussian, 1: t 15 degree freedom,

% 2: t 10 degree freedom, 3: t 5 degree freedom,

% 4: Clayton

% : para — copula parameter

% : n — number of underlyings. Assume each of notional 1
% : p — number of Monte Carlo runs

% : s — spread of underlying, constant & homogeneous

% : delta — recovery rate. Assume constant & homogeneous
% : tranches — attachment of tranche points incl. 0 & 1
% : T — length of contract in years

%

% Output: results — array containing for each tranche:

% detachment point, prob of default, std of pd,

% expected payoff, std of payoff

%

% Number of tranches
n_tran = length(tranches) — 1;

% Generate p sets of default times for each underlying
tau = GenerateDefaultTimes (n,p,cop,para,s,delta);

% Number of defaults during life of contract for each run
defaults = sum((tau<=l) ,2);

% Since each underlying has notional of 1, total underlying
notional is n
notional = n;

% Results for total CDO for each run
cdo_loss = (1—delta)xdefaults;

cdo_payoff = notional — cdo_loss;

% Initialise results arrays

results = zeros(l4+n_tran ,4);
cdo_tran_default = zeros(p, n_tran);
cdo_tran_payoff = zeros(p, n_tran);
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cdo_tran_payoff_fraction = zeros(p, n_tran);

% Functions for calculating tranche payoffs

absoluteLoss = @(loss, K1, K2) (K2 — K1) — (max(loss — K1, 0) —
max(loss — K2, 0));

fractionLoss = @(payoff, K1, K2) payoff / (K2 — Kl);

% Actually calculate payoffs

for

end

i=l:n_tran

% Tranche defaults if any losses at all

cdo_tran_default (:,i) = (cdo_loss > (tranches(i) * notional)
) ;

% Actual payoff of tranche

cdo_tran_payoff(:,i) = absoluteLoss(cdo_loss, tranches(i)x*
notional , tranches(i+1)*notional);

% Tranche payoff as fraction of tranche

cdo_tran_payoff_fraction (:,i) = fractionLoss(cdo_tran_payoff
(:,i), tranches(i)xnotional , tranches(i+1)*notional);

% Detachment point

results(1+i, 1) = tranches(l+i) % notional;

% Mean number of defaults across all runs gives prob of
default

results(1+i, 2) = mean(cdo_tran_default (:,i));

% Std of pd

results(l+i, 3) = std(cdo_-tran_default (:,1));

% Expected payoff

results(1+i, 4) = mean(cdo_tran_payoff_fraction (:,1));

% Std of payoff

results(1+i, 5) = std(cdo_tran_payoff_fraction (:,1));

% Expected payoff for total CDO
results (1,1) = NaN;
% Don’t care about ’default’ of whole CDO as almost certain

results (1,2) = NaN;

results (1,3) = NaN;

results (1,4) = mean(cdo_payoff) / notional;
results (1,5) = std(cdo_payoff / notional);
end
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function tau = GenerateDefaultTimes(n,p,cop,para,s,delta)
% Function to generate default times according to desired copula
Assumes homogeneous underlying spread and correlation.

%
%
%0
%
%
%
%
%0
%
%
%
%
%0
%0
%

Inputs:

Output:

cop — desired copula:
0: Gaussian, 1: t 15 degree freedom,
2: t 10 degree freedom, 3: t 5 degree freedom,
4: Clayton

para — copula parameter

n — number of default times
p — number of samples

s — spread of underlying
delta — recovery rate

tau — a p x n matrix containing p columns of

n default times

% If not Clayton copula, parameter is correlation and inbuilt

% MATLAB function used

if cop < 4

% Generate n x n correlation matrix
r = para x ones(n) + diag(ones(1,n)*(l1—para));

% If Gaussian

if cop =0
fprintf( Copula: Gaussian\n’);
U = copularnd (' Gaussian’,r ,p);

else

% Student—t copula in descending order of degrees of

freedom

fprintf(’Copula: student—t with %d degrees of freedom\n’

,(4—cop) *5)

U = copularnd ('t ,r,(4—cop)*5,p);

end

elseif cop = 4

% Using algorithm from p98 of Structure Credit Portfolio
Analysis ,

% Baskets & CDOS

fprintf(’Copula: Clayton\n")

% Generate uniformly distributed variables
U = rand(p,n);
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% Generate gamma variable
X = gamrnd(1/para,1,p,1);
% Divide element by element
v = bsxfun(@rdivide, —log(U) ,X);
% Convert to uniformly distributed
U= (14v)."(=1/para);

end

% Hazard rate

lambda = s / (1 — delta);

% Convert uniformly distributed results into equivalent default
times
tau = —(1/lambda) * log(ones(p,n)-U) ;

end

function prem = tranchePremium (n,p,tau,delta ,K1,K2,T)
% Function to calculate fair premium for CDO tranche

%

% Inputs: n — number of underlyings. Assume each of notional 1.
% : p — number of Monte Carlo runs

% : tau — n x p matrix of default times

% : delta — recovery rate. Assume constant & homogeneous
% : K1 — tranche lower attachment point

% : K2 — tranche upper attachment point

% : T — length of contract in years

%

% Output: prem — fair premium in bps per year

%

% How many coupons (quarters) need to be paid?
q=4 *x T,

% Calculate total loss at t
L = zeros(p,q);
Ltr = zeros(p,q);

% Find number of defaults up until each quarter
for i = 1: q
L(:,i) = (1—delta) * sum((tau<=ix*0.25) ,2);

end

% If senior tranche reduce notional on default
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% Assume if detachment point above maximum loss K2 = 100%
if K2>n % (1 — delta)
Notional = 100 — L % delta / (1 — delta);
for i = 1: q
Ltr(:,1) = bsxfun(@rdivide, max(L(:,i) — K1,0) ,Notional
(:,1)—K1);
end
else
Ltr = (max(L — K1,0) — max(L — K2,0))/(K2-K1);
end

% Pay spread on average tranche notional since previous coupon
date

premleg = (1 — Ltr(:,1)/2);

for i = 2: 20
premleg = premleg + (1 — (Ltr(:,i—1) + Ltr(:,1))/2);

end

% Find expectation and multiply by year fraction between
payments (quarter)
premleg = 0.25 % mean(premleg);

% 1f senior tranche recalculate actual tranche loss
if K2>n % (1 — delta)

Ltr = (max(L — K1,0) — max(L — K2,0))/(K2-K1);
end

% Calculate time—zero value of protection leg
protleg = mean(Ltr(:,20));

% Infer fair premium to have paid on premium leg
prem = 10000 % protleg / premleg;
% Only round if more than 2 s.f.
if prem >= 10
prem = round (prem):;
end
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