Warm-up

1. Simplify $\left(2^{3}\right)^{4}$ and $\left(2^{4}\right)^{3}$ and $2^{4} 2^{3}$ and $2^{3} 2^{4}$.

- $\left(2^{3}\right)^{4}=2^{12} .\left(2^{4}\right)^{3}=2^{12} \cdot 2^{4} 2^{3}=2^{7} \cdot 2^{3} 2^{4}=2^{7}$.

2. Solve $x^{-2}+4 x^{-1}+3=0$.

- This is a quadratic for $\frac{1}{x}$ with solutions $\frac{1}{x}=-1$ or $\frac{1}{x}=-3$.
- So $x=-1$ or $x=-\frac{1}{3}$.
- Alternatively, we could multiply both sides by x^{2} and solve the quadratic that we get.

3. Solve $\log _{x}\left(x^{2}\right)=x^{3}$.

- The left-hand side is just 2 so we want $2=x^{3}$.
- So $x=\sqrt[3]{2}$.

4. Solve $\log _{x+5}(6 x+22)=2$.

- Take $(x+5)$ to the power of each side to get $6 x+22=(x+5)^{2}$.
- Expand the square and rearrange for $x^{2}+4 x+3=0$.
- The solutions are $x=-1$ or $x=-3$.
- Check these solutions; $\log _{4}(16)=2$ and $\log _{2}(4)=2$.

5. Simplify $\log _{10} 3+\log _{10} 4$ into a single term.

- This is $\log _{10} 12$.

6. If we write $a=\ln 2$ and $b=\ln 5$, then write the following in terms of a and b.

$$
\ln 1024, \quad \ln 40, \quad \ln \sqrt{\frac{2}{5}}, \quad \ln \frac{1}{10}, \quad \ln 1.024
$$

- $\ln 1024=\ln \left(2^{10}\right)=10 \ln 2=10 a$.
- $\ln 40=\ln 8+\ln 5=3 a+b$.
- $\ln \sqrt{2 / 5}=\frac{1}{2} \ln 2 / 5=\frac{1}{2}(a-b)$.
- $\ln (1 / 10)=-\ln 10=-\ln 2-\ln 5=-a-b$.
- $\ln 1.024=\ln 1024+\ln 1 / 1000=10 a+3(-a-b)=7 a-3 b$.
- There are other solutions, partly because $b=a \times \log _{2} 5$.

7. Expand $\left(e^{x}+e^{-x}\right)\left(e^{y}-e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}+e^{-y}\right)$.

- $e^{x+y}+e^{y-x}-e^{x-y}-e^{-x-y}+e^{x+y}-e^{y-x}+e^{x-y}-e^{-x-y}$.
- That's $2 e^{x+y}-2 e^{-x-y}$.

8. Expand $\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}-e^{-y}\right)$.

- $e^{x+y}+e^{y-x}+e^{x-y}+e^{-x-y}+e^{x+y}-e^{y-x}-e^{x-y}+e^{-x-y}$.
- That's $2 e^{x+y}+2 e^{-x-y}$.

9. Solve $2^{x}=3$. Solve $0.5^{x}=3$. Solve $4^{x}=3$.

- $2^{x}=3$ is what it means for x to be $\log _{2} 3$.
- If $0.5^{x}=3$ then $2^{-x}=3$ so $x=-\log _{2} 3$.

Alternatively, just write down $x=\log _{0.5} 3$.

- If $4^{x}=3$ then $2^{2 x}=3$ so $x=\frac{1}{2} \log _{2} 3$.

Alternatively, just write down $x=\log _{4} 3$.
10. For which values of x (if any) does $1^{x}=1$? For which values of x (if any) does $1^{x}=3$?

- $1^{x}=1$ is true for all real x.
- 1^{x} is never equal to 3 for real x.

11. For what values of b (if any) does $0^{b}=0$? For what values of a (if any) does $a^{0}=0$?

- $0^{b}=0$ for any real $b>0$.
- a^{0} is never 0 .

MAT questions

MAT 2015 Q1H

- That's a very strange logarithm. The only way I can think of to get rid of it is to write

$$
4-5 x^{2}-6 x^{3}=\left(x^{2}+2\right)^{2}
$$

- Now this is a polynomial question (but we should be careful to go back and check our solutions in the original equation).
- The polynomial rearranges to $x^{4}+6 x^{3}+9 x^{2}=0$.
- Either $x=0$ or $x^{2}+6 x+9=0$ which has a repeated root $x=-3$.
- Let's quickly check these solutions $\log _{2}(4)=2$ and $\log _{11}(4-45+162)=\log _{11} 121=2$.
- There are two distinct solutions.
- The answer is (c).

MAT 2017 Q1I

- Let's simplify each term. $\log _{b}\left(\left(b^{x}\right)^{x}\right)=x \log _{b}\left(b^{x}\right)=x^{2} \log _{b} b=x^{2}$.
- Also, $\log _{a}\left(\frac{c^{x}}{b^{x}}\right)=x \log _{a}(c / b)=x\left(\log _{a} c-\log _{a} b\right)$.
- And the last term is $-\log _{a} b \log _{a} c$.
- So this is a quadratic. Even better, we can factorise it

$$
x^{2}+\left(\log _{a} c-\log _{a} b\right) x-\log _{a} b \log _{a} c=\left(x-\log _{a} b\right)\left(x+\log _{a} c\right) .
$$

- Those roots are the same number if $\log _{a} b=-\log a_{c}$, which happens when $c=1 / b$.
- The answer is (d).

MAT 2013 Q1F

- The only way that we can have $\log _{b} a=2$ is if $a=b^{2}$. Similarly, we must have $c-3=b^{3}$ and $c+5=a^{2}$.
- These simultaneous equations aren't linear, but we can do our best to solve them.
- For example, we must have $c+5=b^{4}$ and $c-3=b^{3}$, so $b^{4}-b^{3}=8$. How many solutions does that have?
- Let's sketch $b^{3}(b-1)$ for $b>0$ (since we're told that b is positive).

This is negative in between 0 and 1 and then after that it's positive and increases (because $(b-1)$ and b^{3} are both increasing functions). It can only have one solution for $b^{3}(b-1)=8$. In fact, that solution is $b=2$, but what we're interested in for this question is that that's a unique solution.

- Now look back at the other equations. We've got $a=b^{2}=4$ and $c=3+b^{3}=11$. Let's check the original logarithms.

$$
\log _{2} 4=2, \quad \log _{2}(11-3)=3, \quad \log _{4}(11+5)=2
$$

- These equations specify a uniquely (it's 4).
- The answer is (a).

MAT 2013 Q1J

- This is some new notation. It appears in the question in the expression $\left[2^{x}\right]$, which mean the largest integer less than or equal to 2^{x}.
- When $x=0$, the term $\left[2^{x}\right]$ is 1 . It stays at 1 until we get to a point with $2^{x}=2$, because then the largest integer less than or equal to 2^{x} will be 2 instead. That happens when $x=1$. Then 2^{x} keeps increasing, but the largest integer under it is still 2 , until we get to a point with $2^{x}=3$.
- Time for a logarithm; that happens when $x=\log _{2} 3$. There's a pattern here; the function takes each value between 1 and 2^{n-1} (it doesn't quite get to 2^{n} until right at the end of the interval when $x=n$).

- When we integrate this function from 0 to n, we're calculating the area under the graph. That's made of a series of rectangles, and the sum of the areas of those rectangles is $1+\left(\log _{2} 3-1\right) \times 2+\left(\log _{2} 4-\log _{2} 3\right) \times 3+\left(\log _{2} 5-\log _{2} 4\right) \times 4+\cdots+\left(n-\log _{2}\left(2^{n}-1\right)\right) \times\left(2^{n}-1\right)$
- There's a pattern here (add some $\log _{2} k$ then subtract slightly more $\log _{2} k$) and it simplifies to

$$
-1-\log _{2} 3-\log _{2} 4-\cdots-\log _{2}\left(2^{n}-1\right)+n\left(2^{n}-1\right)
$$

- That's $-\log _{2}\left(\left(2^{n}-1\right)!\right)+n\left(2^{n}-1\right)$ which is not quite one of the options.
- But $\log _{2} 2^{n}=n$ so we can re-write this as $-\log _{2}\left(\left(2^{n}\right)!\right)+n 2^{n}$.
- The answer is (b).

Reflection

- I really like logarithms, but in lots of these questions getting rid of the logarithm is a good thing to do!
- In that last question, we simplified things by using laws of logarithms and also by using the k ! notation for $k \times(k-1) \times \cdots \times 2 \times 1$, which is a very compact way to write that product.

