Shock reflection problem: existence and stability of global solutions

Mikhail Feldman, University of Wisconsin-Madison

Based on works with
Gui-Qiang Chen (Oxford),
Wei Xiang(Hong Kong), and Myoungjean Bae(KAIST)

July 22, 2022

Shock reflection by a wedge: Regular reflection

Shock reflection by a wedge: Mach reflection

Shock reflection by a wedge: Irregular Mach reflection.

Self-similar flow: $(\vec{u}, p, \rho)(x, t) = (\vec{u}, p, \rho)(\frac{x}{t})$.

Shock reflection

First described by E. Mach 1878. Reflection patterns: Regular reflection, Mach reflection.

J. von Neumann, 1940s: on transition between patterns

Later works: experimental, computational. Asymptotic analysis: Lighthill, Keller, Blank, Hunter, Harabetian, Morawetz.

Reference: book by J. Glimm and A. Majda, survey by D. Serre.

Analysis: Special models (Transonic small disturbance eq., pressure-gradient system, nonlinear wave eq.): Gamba, Rosales, Tabak, Canic, Keyfitz, Kim, Lieberman, Y.Zheng, G.-Q. Chen-W. Xiang.

Local existence results: S.-X. Chen.

More recent results for potential flow:

Existence of global shock reflection solutions for potential flow: G.-Q.Chen-F., Elling

The complete up-to-date results on existence of regular reflection solutions and their proofs are presented in the monograph "The Mathematics of Shock Reflection-Diffraction and von Neumann conjectures" by G.-Q.Chen-F, 2018.

Other self-similar shock reflection problems:

Prandtl Reflection: Elling-Liu, Bae-G.-Q.Chen-F

Shock interactions/reflection for Chaplygin gas: D. Serre

Properties of solutions of self-similar reflection problems: Bae-G.-Q.Chen-F, G.-Q. Chen-F.-W. Xiang, Elling.

Stability and uniqueness of regular reflection solutions. G.-Q. Chen-F.-W. Xiang.

Shock reflection as a Riemann problem in domain with boundary, with slip boundary conditions

Initial data: Constant (uniform) states (0) and (1): State (0): velocity $\vec{u}_0=(0,0)$, density ρ_0 , pressure p_0 . State (1): velocity $\vec{u}_1=(u_1,0)$, density ρ_1 , pressure p_1 .

t>0: Self-similar solution: $(\vec{u},\rho,p)=(\vec{u},\rho,p)(\vec{\xi})$, where $\vec{\xi}=\frac{\vec{x}}{2}$.

Equations of gas dynamics

Isentropic Compressible Euler system:

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho \, \vec{u}) &= 0, \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \, \vec{u} \otimes \vec{u}) + \nabla p &= 0, \end{split}$$

where:

$$\vec{u} = (u_1, u_2)$$
 – velocity

$$\rho$$
 – density

$$p = \rho^{\gamma}$$
 – pressure

$$\gamma > 1$$
 – adiabatic exponent (it is a given constant)

Potential flow: Conservation of mass, Bernoulli's law

$$\begin{split} &\rho_t + \operatorname{div}(\rho \, \nabla \Phi) = 0, \\ &\Phi_t + \frac{1}{2} |\nabla \Phi|^2 + \frac{\rho^{\gamma - 1} - 1}{\gamma - 1} = const \end{split}$$

where Φ – velocity potential: $\vec{u} = \nabla_x \Phi$.

Regular reflection in self-similar coordinates $\vec{\xi} = \frac{\vec{x}}{t}$

Given:

State (0): velocity $\vec{u}_0 = (0,0)$, density ρ_0 , pressure p_0 .

State (1): velocity $\vec{u}_1 = (u_1, 0)$, density ρ_1 , pressure p_1 .

Problem: Find self-similar solution: $(\vec{u}, \rho, p) = (\vec{u}, \rho, p)(\vec{\xi})$, where $\vec{\xi} = \frac{\vec{x}}{t}$, with asymptotic conditions at infinity determined by states (0) and (1), and satisfying $u \cdot \nu = 0$ on the boundary.

Self-similar potential flow

$$\Phi(\vec{x},t)=t\psi(\xi,\eta)\text{, }\rho(\vec{x},t)=\rho(\xi,\eta)\text{ with }(\xi,\eta)=\tfrac{\vec{x}}{t}\in\mathbb{R}^2.$$

Pseudo-potential: $\varphi = \psi - \frac{1}{2}(\xi^2 + \eta^2)$.

Equation for φ :

$$\begin{split} &\operatorname{div}\left(\rho(|\nabla\varphi|^2,\varphi)\nabla\varphi\right) + 2\rho(|\nabla\varphi|^2,\varphi) = 0,\\ &\operatorname{with} \quad \rho(|\nabla\varphi|^2,\varphi) = \big(\mathbf{K} - (\gamma-1)(\varphi + \frac{1}{2}|\nabla\varphi|^2)\big)^{\frac{1}{\gamma-1}}. \end{split}$$

Equation is of mixed type:

$$\begin{array}{ll} \textbf{elliptic} & |\nabla\varphi| < c(|\nabla\varphi|^2,\varphi,K), \\ \textbf{hyperbolic} & |\nabla\varphi| > c(|\nabla\varphi|^2,\varphi,K), \end{array}$$

where **speed of sound** c is:

$$c^{2} = \rho^{\gamma - 1} = K - (\gamma - 1)(\varphi + \frac{1}{2}|\nabla \varphi|^{2}).$$

Uniform states

Solutions with constant (physical) velocity (u, v):

$$\varphi(\xi,\eta) = -\frac{\xi^2 + \eta^2}{2} + u\xi + v\eta + const.$$

Any such function is a solution.

Also (from formula) density $\rho(\nabla \varphi, \varphi) = const$, thus sonic speed $c = \rho^{\frac{\gamma-1}{2}} = const$. Then ellipticity region

$$|\nabla \varphi(\xi,\eta)| = |(u,v) - (\xi,\eta)| < c$$

is circle, centered at (u, v), radius c.

Shocks, RH conditions, Entropy condition

Shocks are discontinuities in the pseudo-velocity $\nabla \varphi$:

if Ω^+ and $\Omega^-:=\Omega\setminus\overline{\Omega^+}$ are nonempty and open, and $S:=\partial\Omega^+\cap\Omega$ is a C^1 curve where $\nabla\varphi$ has a jump, then $\varphi\in C^1(\Omega^\pm\cup S)\cap C^2(\Omega^\pm)$ is a global weak solution of

$$\operatorname{div}\left(\rho(|\nabla \varphi|^{2}, \varphi) \nabla \varphi\right) + 2\rho(|\nabla \varphi|^{2}, \varphi) = 0,$$

with
$$\rho(|\nabla \varphi|^2, \varphi) = \left(\mathbf{K} - (\gamma - 1)(\varphi + \frac{1}{2}|\nabla \varphi|^2)\right)^{\frac{1}{\gamma - 1}}$$
.

in Ω if and only if φ satisfies potential flow equation in Ω^{\pm} and the Rankine-Hugoniot (RH) condition on S:

$$[\varphi]_S = 0,$$

 $[\rho(|\nabla \varphi|^2, \varphi)\nabla \varphi \cdot \nu]_S = 0,$

where $[\cdot]_S$ is jump across S.

Entropy Condition on S: density increases across S in the pseudo-flow direction.

Shock reflection as a free boundary problem

 $\varphi = \varphi_2$ on $P_1 P_4$ (and prove $D_{\nu} \varphi = D_{\nu} \varphi_2$ on $P_1 P_4$) $\varphi_{\nu}=0$ on Wedge P_3P_4 , Symmetry line P_2P_3 ,

Solve for: Free boundary P_1P_2 and function φ in Ω . Expect equation elliptic in Ω . 4D > 4B > 4B > 4B > B 900

 $\varphi = \varphi_1$

Regular reflection, state (2)

 $\varphi=$ pseudo-potential between the reflected shock and the wall $\varphi_1=$ pseudo-potential of state (1)

Denote $\nabla \phi(P_0) = (u_2, v_2)$, where $\phi = \varphi + \frac{\xi^2 + \eta^2}{2}$. Since $\varphi_{\nu} = 0$ on wedge, then $v_2 = u_2 \tan \theta_w$. Here θ_w is wedge angle.

Rankine-Hugoniot conditions at reflection point P_0 , for φ and φ_1 : algebraic equations for u_2 , $\varphi(P_0)$

Regular reflection, state (2), detachment angle

If solution exists: Let

$$\varphi_2(\xi, \eta) = -(\xi^2 + \eta^2)/2 + u_2\xi + v_2\eta + C,$$

where C determined by $\varphi_2(P_0) = \varphi_1(P_0)$.

Existence of state (2) is necessary condition for existence of regular reflection

Given γ, ρ_0, ρ_1 , there exists $\theta_{detach} \in (0, \frac{\pi}{2})$ such that:

- state (2) exists for $\theta_w \in (\theta_{detach}, \frac{\pi}{2})$, state (2) does not exist for $\theta_w \in (0, \theta_{detach})$.
- If φ_2 exist, then RH is satisfied along the line $S_1:=\{\varphi_1=\varphi_2\}.$

Weak and Strong State (2); Sonic angle

For each $\theta_w \in (\theta_{detach}, \frac{\pi}{2})$ there exists two possible States (2): weak and strong, with $\rho_2^{weak} < \rho_2^{strong}$. We always choose weak state (2). For strong state (2), existence of global regular reflection solution is not expected, Elling (2011) confirms that.

There exist $\theta_{sonic} \in (\theta_{detach}, \frac{\pi}{2})$ such that: State 2 is supersonic at P_0 for $\theta_w \in (\theta_{sonic}, \frac{\pi}{2})$. State 2 is subsonic at P_0 for $\theta_w \in (\theta_{detach}, \hat{\theta}_{sonic})$ where $\hat{\theta}_{sonic} \in (\theta_{detach}, \theta_{sonic}]$.

Von Neumann's conjectures on transition between different reflection patterns

Recall: sonic angle θ_{sonic} and detachment angle θ_{detach} satisfy $0 < \theta_{detach} < \theta_{sonic} < \frac{\pi}{2}$.

Sonic conjecture:

Regular reflection for $\theta_w \in (\theta_{sonic}, \frac{\pi}{2})$, Mach reflection for $\theta_w < \theta_{sonic}$.

Von Neumann's detachment conjecture:

Regular reflection for $\theta_w \in (\theta_{detach}, \frac{\pi}{2})$, Mach reflection for $\theta_w < \theta_{detach}$.

G.-Q. Chen - F.(2018): existence of regular reflection for $\theta_w \in (\theta_{detach}, \frac{\pi}{2})$ for potential flow equation if ρ_0 , ρ_1 satisfy $u_1 \le c_1$ (weaker incident shocks), and up to a critical angle otherwise. Given $\rho_0 > 0$ there exists $\rho_1^* > \rho_0$ such that $u_1 < c_1$ for $\rho_1 \in (\rho_0, \rho_1^*)$ and $u_1 > c_1$ for $\rho_1 > \rho_1^*$.

Structure: supersonic and subsonic regular reflections.

Supersonic regular reflection

Supersonic regular reflection: State (2) is supersonic at P_0 . Structure of solution φ :

- $ightharpoonup \varphi = \varphi_i \text{ in } \Omega_i, i=0,1,2.$
- $ightharpoonup \varphi \in C^1(\overline{P_0P_2P_3})$, in particular C^1 across sonic arc P_1P_4 .
- ▶ Shock P_0P_2 has flat part P_0P_1 , curved part P_1P_2 , and is C^1 across P_1 .
- ightharpoonup Equation is strictly elliptic in $\overline{\Omega} \setminus \overline{P_1P_4}$.

Subsonic regular reflection

Subsonic regular reflection: State (2) is subsonic at P_0 . Structure of solution φ :

- $ightharpoonup \varphi = \varphi_i \text{ in } \Omega_i, i=0,1.$
- $ightharpoonup \varphi \in C^1(\overline{P_0P_2P_3}).$
- $ightharpoonup \varphi = \varphi_2$, $D\varphi = D\varphi_2$ at P_0 .
- ▶ Shock P_0P_2 is C^1 .
- ▶ Equation is strictly elliptic in $\overline{\Omega} \setminus \{P_0\}$.

Attached shocks and cases $u_1 \leq c_1$, $u_1 > c_1$

Issue: experiments indicate that shock can hit the corner of wedge in certain cases:

For irregular Mach reflection see Fig. 238 (page 144) of M. Van Dyke, *An Album of Fluid Motion*, The Parabolic Press: Stanford, 1982.

Attached shocks and cases $u_1 \leq c_1$, $u_1 > c_1$

Independent parameters are densities $\rho_1 > \rho_0$. Velocity

$$u_1 = u_1(\rho_0, \rho_1)$$
. Also, $c_1 = \rho_1^{\gamma - 1}$.

For each $\rho_0>0$ there exists $\rho^*>\rho_0$ such that

$$u_1 < c_1$$
 if $\rho_1 \in (\rho_0, \rho^*)$ (weaker incident shock);

$$u_1 > c_1$$
 if $\rho_1 > \rho^*$. (stronger incident shock)

We show: attached shocks do not occur for regular reflection if $u_1 \le c_1$, since Sonic Circle of State (1) separates shock and P_3 :

Attached shocks and cases $u_1 \leq c_1$, $u_1 > c_1$

In the case $u_1 > c_1$, Sonic Circle of State (1) does not separate shock and P_3 :

Then we cannot exclude possibility of "attached shocks" with $P_2=P_3$. In case of Mach reflection, such configurations are obtained in experiments.

Existence of regular reflection solutions, case $u_1 \leq c_1$.

Theorem 1. (G.-Q. Chen-F.). If $\rho_1 > \rho_0 > 0$, $\gamma > 1$ satisfy $u_1 \leq c_1$, then a regular reflection solution φ exists for all wedge angles $\theta_w \in (\theta_{detach}, \frac{\pi}{2})$. The type of reflection (supersonic or subsonic) for each θ_w is determined by the type of State 2 at the reflection point P_0 for θ_w . Moreover, solution satisfies the following additional properties:

◆□▶ ◆昼▶ ◆昼▶ ◆ 昼 → かへ@

Properties of solution: supersonic case

- 1) Equation is elliptic for φ in Ω , ellipticity degenerates near sonic arc P_1P_4 .
- 2) φ is $C^{1,1}$ near and across the sonic arc P_1P_4 ;
- 3) Reflected shock is $C^{2,\beta}$, and a graph for a cone of directions $Con(\vec{e_{\eta}},\vec{e_{S_1}})$ between $\vec{e_{\eta}}=(0,1)$ and $\vec{e_{S_1}}=P_0P_1$;
- 4) $\varphi_2 \leq \varphi \leq \varphi_1$ in Ω , and $\partial_e(\varphi_1 \varphi) < 0$ if $e \in Con(\vec{e}_\eta, \vec{e}_{S_1})$.

Properties of solution: subsonic case

- 1) Equation is elliptic for φ in Ω , except for the sonic wedge angle (then ellipticity degenerates at P_0).
- 2) φ is $C^{2,\alpha}$ inside Ω , and $C^{1,\alpha}$ near and up to the reflection point P_0 , and $\varphi = \varphi_2$, $D\varphi = D\varphi_2$ at P_0 ;
- 3) Reflected shock is $C^{2,\alpha}$ away from P_0 and $C^{1,\alpha}$ up to P_0 , and a graph for a cone of directions $Con(\vec{e}_n,\vec{e}_{S_1})$;
- 4) $\varphi_2 \leq \varphi \leq \varphi_1$ in Ω , and $\partial_e(\varphi_1 \varphi) < 0$ if $e \in Con(\vec{e}_{\eta}, \vec{e}_{S_1})$.

Stability of normal reflection as $\theta_w \to \pi/2$

Figure: Normal reflection

Furthermore, the solutions $\varphi^{(\theta_w)}$ converge in $W_{loc}^{1,1}$ to the solution of the normal reflection as $\theta_w \to \pi/2$.

Existence of regular reflection solutions, case $u_1 > c_1$.

Theorem 1'. (G.-Q. Chen-F.). If $\rho_1>\rho_0>0,\ \gamma>1$ satisfy $u_1>c_1$, then a regular reflection solution φ described in Th. 1 exists for all wedge angles $\theta_w\in(\theta_c,\frac{\pi}{2})$, where

-either $\theta_c = \theta_{detach}$,

-or $\theta_c > \theta_{detach}$ and for $\theta_w = \theta_c$ there exists an attached weak solution of regular reflection problem, i.e. with $P_2 = P_3$.

Regularity in Ω near sonic arc (supersonic case)

Theorem 3 (M. Bae-G.-Q. Chen-F.). For any admissible solution φ of supersonic reflection structure:

- 1) For every P in sonic arc $(P_1P_4]$ (i.e. excluding P_1) $\varphi \in C^{2,\alpha}(\overline{\Omega} \cap B_R(P))$, for some small R>0, any $\alpha \in (0,1)$.
- 2) $D^2\varphi$ has a jump across sonic arc P_1P_4 :

$$D_{rr}\varphi_{|\Omega} - D_{rr}\varphi_2 = \frac{1}{\gamma+1}$$
 on $\operatorname{arc}(P_1P_4]$
Thus φ is $C^{1,1}$ but not C^2 across sonic arc,

3) $D^2\varphi$ in Ω does *not* have a limit at P_1 .

Shock reflection: free boundary problem

For subsonic reflection: $\varphi = \varphi_2$ and $D\varphi = D\varphi_2$ at P_0 .

Solve for: Free boundary P_1P_2 (resp. P_0P_2 for subsonic case) and function φ in Ω . Expect equation elliptic in Ω .

Proof of Th. 1, 1' is obtained by solving free boundary problem using method of continuity/degree theory in the set of "admissible solutions"

Admissible solutions:

- (a) Have structure supersonic or subsonic reflections depending on θ_w . Recall: this includes ellipticity in Ω and some regularity of P_0P_2 and of φ in $\overline{P_0P_2P_3}$;
- (b) $\varphi_2 \leq \varphi \leq \varphi_1$ in Ω ;
- (c) satisfy nonstrict monotonicity $\partial_e(\varphi_1-\varphi)\leq 0$ in Ω for any $e\in Con(e_\eta,e_{S_1})$.

Solving FBP

- Prove strict monotonicity of $\varphi_1 \varphi$ for each direction $e \in \mathsf{Cone}(e_\eta, e_{S_1}) \Longrightarrow \Gamma_{shock}$ is a graph, $\mathsf{Lip}[\Gamma_{shock}] \leq C$.
- Derive basic uniform apriori estimates for admissible solutions:
 $$\begin{split} \|\varphi\|_{C^{0,1}}(\Omega) &\leq C, \ \mathrm{diam}(\Omega) \leq C, \\ 0 &< \rho_{min} \leq \rho(\nabla \varphi, \varphi) \leq \rho_{\max}. \end{split}$$
- Prove geometric properties of the free boundary Γ_{shock} : Uniform estimates on separation of shock with wedge and the symmetry line, uniform lower bound $\operatorname{dist}(\Gamma_{shock}, B_{c_1}(O_1)) \geq \frac{1}{C}.$
- Prove "ellipticity" $(\xi, \eta) \geq \frac{1}{C} \text{dist}((\xi, \eta), \Gamma_{sonic})$.
- ▶ Derive apriori estimates for φ in weighted/scaled $C^{2,\alpha}$ in $\overline{\Omega}$, including for degenerate elliptic region near sonic arc.
- Use method of continuity/degree theory to prove existence of admissible solutions for each wedge angle up to the detachment angle θ_{detach} if $u_1 \leq c_1$, or up to the critical angle θ_c if $u_1 > c_1$, with "attached solution" for θ_c if $\theta_c \geq \theta_{detach}$

Convexity of shock, uniqueness

Theorem 3. (Chen-F.-W. Xiang) For admissible solutions, shock is strictly convex in its relative interior.

Moreover, regular reflection solution satisfying (a)-(b) of the definition of admissible solutions, have cone of monotonicity (c) if and only if the shock is (strictly) convex.

Based on Theorem 2, we prove:

Theorem 4. (Chen-F.-Xiang) Admissible solutions are unique (and exist, by Thms. 1, 2).

Corollary. (Chen-F.-Xiang) Regular reflections solutions with convex shocks are unique (and exist by Thms. 1, 2).

To put these results in a wider context, compare them with the known results on uniqueness/nonuniqueness for 2-D Riemann problems in whole space: Similar to that case, we show uniqueness of self-similar solutions of the prescribed structure (regular reflections; convex shocks).

Outline of proof of uniqueness

We prove uniqueness of admissible solutions (thus with convex shock).

By Th. 1, when $\theta_w \to \frac{\pi}{2}$ —, admissible solutions converge to normal reflection. Also we have uniform estimates for admissible solutions. Then use the method of continuity:

Suppose φ , $\hat{\varphi}$ are two non-equal admissible solutions for some $\theta_w^* \in (\theta_w^d, \frac{\pi}{2})$. Then it is sufficient to:

- 1. Construct continuous in C^1 families $\theta_w \mapsto \varphi^{(\theta_w)}$, $\theta_w \mapsto \hat{\varphi}^{(\theta_w)}$ for $\theta_w \in [\theta_w^*, \frac{\pi}{2})$, with $\varphi^{(\theta_w^*)} = \varphi$, $\hat{\varphi}^{(\theta_w^*)} = \hat{\varphi}$,
- 2. Show "local uniqueness": if two admissible solutions for same θ_w are close in C^1 in the intersection of their subsonic regions, and if their shocks are close to each other, then the solutions are equal.

Since $\varphi^{(\frac{\pi}{2})} = \hat{\varphi}^{(\frac{\pi}{2})}$ are the unique normal reflection, the two properties above lead to a contradiction for non-equal φ , $\hat{\varphi}$.

Proof of uniqueness: Role of convexity (heuristic)

When formally linearize FBP, variations of shock locations introduce an additional zero-order term in the oblique boundary condition derived from RH condition $\rho D\varphi \cdot \nu = \rho_1 D\varphi_1 \cdot \nu.$ This term has the "correct" sign if shock is convex:

Formal linerization of RH conditions: shock is $\eta = f(\xi)$ with $\Omega \subset \{\eta < f(\xi)\}$ after rotating coordinates. Then RH:

$$\varphi^{\varepsilon}(\xi, f^{\varepsilon}(\xi)) = \varphi_{1}(\xi, f^{\varepsilon}(\xi));$$

$$\left((\rho(|D\varphi^{\varepsilon}|^{2}, \varphi^{\varepsilon})D\varphi^{\varepsilon} - \rho_{1}D\varphi_{1}) \cdot (D\varphi_{1} - D\varphi^{\varepsilon}) \right) (\xi, f^{\varepsilon}(\xi)) = 0,$$

where we use that $\nu = \frac{D\varphi_1 - D\varphi^{\varepsilon}}{|D\varphi_1 - D\varphi^{\varepsilon}|}$. Here $\varphi^{\varepsilon} = \varphi + \varepsilon \delta \varphi + \ldots$, same for f^{ε} . Taking $\frac{d}{d\varepsilon}$ at $\varepsilon = 0$ in 1st condition and using $\partial_{\nu}(\varphi_1 - \varphi) > 0$ and on shock, so $\partial_n(\varphi_1 - \varphi) > 0$:

$$\delta f = \frac{1}{\partial_{\eta}(\varphi_1 - \varphi)} \delta \varphi.$$

Now take $\frac{d}{d\varepsilon}$ at $\varepsilon = 0$ in 2nd RH condition

$$\left((\rho(|D\varphi^{\varepsilon}|^{2}, \varphi^{\varepsilon})D\varphi^{\varepsilon} - \rho_{1}D\varphi_{1}) \cdot (D\varphi_{1} - D\varphi^{\varepsilon}) \right) (\xi, f^{\varepsilon}(\xi)) = 0,$$

Get two terms. First, linearization of oblique condition:

$$\frac{d}{d\varepsilon} \left[\left((\rho(|D\varphi^{\varepsilon}|^{2}, \varphi^{\varepsilon})D\varphi^{\varepsilon} - \rho_{1}D\varphi_{1}) \cdot (D\varphi_{1} - D\varphi^{\varepsilon}) \right) \right]_{\varepsilon=0} (\xi, f(\xi))$$

$$= a\partial_{\nu}\delta\varphi + b\partial_{\tau}\delta\varphi + c\delta\varphi, \text{ where } a(\xi) \ge \lambda > 0, c(\xi) \le -\lambda < 0$$

Second term comes from the perturbation of shock location:

$$\partial_{\eta} \Big[\Big((\rho(|D\varphi|^{2}, \varphi)D\varphi - \rho_{1}D\varphi_{1}) \cdot (D\varphi_{1} - D\varphi) \Big) \Big] \delta f$$

$$= A(\varphi_{1} - \varphi)_{\tau\tau} \delta f = \frac{A}{(\varphi_{1} - \varphi)_{n}} (\varphi_{1} - \varphi)_{\tau\tau} \delta \varphi,$$

where A>0. Convexity of shock equivalent to $(\varphi_1-\varphi)_{\tau\tau}<0$, and then the coefficient of $\delta\varphi$ has "correct" sign.

Outline of proof of convexity

Function $\phi = \varphi - \varphi_1$ satisfies equation

$$(c^2 - \varphi_{\xi}^2)\phi_{\xi\xi} - 2\varphi_{\xi}\varphi_{\eta}\phi_{\xi\eta} + (c^2 - \varphi_{\eta}^2)\phi_{\eta\eta} = 0,$$

where $c=c(|D\varphi|^2,\varphi)$ is the speed of sound, $c^2=\rho^{\gamma-1}$. Equation is elliptic in Ω . $\phi=0$ on $\Gamma_{shock}=P_1P_2$ (resp. on P_0P_2 for subsonic reflections). Also, $\phi<0$ in Ω , which means $\phi_{\tau\tau}>0$ on "strictly convex" parts of shock, and $\phi_{\tau\tau}<0$ on parts of shock which are strictly convex in opposite direction.

Let $e \in \mathbb{R}^2$, $e \neq 0$. Then $v = \phi_e$ satisfies equation Lv = 0 in Ω , where L is a linear elliptic 2nd order operator without zero order terms. From this and Rankine-Hugoniot conditions obtain, using maximum principles and Hopf's lemma:

Property 1

For $e \in \mathbb{R}^2$ such that $e \cdot \nu_{sh} < 0$ on Γ_{shock} , where ν_{sh} is interior unit normal:

If ϕ_e has a local minimum relative Ω at $P \in \Gamma_{shock}$, then $\phi_{\tau\tau}(P) > 0$.

If ϕ_e has a local maximum relative Ω at $P \in \Gamma_{shock}$, then $\phi_{\tau\tau}(P) < 0$.

Condition $e\cdot oldsymbol{
u}_{sh} < 0$ on Γ_{shock} holds for any $e\in Con(\vec{e}_{\eta,2},\vec{e}_{S_1})$

We choose and fix $e=\nu_w$, where ν_w is the interior unit normal on $\Gamma_{wedge}=P_3P_4$ (resp. $\Gamma_{wedge}=P_0P_3$ in the subsonic case). It satisfies: $\nu_w\in Con(\vec{e}_\eta,\vec{e}_{S_1})$.

Then $v=\phi_{m{
u}_w}$ satisfies oblique derivative condition on $\Gamma_{sym}=P_2P_3;\ \partial_{m{
u}}(\varphi-\varphi_2)=0$ on Γ_{wedge} , and $D(\varphi-\varphi_2)=0$ on $\Gamma_{sonic}=P_1P_4$ (resp. at P_0 in the subsonic case). Also $\phi_{m{e}}$ is not constant in Ω .

From this, using that $\partial_{\nu_w}(\varphi - \varphi_2) \leq 0$ in Ω , obtain: ϕ_{ν_w} cannot attain its local minimum (relative to Ω) on $\partial\Omega \setminus (\Gamma^0_{shock} \cup \{P_2\})$.

Convexity of Γ_{shock} is proved by a non-local argument.

Technical tool: minimal (resp. maximal) chains.

Minimal chain $\{B_r(C^i)\}_{i=0}^k$ of (small) radius r>0 is:

- 1) $C_0 \in \overline{\Omega}$
- 2) $C^{i+1} \in \overline{B_r(C^i) \cap \Omega}$ with $\phi_{\nu_w}(C^{i+1}) = \min_{\overline{B_r(C^i) \cap \Omega}} \phi_{\nu_w}$ for $i = 1, \dots, k$.
- 3) Endpoint: $\phi_{\boldsymbol{\nu}_w}(C^k) = \min_{\overline{B_r(C^k) \cap \Omega}} \phi_{\boldsymbol{\nu}_w}$.

For any $C_0 \in \overline{\Omega}$ which is not a local minimum (resp. maximum) and small r>0, minimal (resp. maximal) chain exists (for some finite $k\geq 1$), and $\cup_{i=0}^k B_r(C^i)\cap \Omega$ is connected using that angles are $<\pi$ at corners of Ω . Also, for sufficiently small r depending on various parameters, minimal/maximal chains do not intersect, using regularity $\|\phi\|_{C^{1,\alpha}(\overline{\Omega})}\leq C$.

Endpoint C^k is a local minimum (resp. maximum) of ϕ_{ν_w} , and ϕ_{ν_w} is non-constant, thus $C^k \in \partial\Omega$ by strong maximum principle. From properties ϕ_{ν_w} above: for any minimal chain: $C^k \in \Gamma^0_{shock} \cup \{P_2\}.$

Property 2.

If $A,B\in\Gamma_{shock}$ and $\boldsymbol{\nu}_{sh}(A)=\boldsymbol{\nu}_{sh}(B)$, with $AB\cdot\boldsymbol{\nu}(A)>0$, then $\phi_{\boldsymbol{\nu}_w}(A)>\phi_{\boldsymbol{\nu}_w}(B)$

Note: on picture, A lies on "convex" part of Γ_{shock} , and B lies on "non-convex" part of Γ_{shock} . We use this in the argument: minimal chain ends in A, and we further reduce $\phi_{\boldsymbol{\nu}_w}$ by finding B on a "non-convex" part of Γ_{shock} , then B is not a point of local minimum of $\phi_{\boldsymbol{\nu}_w}$, can start a minimal chain at B. After several steps there is no place for endpoint of chain, a contradiction

Steps of proof of convexity of Γ_{shock}

Suppose there exists $P \in \Gamma^0_{shock}$ with $\varphi_{\tau\tau}(P) < 0$ ("wrong direction of convexity"). Recall $\phi = \varphi - \varphi_1$.

Let Q_1Q_2 be the maximal interval on Γ_{shock} with $\phi_{\tau\tau}<0$ and $P\in Q_1Q_2$. Then $Q_1Q_2\subset (\Gamma_{shock})^0$, by monotonicity cone of ϕ . Let $C\in Q_1Q_2$ be such that $\phi_{\nu_w}(C)=\min_{Q_1Q_2}\phi_{\nu_w}$.

By Property 1, C is not a point of local minimum of ϕ_{ν_w} relative to $\overline{\Omega}$. Then there exists a minimal chain (with r small) starting at C, with endpoint at C_1 .

Then $\phi_{\boldsymbol{\nu}_w}(C_1) < \phi_{\boldsymbol{\nu}_w}(C)$, and $\phi_{\boldsymbol{\nu}_w}$ has a local minimum at C_1 . By Property 1, $\phi_{\tau\tau}(C_1) > 0$, i.e. C_1 is on "convex" part of shock.

A contradiction would be obtained, if we show, by Property 2, existence D on CC_1 with $\phi_{\boldsymbol{\nu}_w}(D) = \min_{CC_1} \phi_{\boldsymbol{\nu}_w} < \phi_{\boldsymbol{\nu}_w}(C_1)$ and $\phi_{\tau\tau}(D) \leq 0$. Then there exists a minimal chain from D, it must end at $E \in CC_1$ and $\phi_{\boldsymbol{\nu}_w}(E) < \phi_{\boldsymbol{\nu}_w}(D)$, which contradicts the definition of D.

However, to use Property 2, we have to control the directions of ν on Γ_{shock} . This requires extra steps.

We show $\max_{CC_1}\phi_{\boldsymbol{\nu}_w}>\phi_{\boldsymbol{\nu}_w}(C)$. Then there exists $A\in (CC_1)^0$ such that $\phi_{\boldsymbol{\nu}_w}(A)=\max_{CC_1}\phi_{\boldsymbol{\nu}_w}$. We show: A is a local maximum of $\phi_{\boldsymbol{\nu}_w}$ relative to $\overline{\Omega}$, and $\boldsymbol{\nu}(A)\neq\boldsymbol{\nu}(P)$ for all P in $CC_1\setminus A$. We can control directions of $\boldsymbol{\nu}$ on subintervals AC and AC_1 .

We show, using Property 2, that there exists C_2 on AC_1 with $\phi_{\boldsymbol{\nu}_w}(C_2) = \min_{AC_1} \phi_{\boldsymbol{\nu}_w} < \phi_{\boldsymbol{\nu}_w}(C_1)$ and $\phi_{\tau\tau}(C_2) \leq 0$.

Then there exists a minimal chain from C_2 ; its endpoint C_3 must be on CC_1 and $\phi_{\nu_m}(C_3) < \phi_{\nu_m}(C_2)$. It follows that $C_3 \in AC$.

Now we show, using Property 2, that there exists C_4 on AC_3 with $\phi_{\boldsymbol{\nu}_w}(C_4) = \min_{AC_3} \phi_{\boldsymbol{\nu}_w} < \phi_{\boldsymbol{\nu}_w}(C_3)$ and $\phi_{\tau\tau}(C_4) \leq 0$.

Then there exists a minimal chain from C_4 ; its endpoint C_5 must be on C_2C_3 and $\phi_{\nu_w}(C_5)<\phi_{\nu_w}(C_4)$. It follows that $C_5\in AC_2$. But then

$$\phi_{\nu_w}(C_5) < \phi_{\nu_w}(C_4) < \phi_{\nu_w}(C_3) < \phi_{\nu_w}(C_2) = \min_{AC_1} \phi_{\nu_w},$$

a contradiction.

Open problems

- 1) Prove existence of regular reflection solutions for Euler system. One of difficulties is in vorticity estimates, noticed by D. Serre for isentropic Euler system: vorticity is not in $L^2(\Omega)$. Singularities are expected near the tip of wedge. Thus one has to work in the low regularity framework: velocity is discontinuous (but subsonic) near tip of wedge. On the positive side, this may improve stability of solutions: For potential flow, regular reflection solution does not exist for non-symmetric perturbations of the incoming flow (J. Hu, 2018) because velocity cannot be subsonic and discontinuous in case of potential flow. For Euler system, existence for non-symmetric perturbations can be expected.
- 2) Uniqueness/nonuniqueness in various classes of solutions. For example, for reflection of oblique shock by a flat wall, in the class of self-similar solutions for Euler system, etc.
- 3) Mach reflection: develop apriori estimates.