Warm-up

1. Sketch $y=a x^{2}+b x+c$ in each of the following eight cases;

- $a>0, b>0, c>0$. There could be 0 or 1 or 2 roots.

- $a>0, b>0, c<0$. Must have two roots.

- $a>0, b<0, c>0$. There could be 0 or 1 or 2 roots.

- $a>0, b<0, c<0$. Must have two roots.

- $a<0, b>0, c>0$. Must have two roots.

- $a<0, b>0, c<0$. There could be 0 or 1 or 2 roots.

- $a<0, b<0, c>0$. Must have two roots.

- $a<0, b<0, c<0$. There could be 0 or 1 or 2 roots.

2. Let $f(x)=x^{2}+4 x+3$. Sketch the graph of $y=f(x+2)$.

- Note that $x^{2}+4 x+3=(x+3)(x+1)$. The graph of $y=f(x+2)$ is the graph of $y=f(x)$ after it has been translated two units to the left.

3. Sketch the graph of $y=3 f(2 x)$.

- The graph is "squashed" by a factor of 2 parallel to the x-axis, then "stretched" by a factor of 3 parallel to the y-axis.

4. Sketch the graph of $y=2 f(3 x)$. Is that the same as the previous graph?

- No. For example, the roots aren't in the same places. We could also check that $3\left((2 x)^{2}+4(2 x)+3\right)$ isn't the same thing as $2\left((3 x)^{2}+4(3 x)+3\right)$, but that feels like a lot of work.

5. Let $f(x)=x^{3}-x$. Sketch the graph of $y=2 f(x+1)$.

$$
f(x)=x^{3}-x \quad, \quad 2 f(x+1)
$$

6. Sketch the graph of $y=2 f(x)+1$. Is that the same as the previous graph?

- No. We could compare, for example, the values of $2 f(x+1)$ and $2 f(x)+1$ when $x=0$. Those are $2 f(1)$ and $2 f(0)+1$, which are 0 and 1 , so not the same. Note that even if these values were the same, then the graphs might still be different (this is just a spot-check at $x=0$).

7. Sketch the graph of $y=\log _{2} x$. Sketch the graph of $y=\log _{2}\left(x^{2}\right)$.

- Note that $\log _{2}\left(x^{2}\right)=2 \log _{2} x$

8. Sketch the graph of $y=2^{x}$. Sketch the graph of $y=\left(\frac{1}{3}\right)^{x}$.

9. Sketch the graph of $y=x \sqrt{2}$. Does the graph go through the point $\left(\frac{p}{q}, \frac{r}{s}\right)$ for any positive whole numbers p, q, r, s ?

- Let's suppose that $\frac{r}{s}=\sqrt{2} \times \frac{p}{q}$. Then we would have $\sqrt{2}=\frac{q r}{p s}$. But $\sqrt{2}$ is irrational, so we can't have p, q, r, s all be positive whole numbers, or we would have written $\sqrt{2}$ as a fraction.

10. Sketch the graph of $y=\cos 2 x$. Sketch the graph of $y=\frac{1}{2}+\frac{1}{2} \cos 2 x$.

11. Sketch all the points (x, y) that satisfy $x+y=3$.

- That's the straight line $y=3-x$.

12. Sketch all the points (x, y) that satisfy $y^{2}=9 x$.

- We could have $y=3 \sqrt{x}$ or $y=-3 \sqrt{x}$.

- Alternatively, if you switch x and y you get a parabola. Switching x and y is a reflection in the line $y=x$ (not on the list of transformations on the MAT syllabus, but you might have come across it).

13. Sketch all the points (x, y) that satisfy $x^{2}=4-y^{2}$.

- That's the circle $x^{2}+y^{2}=4$.

- Note that for these last two, there is no function $y=f(x)$ that covers all of the points in the sketch, because there are some values of x where there are two or more points that satisfy the equation. A classic question that's like this is "sketch all the points (x, y) that satisfy $\cos (x)=\cos (y)$ ".

MAT questions

MAT 2015 Q1I

- First draw a rough sketch. When $x>0$ all the values are positive. When $x<0$ two of them are negative and one is positive. All the graphs go through $(0,0)$ and $(1,1)$ and two of them go through $(-1,-1)$. There are no other points of intersection.
- Now count the regions; there are some big regions like the one above all the graphs and the region below all the graphs. Over in $x<0$ there are three more regions. For $x>0$ it's a bit more complicated; we've counted the region below all three graphs and the region above all three graphs, but there are four more regions in between the graphs (two in $0<x<1$ and then two regions in $x>1$).
- Overall that adds up to nine regions.
- The answer is (d).

MAT 2014 Q1B

- The function inside the brackets is $(x-1)^{2}+1$. That's always positive (so this logarithm is always defined), and in fact it's always bigger or equal to one, so this logarithm will only give us positive values.
- The particular value $x=1$ is interesting, because that's the location of the minimum of the quadratic inside the brackets. At that value of x, we have $y=\log _{10} 1=0$. So the graph includes the point $(1,0)$. Only one of the options does that.
- The answer is (e).

MAT 2017 Q1D

- First, let's look at the main features of $f(x)$. It's got very large absolute value near $x=1$. For large x (either positive or negative) it looks a bit like the straight line $y=-x$ to me.
- Now let's think about $y=f(-x)$. That would be the result of a reflection in the y-axis, so we would get a graph with big values near $x=-1$ and which looks like $y=x$ for large x.
- Now think about $y=-f(-x)$. That would be a reflection of the previous graph in the x-axis, so we would get a graph with big values near $x=-1$ and which looks like $y=-x$ for large x.
- Only one of the graphs does that.
- The answer is (c).

MAT 2013 Q3

(i) We've got to be careful, because $f(x)$ changes sign in between 0 and 2 . We want the integral from 0 to k, then we want to subtract the integral from k to 2 because the function is negative in that region (and areas are positive). So we want

$$
A(k)=\int_{0}^{k} f(x) \mathrm{d} x-\int_{k}^{2} f(x) \mathrm{d} x .
$$

(ii) We know that $f_{k}(x)$ is a cubic polynomial, but it's a little bit complicated because that polynomial involves k. If we multiply out the middle bracket of $f_{k}(x)$, then we get

$$
f_{k}(x)=x^{2}(x-2)-k x(x-2),
$$

so the integral

$$
\int f(x) \mathrm{d} x=\int x^{2}(x-2) \mathrm{d} x-k \int x(x-2) \mathrm{d} x
$$

That's removed k from the function inside each integral. When we do these integrals we'll get a degree-4 polynomial that doesn't depend on k and degree- 3 polynomial that's multiplied by k. We have two definite integrals, each of which involves plugging k into those polynomials. So we we'll end up with a degree- 4 polynomial in k and a degree- 3 polynomial in k that's multiplied by k. Overall, that's a polynomial in k of degree at most 4 ("at most" because the coefficient of k^{4} might cancel between the two terms).
(iii) If we replace x with $1+t$ then we get $f_{k}(1+t)=(1+t)(1+t-k)(1+t-2)$. Now I've got to really concentrate to work out $-f_{2-k}(1-t)$. I need to take $f_{k}(x)=x(x-k)(x-2)$ and replace every x with $1-t$ and replace every k with a $2-k$. And remember the minus sign out the front. I get

$$
-f_{2-k}(1-t)=(1-t)(1-t-(2-k))(1-t-2)=(1-t)(k-1-t)(t+1)
$$

where I've done some tidying up to get the last expression. That does match the expression for $f_{k}(1+t)$.
(iv) Let's interpret the previous result in terms of transformations. On the left, we've got the graph of $f_{k}(t)$, but it's been translated to the left by a distance of 1 . On the right, we've got the graph of $f_{2-k}(t)$, but... it's had the t switched to a $1-t$. What's that? It's what would happen if we replaced t with $1+t$ and then replaced t in that new expression with $-t$. So that's a translation by one unit to the left and then a reflection in the y-axis. We actually have $-f_{2-k}(1-t)$ with a minus sign out the front, which represents a reflection in the x-axis.
So putting this together, if we take the graphs of $f_{k}(t)$ and $f_{2-k}(t)$ and translate them both one unit to the left, then we reflect the second graph in the y-axis and in the x-axis, we get the same graph (those things are equal by the previous question part). Said differently without the translation, $f_{2-k}(t)$ is what we get if we reflect $f_{k}(t)$ in the line $x=1$ and in then in the x-axis.

Those reflections don't affect the area, so $A(k)$, the area for $f_{k}(x)$, is the same as the area $A(2-k)$ for $f_{2-k}(x)$.
(v) We know that $A(k)$ is a degree-4 polynomial. We can write it as $A(k)=a(k-1)^{4}+$ $d(k-1)^{3}+b(k-1)^{2}+f(k-1)+c$, where I've chosen unusual names for the coefficients so that it matches with the answer I'm working towards. We just need to prove that $d=0$ and $f=0$. We've got the fact $A(2-k)=A(k)$. If we plug in $2-k$ into our expression for $A(k)$ and equate coefficients, we get $d=0$ and $f=0$. That leaves the expression in the question.

Reflection

- In the long question we thought about some reflections. In general, $f(2-x)$ is the reflection of $f(x)$ in the line $x=1$ (note; not $x=2$). We can do something similar for reflections in other lines $x=c$.
- In one of the warm-up problems we thought about reflecting in the line $y=x$ by switching x with y. That's a bit harder to imagine. Reflecting in the line $y=m x$ is very fiddly; there's an equation for it, but you don't need to know it for MAT.

