Shock reflection problem: existence and stability of global solutions

Mikhail Feldman, University of Wisconsin-Madison

Based on works with Gui-Qiang Chen (Oxford),
Wei Xiang(Hong Kong), and Myoungjean Bae(KAIST)

$$
\text { July 22, } 2022
$$

Shock reflection by a wedge: Regular reflection

Shock reflection by a wedge: Mach reflection

Shock reflection by a wedge: Irregular Mach

 reflection.

Self-similar flow: $(\vec{u}, p, \rho)(x, t)=(\vec{u}, p, \rho)\left(\frac{x}{t}\right)$.

Shock reflection

First described by E. Mach 1878. Reflection patterns: Regular reflection, Mach reflection.
J. von Neumann, 1940s: on transition between patterns

Later works: experimental, computational. Asymptotic analysis: Lighthill, Keller, Blank, Hunter, Harabetian, Morawetz.
Reference: book by J. Glimm and A. Majda, survey by D. Serre.

Analysis: Special models (Transonic small disturbance eq., pressure-gradient system, nonlinear wave eq.): Gamba, Rosales, Tabak, Canic, Keyfitz, Kim, Lieberman, Y.Zheng, G.-Q. Chen-W. Xiang.

Local existence results: S.-X. Chen.

More recent results for potential flow:
Existence of global shock reflection solutions for potential flow: G.-Q.Chen-F., Elling

The complete up-to-date results on existence of regular reflection solutions and their proofs are presented in the monograph "The Mathematics of Shock Reflection-Diffraction and von Neumann conjectures" by G.-Q.Chen-F, 2018.
Other self-similar shock reflection problems:
Prandtl Reflection: Elling-Liu, Bae-G.-Q.Chen-F
Shock interactions/reflection for Chaplygin gas: D. Serre
Properties of solutions of self-similar reflection problems: Bae-G.-Q.Chen-F, G.-Q. Chen-F.-W. Xiang, Elling.
Stability and uniqueness of regular reflection solutions. G.-Q. Chen-F.-W. Xiang.

Shock reflection as a Riemann problem in domain with boundary, with slip boundary conditions

Initial data: Constant (uniform) states (0) and (1):
State (0): velocity $\vec{u}_{0}=(0,0)$, density ρ_{0}, pressure p_{0}.
State (1): velocity $\vec{u}_{1}=\left(u_{1}, 0\right)$, density ρ_{1}, pressure p_{1}.
$t>0$: Self-similar solution: $(\vec{u}, \rho, p)=(\vec{u}, \rho, p)(\vec{\xi})$, where
$\vec{\xi}=\frac{\vec{x}}{t}$.

Equations of gas dynamics

Isentropic Compressible Euler system:

$$
\begin{aligned}
& \partial_{t} \rho+\operatorname{div}(\rho \vec{u})=0 \\
& \partial_{t}(\rho \vec{u})+\operatorname{div}(\rho \vec{u} \otimes \vec{u})+\nabla p=0,
\end{aligned}
$$

where:
$\vec{u}=\left(u_{1}, u_{2}\right)$ - velocity
ρ - density
$p=\rho^{\gamma}$ - pressure
$\gamma>1$ - adiabatic exponent (it is a given constant)
Potential flow: Conservation of mass, Bernoulli's law

$$
\begin{aligned}
& \rho_{t}+\operatorname{div}(\rho \nabla \Phi)=0 \\
& \Phi_{t}+\frac{1}{2}|\nabla \Phi|^{2}+\frac{\rho^{\gamma-1}-1}{\gamma-1}=\mathrm{const}
\end{aligned}
$$

where Φ - velocity potential: $\vec{u}=\nabla_{x} \Phi$.

Regular reflection in self-similar coordinates $\vec{\xi}=\frac{\vec{x}}{t}$

Given:

State (0): velocity $\vec{u}_{0}=(0,0)$, density ρ_{0}, pressure p_{0}.
State (1): velocity $\vec{u}_{1}=\left(u_{1}, 0\right)$, density ρ_{1}, pressure p_{1}.
Problem: Find self-similar solution: $(\vec{u}, \rho, p)=(\vec{u}, \rho, p)(\vec{\xi})$,
where $\vec{\xi}=\frac{\vec{x}}{t}$, with asymptotic conditions at infinity determined by states (0) and (1), and satisfying $u \cdot \nu=0$ on the boundary.

Self-similar potential flow

$\Phi(\vec{x}, t)=t \psi(\xi, \eta), \rho(\vec{x}, t)=\rho(\xi, \eta)$ with $(\xi, \eta)=\frac{\vec{x}}{t} \in \mathbb{R}^{2}$.
Pseudo-potential: $\varphi=\psi-\frac{1}{2}\left(\xi^{2}+\eta^{2}\right)$.
Equation for φ :

$$
\operatorname{div}\left(\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi\right)+\mathbf{2} \rho\left(|\nabla \varphi|^{2}, \varphi\right)=\mathbf{0}
$$

$$
\text { with } \quad \rho\left(|\nabla \varphi|^{\mathbf{2}}, \varphi\right)=\left(\mathbf{K}-(\gamma-\mathbf{1})\left(\varphi+\frac{\mathbf{1}}{\mathbf{2}}|\nabla \varphi|^{\mathbf{2}}\right)\right)^{\frac{1}{\gamma-1}}
$$

Equation is of mixed type:

$$
\begin{aligned}
\text { elliptic } & |\nabla \varphi|<c\left(|\nabla \varphi|^{2}, \varphi, K\right) \\
\text { hyperbolic } & |\nabla \varphi|>c\left(|\nabla \varphi|^{2}, \varphi, K\right),
\end{aligned}
$$

where speed of sound c is:

$$
c^{2}=\rho^{\gamma-1}=K-(\gamma-1)\left(\varphi+\frac{1}{2}|\nabla \varphi|^{2}\right)
$$

Uniform states

Solutions with constant (physical) velocity (u, v) :

$$
\varphi(\xi, \eta)=-\frac{\xi^{2}+\eta^{2}}{2}+u \xi+v \eta+\text { const }
$$

Any such function is a solution.
Also (from formula) density $\rho(\nabla \varphi, \varphi)=$ const, thus sonic speed $c=\rho^{\frac{\gamma-1}{2}}=$ const. Then ellipticity region

$$
|\nabla \varphi(\xi, \eta)|=|(u, v)-(\xi, \eta)|<c
$$

is circle, centered at (u, v), radius c.

Shocks, RH conditions, Entropy condition

 Shocks are discontinuities in the pseudo-velocity $\nabla \varphi$:if Ω^{+}and $\Omega^{-}:=\Omega \backslash \overline{\Omega^{+}}$are nonempty and open, and $S:=\partial \Omega^{+} \cap \Omega$ is a C^{1} curve where $\nabla \varphi$ has a jump, then $\varphi \in C^{1}\left(\Omega^{ \pm} \cup S\right) \cap C^{2}\left(\Omega^{ \pm}\right)$is a global weak solution of

$$
\operatorname{div}\left(\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi\right)+2 \rho\left(|\nabla \varphi|^{2}, \varphi\right)=0
$$

$$
\text { with } \quad \rho\left(|\nabla \varphi|^{2}, \varphi\right)=\left(\mathbf{K}-(\gamma-\mathbf{1})\left(\varphi+\frac{1}{2}|\nabla \varphi|^{2}\right)\right)^{\frac{1}{\gamma-1}} .
$$

in Ω if and only if φ satisfies potential flow equation in $\Omega^{ \pm}$ and the Rankine-Hugoniot (RH) condition on S :

$$
\begin{aligned}
& {[\varphi]_{S}=0,} \\
& {\left[\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi \cdot \nu\right]_{S}=0,}
\end{aligned}
$$

where $[\cdot]_{S}$ is jump across S.
Entropy Condition on S : density increases across S in the pseudo-flow direction.

Shock reflection as a free boundary problem

$$
\begin{aligned}
& \operatorname{div}\left(\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi\right)+2 \rho\left(|\nabla \varphi|^{2}, \varphi\right)=0 \text { in } \Omega \text {, } \\
& \left.\begin{array}{l}
\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi \cdot \nu=\rho\left(\left|\nabla \varphi_{1}\right|^{2}, \varphi_{1}\right) \nabla \varphi_{1} \cdot \nu \\
\varphi=\varphi_{1}
\end{array}\right\} \text { on } P_{1} P_{2} \\
& \varphi=\varphi_{2} \text { on } P_{1} P_{4} \text { (and prove } D_{\nu} \varphi=D_{\nu} \varphi_{2} \text { on } P_{1} P_{4} \text {) } \\
& \varphi_{\nu}=0 \text { on Wedge } P_{3} P_{4} \text {, Symmetry line } P_{2} P_{3} \text {, }
\end{aligned}
$$

Solve for: Free boundary $P_{1} P_{2}$ and function φ in Ω. Expect equation elliptic in Ω.

Regular reflection, state (2)

$\varphi=$ pseudo-potential between the reflected shock and the wall $\varphi_{1}=$ pseudo-potential of state (1)
Denote $\nabla \phi\left(P_{0}\right)=\left(u_{2}, v_{2}\right)$, where $\phi=\varphi+\frac{\xi^{2}+\eta^{2}}{2}$. Since $\varphi_{\nu}=0$ on wedge, then $v_{2}=u_{2} \tan \theta_{w}$. Here θ_{w}^{2} is wedge angle.

Rankine-Hugoniot conditions at reflection point P_{0}, for φ and $\varphi_{1}:$ algebraic equations for $u_{2}, \varphi\left(P_{0}\right)$

Regular reflection, state (2), detachment angle

If solution exists: Let

$$
\varphi_{2}(\xi, \eta)=-\left(\xi^{2}+\eta^{2}\right) / 2+u_{2} \xi+v_{2} \eta+C,
$$

where C determined by $\varphi_{2}\left(P_{0}\right)=\varphi_{1}\left(P_{0}\right)$.
Existence of state (2) is necessary condition for existence of regular reflection
Given $\gamma, \rho_{0}, \rho_{1}$, there exists $\theta_{\text {detach }} \in\left(0, \frac{\pi}{2}\right)$ such that:
state (2) exists for $\theta_{w} \in\left(\theta_{\text {detach }}, \frac{\pi}{2}\right)$,
state (2) does not exist for $\theta_{w} \in\left(0, \theta_{\text {detach }}\right)$.
If φ_{2} exist, then RH is satisfied along the line $S_{1}:=\left\{\varphi_{1}=\varphi_{2}\right\}$.

Weak and Strong State (2); Sonic angle

For each $\theta_{w} \in\left(\theta_{\text {detach }}, \frac{\pi}{2}\right)$ there exists two possible States (2): weak and strong, with $\rho_{2}^{\text {weak }}<\rho_{2}^{\text {strong }}$. We always choose weak state (2). For strong state (2), existence of global regular reflection solution is not expected, Elling (2011) confirms that.

There exist $\theta_{\text {sonic }} \in\left(\theta_{\text {detach }}, \frac{\pi}{2}\right)$ such that:
State 2 is supersonic at P_{0} for $\theta_{w} \in\left(\theta_{\text {sonic }}, \frac{\pi}{2}\right)$.
State 2 is subsonic at P_{0} for $\theta_{w} \in\left(\theta_{\text {detach }}, \hat{\theta}_{\text {sonic }}\right)$ where $\hat{\theta}_{\text {sonic }} \in\left(\theta_{\text {detach }}, \theta_{\text {sonic }}\right]$.

Von Neumann's conjectures on transition between different reflection patterns

Recall: sonic angle $\theta_{\text {sonic }}$ and detachment angle $\theta_{\text {detach }}$ satisfy $0<\theta_{\text {detach }}<\theta_{\text {sonic }}<\frac{\pi}{2}$.

Sonic conjecture:
Regular reflection for $\theta_{w} \in\left(\theta_{\text {sonic }}, \frac{\pi}{2}\right)$, Mach reflection for $\theta_{w}<\theta_{\text {sonic }}$.

Von Neumann's detachment conjecture:
Regular reflection for $\theta_{w} \in\left(\theta_{\text {detach }}, \frac{\pi}{2}\right)$, Mach reflection for $\theta_{w}<\theta_{\text {detach }}$.
G.-Q. Chen - F.(2018): existence of regular reflection for $\theta_{w} \in\left(\theta_{\text {detach }}, \frac{\pi}{2}\right)$ for potential flow equation if ρ_{0}, ρ_{1} satisfy $u_{1} \leq c_{1}$ (weaker incident shocks), and up to a critical angle otherwise. Given $\rho_{0}>0$ there exists $\rho_{1}^{*}>\rho_{0}$ such that $u_{1}<c_{1}$ for $\rho_{1} \in\left(\rho_{0}, \rho_{1}^{*}\right)$ and $u_{1}>c_{1}$ for $\rho_{1}>\rho_{1}^{*}$.
Structure: supersonic and subsonic regular reflections.

Supersonic regular reflection

Supersonic regular reflection: State (2) is supersonic at P_{0}. Structure of solution φ :

- $\varphi=\varphi_{i}$ in $\Omega_{i}, \mathrm{i}=0,1,2$.
- $\varphi \in C^{1}\left(\overline{P_{0} P_{2} P_{3}}\right)$, in particular C^{1} across sonic arc $P_{1} P_{4}$.
- Shock $P_{0} P_{2}$ has flat part $P_{0} P_{1}$, curved part $P_{1} P_{2}$, and is C^{1} across P_{1}.
- Equation is strictly elliptic in $\bar{\Omega} \backslash \overline{P_{1} P_{4}}$.

Subsonic regular reflection

Subsonic regular reflection: State (2) is subsonic at P_{0}. Structure of solution φ :

- $\varphi=\varphi_{i}$ in $\Omega_{i}, \mathrm{i}=0,1$.
- $\varphi \in C^{1}\left(\overline{P_{0} P_{2} P_{3}}\right)$.
- $\varphi=\varphi_{2}, D \varphi=D \varphi_{2}$ at P_{0}.
- Shock $P_{0} P_{2}$ is C^{1}.
- Equation is strictly elliptic in $\bar{\Omega} \backslash\left\{P_{0}\right\}$.

Attached shocks and cases $u_{1} \leq c_{1}, u_{1}>c_{1}$

Issue: experiments indicate that shock can hit the corner of wedge in certain cases:
For irregular Mach reflection see Fig. 238 (page 144) of M. Van Dyke, An Album of Fluid Motion, The Parabolic Press:

Stanford, 1982.

Attached shocks and cases $u_{1} \leq c_{1}, u_{1}>c_{1}$

Independent parameters are densities $\rho_{1}>\rho_{0}$. Velocity $u_{1}=u_{1}\left(\rho_{0}, \rho_{1}\right)$. Also, $c_{1}=\rho_{1}^{\gamma-1}$.
For each $\rho_{0}>0$ there exists $\rho^{*}>\rho_{0}$ such that $u_{1}<c_{1}$ if $\rho_{1} \in\left(\rho_{0}, \rho^{*}\right)$ (weaker incident shock);
$u_{1}>c_{1}$ if $\rho_{1}>\rho^{*}$. (stronger incident shock)
We show: attached shocks do not occur for regular reflection if $u_{1} \leq c_{1}$, since Sonic Circle of State (1) separates shock and P_{3} :

Attached shocks and cases $u_{1} \leq c_{1}, u_{1}>c_{1}$

In the case $u_{1}>c_{1}$, Sonic Circle of State (1) does not separate shock and P_{3} :

Then we cannot exclude possibility of "attached shocks" with $P_{2}=P_{3}$. In case of Mach reflection, such configurations are obtained in experiments.

Existence of regular reflection solutions, case

 $u_{1} \leq c_{1}$.

Theorem 1. (G.-Q. Chen-F.). If $\rho_{1}>\rho_{0}>0, \gamma>1$ satisfy $u_{1} \leq c_{1}$, then a regular reflection solution φ exists for all wedge angles $\theta_{w} \in\left(\theta_{\text {detach }}, \frac{\pi}{2}\right)$. The type of reflection (supersonic or subsonic) for each θ_{w} is determined by the type of State 2 at the reflection point P_{0} for θ_{w}. Moreover, solution satisfies the following additional properties:

Properties of solution: supersonic case

1) Equation is elliptic for φ in Ω, ellipticity degenerates near sonic arc $P_{1} P_{4}$.
2) φ is $C^{1,1}$ near and across the sonic arc $P_{1} P_{4}$;
3) Reflected shock is $C^{2, \beta}$, and a graph for a cone of directions $\operatorname{Con}\left(\vec{e}_{\eta}, \vec{e}_{S_{1}}\right)$ between $\vec{e}_{\eta}=(0,1)$ and $\vec{e}_{S_{1}}=P_{0} P_{1}$;
4) $\varphi_{2} \leq \varphi \leq \varphi_{1}$ in Ω, and $\partial_{e}\left(\varphi_{1}-\varphi\right)<0$ if $e \in \operatorname{Con}\left(\vec{e}_{\eta}, \vec{e}_{S_{1}}\right)$.

Properties of solution: subsonic case

1) Equation is elliptic for φ in Ω, except for the sonic wedge angle (then ellipticity degenerates at P_{0}).
2) φ is $C^{2, \alpha}$ inside Ω, and $C^{1, \alpha}$ near and up to the reflection point P_{0}, and $\varphi=\varphi_{2}, D \varphi=D \varphi_{2}$ at P_{0};
3) Reflected shock is $C^{2, \alpha}$ away from P_{0} and $C^{1, \alpha}$ up to P_{0}, and a graph for a cone of directions $\operatorname{Con}\left(\vec{e}_{\eta}, \vec{e}_{S_{1}}\right)$;
4) $\varphi_{2} \leq \varphi \leq \varphi_{1}$ in Ω, and $\partial_{e}\left(\varphi_{1}-\varphi\right)<0$ if $e \in \operatorname{Con}\left(\vec{e}_{\eta_{2}} \vec{e}_{S_{1}}\right)$.

Stability of normal reflection as $\theta_{w} \rightarrow \pi / 2$

Figure: Normal reflection

Furthermore, the solutions $\varphi^{\left(\theta_{w}\right)}$ converge in $W_{\text {loc }}^{1,1}$ to the solution of the normal refection as $\theta_{w} \rightarrow \pi / 2$.

Existence of regular reflection solutions, case

 $u_{1}>c_{1}$.

Theorem 1'. (G.-Q. Chen-F.). If $\rho_{1}>\rho_{0}>0, \gamma>1$ satisfy $u_{1}>c_{1}$, then a regular reflection solution φ described in Th. 1 exists for all wedge angles $\theta_{w} \in\left(\theta_{c}, \frac{\pi}{2}\right)$, where
-either $\theta_{c}=\theta_{\text {detach }}$,
-or $\theta_{c}>\theta_{\text {detach }}$ and for $\theta_{w}=\theta_{c}$ there exists an attached weak solution of regular reflection problem, i.e. with $P_{2}=P_{3}$.

Regularity in Ω near sonic arc (supersonic case)

Theorem 3 (M. Bae-G.-Q. Chen-F.). For any admissible solution φ of supersonic reflection structure:

1) For every P in sonic arc $\left(P_{1} P_{4}\right]$ (i.e. excluding $\left.P_{1}\right)$ $\varphi \in C^{2, \alpha}\left(\bar{\Omega} \cap B_{R}(P)\right), \quad$ for some small $R>0, \quad$ any $\alpha \in(0,1)$.
2) $D^{2} \varphi$ has a jump across sonic $\operatorname{arc} P_{1} P_{4}$:
$D_{r r} \varphi_{\mid \Omega}-D_{r r} \varphi_{2}=\frac{1}{\gamma+1} \quad$ on $\operatorname{arc}\left(P_{1} P_{4}\right]$
Thus φ is $C^{1,1}$ but not C^{2} across sonic arc,
3) $D^{2} \varphi$ in Ω does not have a limit at P_{1}.

Shock reflection: free boundary problem

$$
\begin{aligned}
& \operatorname{div}\left(\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi\right)+2 \rho\left(|\nabla \varphi|^{2}, \varphi\right)=0 \text { in } \Omega \\
& \left.\begin{array}{l}
\rho\left(|\nabla \varphi|^{2}, \varphi\right) \nabla \varphi \cdot \nu=\rho\left(\left|\nabla \varphi_{1}\right|^{2}, \varphi_{1}\right) \nabla \varphi_{1} \cdot \nu \\
\varphi=\varphi_{1}
\end{array}\right\} \text { on } P_{1} P_{2}
\end{aligned}
$$

$$
\varphi=\varphi_{2} \text { on } P_{1} P_{4}\left(\text { and prove } D_{\nu} \varphi=D_{\nu} \varphi_{2} \text { on } P_{1} P_{4}\right)
$$

$$
\varphi_{\nu}=0 \text { on Wedge } P_{3} P_{4}, \text { Symmetry line } P_{2} P_{3}
$$

For subsonic reflection: $\varphi=\varphi_{2}$ and $D \varphi=D \varphi_{2}$ at P_{0}.
Solve for: Free boundary $P_{1} P_{2}$ (resp. $P_{0} P_{2}$ for subsonic case) and function φ in Ω. Expect equation elliptic in Ω.

Proof of Th. 1, 1 ' is obtained by solving free boundary problem using method of continuity/degree theory in the set of "admissible solutions"

Admissible solutions:
(a) Have structure supersonic or subsonic reflections depending on θ_{w}. Recall: this includes ellipticity in Ω and some regularity of $P_{0} P_{2}$ and of φ in $\overline{P_{0} P_{2} P_{3}}$;
(b) $\varphi_{2} \leq \varphi \leq \varphi_{1}$ in Ω;
(c) satisfy nonstrict monotonicity $\partial_{e}\left(\varphi_{1}-\varphi\right) \leq 0$ in Ω for any $e \in \operatorname{Con}\left(e_{\eta}, e_{S_{1}}\right)$.

Solving FBP

- Prove strict monotonicity of $\varphi_{1}-\varphi$ for each direction $e \in \operatorname{Cone}\left(e_{\eta}, e_{S_{1}}\right) \Longrightarrow \Gamma_{\text {shock }}$ is a graph, $\operatorname{Lip}\left[\Gamma_{\text {shock }}\right] \leq C$.
- Derive basic uniform apriori estimates for admissible solutions:
$\|\varphi\|_{C^{0,1}}(\Omega) \leq C, \operatorname{diam}(\Omega) \leq C$,
$0<\rho_{\text {min }} \leq \rho(\nabla \varphi, \varphi) \leq \rho_{\text {max }}$.
- Prove geometric properties of the free boundary $\Gamma_{\text {shock }}$: Uniform estimates on separation of shock with wedge and the symmetry line, uniform lower bound $\operatorname{dist}\left(\Gamma_{\text {shock }}, B_{c_{1}}\left(O_{1}\right)\right) \geq \frac{1}{C}$.
- Prove "ellipticity" $(\xi, \eta) \geq \frac{1}{C} \operatorname{dist}\left((\xi, \eta), \Gamma_{\text {sonic }}\right)$.
- Derive apriori estimates for φ in weighted/scaled $C^{2, \alpha}$ in $\bar{\Omega}$, including for degenerate elliptic region near sonic arc.
- Use method of continuity/degree theory to prove existence of admissible solutions for each wedge angle up to the detachment angle $\theta_{\text {detach }}$ if $u_{1} \leq c_{1}$, or up to the critical angle θ_{c} if $u_{1}>c_{1}$, with "attached solution" for $\theta_{c_{1}}$ if $\theta_{c} \geqq \theta_{\text {detach }}$.

Convexity of shock, uniqueness

Theorem 3. (Chen-F.-W. Xiang) For admissible solutions, shock is strictly convex in its relative interior. Moreover, regular reflection solution satisfying (a)-(b) of the definition of admissible solutions, have cone of monotonicity (c) if and only if the shock is (strictly) convex.

Based on Theorem 2, we prove:
Theorem 4. (Chen-F.-Xiang) Admissible solutions are unique (and exist, by Thms. 1, 2).
Corollary. (Chen-F.-Xiang) Regular reflections solutions with convex shocks are unique (and exist by Thms. 1, 2).

To put these results in a wider context, compare them with the known results on uniqueness/nonuniqueness for 2-D Riemann problems in whole space: Similar to that case, we show uniqueness of self-similar solutions of the prescribed structure (regular reflections; convex shocks).

Outline of proof of uniqueness

We prove uniqueness of admissible solutions (thus with convex shock).
By Th. 1, when $\theta_{w} \rightarrow \frac{\pi}{2}-$, admissible solutions converge to normal reflection. Also we have uniform estimates for admissible solutions. Then use the method of continuity:
Suppose $\varphi, \hat{\varphi}$ are two non-equal admissible solutions for some $\theta_{w}^{*} \in\left(\theta_{w}^{d}, \frac{\pi}{2}\right)$. Then it is sufficient to:

1. Construct continuous in C^{1} families $\theta_{w} \mapsto \varphi^{\left(\theta_{w}\right)}$, $\theta_{w} \mapsto \hat{\varphi}^{\left(\theta_{w}\right)}$ for $\theta_{w} \in\left[\theta_{w}^{*}, \frac{\pi}{2}\right)$, with $\varphi^{\left(\theta_{w}^{*}\right)}=\varphi, \hat{\varphi}^{\left(\theta_{w}^{*}\right)}=\hat{\varphi}$,
2. Show "local uniqueness": if two admissible solutions for same θ_{w} are close in C^{1} in the intersection of their subsonic regions, and if their shocks are close to each other, then the solutions are equal.
Since $\varphi^{\left(\frac{\pi}{2}\right)}=\hat{\varphi}^{\left(\frac{\pi}{2}\right)}$ are the unique normal reflection, the two properties above lead to a contradiction for non-equal $\varphi, \hat{\varphi}$.

Proof of uniqueness: Role of convexity (heuristic)

 When formally linearize FBP, variations of shock locations introduce an additional zero-order term in the oblique boundary condition derived from RH condition $\rho D \varphi \cdot \nu=\rho_{1} D \varphi_{1} \cdot \nu$. This term has the "correct" sign if shock is convex:Formal linerization of RH conditions: shock is $\eta=f(\xi)$ with $\Omega \subset\{\eta<f(\xi)\}$ after rotating coordinates. Then RH:
$\varphi^{\varepsilon}\left(\xi, f^{\varepsilon}(\xi)\right)=\varphi_{1}\left(\xi, f^{\varepsilon}(\xi)\right) ;$
$\left(\left(\rho\left(\left|D \varphi^{\varepsilon}\right|^{2}, \varphi^{\varepsilon}\right) D \varphi^{\varepsilon}-\rho_{1} D \varphi_{1}\right) \cdot\left(D \varphi_{1}-D \varphi^{\varepsilon}\right)\right)\left(\xi, f^{\varepsilon}(\xi)\right)=0$,
where we use that $\nu=\frac{D \varphi_{1}-D \varphi^{\varepsilon}}{\left|D \varphi_{1}-D \varphi^{\varepsilon}\right|}$. Here $\varphi^{\varepsilon}=\varphi+\varepsilon \delta \varphi+\ldots$, same for f^{ε}. Taking $\frac{d}{d \varepsilon}$ at $\varepsilon=0$ in 1st condition and using $\partial_{\nu}\left(\varphi_{1}-\varphi\right)>0$ and on shock, so $\partial_{\eta}\left(\varphi_{1}-\varphi\right)>0$:

$$
\delta f=\frac{1}{\partial_{\eta}\left(\varphi_{1}-\varphi\right)} \delta \varphi .
$$

Now take $\frac{d}{d \varepsilon}$ at $\varepsilon=0$ in 2 nd RH condition
$\left(\left(\rho\left(\left|D \varphi^{\varepsilon}\right|^{2}, \varphi^{\varepsilon}\right) D \varphi^{\varepsilon}-\rho_{1} D \varphi_{1}\right) \cdot\left(D \varphi_{1}-D \varphi^{\varepsilon}\right)\right)\left(\xi, f^{\varepsilon}(\xi)\right)=0$,
Get two terms. First, linearization of oblique condition:

$$
\begin{aligned}
& \frac{d}{d \varepsilon}\left[\left(\left(\rho\left(\left|D \varphi^{\varepsilon}\right|^{2}, \varphi^{\varepsilon}\right) D \varphi^{\varepsilon}-\rho_{1} D \varphi_{1}\right) \cdot\left(D \varphi_{1}-D \varphi^{\varepsilon}\right)\right)\right]_{\varepsilon=0}(\xi, f(\xi)) \\
& \quad=a \partial_{\nu} \delta \varphi+b \partial_{\tau} \delta \varphi+c \delta \varphi, \quad \text { where } \quad a(\xi) \geq \lambda>0, \quad c(\xi) \leq-\lambda<0
\end{aligned}
$$

Second term comes from the perturbation of shock location:

$$
\begin{aligned}
& \partial_{\eta}\left[\left(\left(\rho\left(|D \varphi|^{2}, \varphi\right) D \varphi-\rho_{1} D \varphi_{1}\right) \cdot\left(D \varphi_{1}-D \varphi\right)\right)\right] \delta f \\
& =A\left(\varphi_{1}-\varphi\right)_{\tau \tau} \delta f=\frac{A}{\left(\varphi_{1}-\varphi\right)_{\eta}}\left(\varphi_{1}-\varphi\right)_{\tau \tau} \delta \varphi,
\end{aligned}
$$

where $A>0$. Convexity of shock equivalent to $\left(\varphi_{1}-\varphi\right)_{\tau \tau}<0$, and then the coefficient of $\delta \varphi$ has "correct" sign.

Outline of proof of convexity

Function $\phi=\varphi-\varphi_{1}$ satisfies equation

$$
\left(c^{2}-\varphi_{\xi}^{2}\right) \phi_{\xi \xi}-2 \varphi_{\xi} \varphi_{\eta} \phi_{\xi \eta}+\left(c^{2}-\varphi_{\eta}^{2}\right) \phi_{\eta \eta}=0
$$

where $c=c\left(|D \varphi|^{2}, \varphi\right)$ is the speed of sound, $c^{2}=\rho^{\gamma-1}$.
Equation is elliptic in Ω. $\phi=0$ on $\Gamma_{\text {shock }}=P_{1} P_{2}$ (resp. on $P_{0} P_{2}$ for subsonic reflections). Also, $\phi<0$ in Ω, which means $\phi_{\tau \tau}>0$ on "strictly convex" parts of shock, and $\phi_{\tau \tau}<0$ on parts of shock which are strictly convex in opposite direction.

Let $\boldsymbol{e} \in \mathbb{R}^{2}, \boldsymbol{e} \neq 0$. Then $v=\phi_{e}$ satisfies equation $L v=0$ in Ω, where L is a linear elliptic 2 nd order operator without zero order terms. From this and Rankine-Hugoniot conditions obtain, using maximum principles and Hopf's lemma:

Property 1
For $\boldsymbol{e} \in \mathbb{R}^{2}$ such that $\boldsymbol{e} \cdot \boldsymbol{\nu}_{\text {sh }}<0$ on $\Gamma_{\text {shock }}$, where $\boldsymbol{\nu}_{\text {sh }}$ is interior unit normal:
If $\phi_{\boldsymbol{e}}$ has a local minimum relative Ω at $P \in \Gamma_{\text {shock }}$, then $\phi_{\tau \tau}(P)>0$.
If $\phi_{\boldsymbol{e}}$ has a local maximum relative Ω at $P \in \Gamma_{\text {shock }}$, then $\phi_{\tau \tau}(P)<0$.

Condition $\boldsymbol{e} \cdot \boldsymbol{\nu}_{s h}<0$ on $\Gamma_{\text {shock }}$ holds for any $\boldsymbol{e} \in \operatorname{Con}\left(\vec{e}_{\eta}, \vec{e}_{S_{1}}\right)$

We choose and fix $\boldsymbol{e}=\boldsymbol{\nu}_{w}$, where $\boldsymbol{\nu}_{w}$ is the interior unit normal on $\Gamma_{\text {wedge }}=P_{3} P_{4}$ (resp. $\Gamma_{\text {wedge }}=P_{0} P_{3}$ in the subsonic case). It satisfies: $\boldsymbol{\nu}_{w} \in \operatorname{Con}\left(\vec{e}_{\eta}, \vec{e}_{S_{1}}\right)$.

Then $v=\phi_{\nu_{w}}$ satisfies oblique derivative condition on $\Gamma_{\text {sym }}=P_{2} P_{3} ; \partial_{\nu}\left(\varphi-\varphi_{2}\right)=0$ on $\Gamma_{\text {wedge }}$, and $D\left(\varphi-\varphi_{2}\right)=0$ on $\Gamma_{\text {sonic }}=P_{1} P_{4}$ (resp. at P_{0} in the subsonic case). Also $\phi_{\boldsymbol{e}}$ is not constant in Ω.
From this, using that $\partial_{\boldsymbol{\nu}_{w}}\left(\varphi-\varphi_{2}\right) \leq 0$ in Ω, obtain: $\phi_{\boldsymbol{\nu}_{w}}$ cannot attain its local minimum (relative to Ω) on $\partial \Omega \backslash\left(\Gamma_{\text {shock }}^{0} \cup\left\{P_{2}\right\}\right)$.

Convexity of $\Gamma_{\text {shock }}$ is proved by a non-local argument.
Technical tool: minimal (resp. maximal) chains.
Minimal chain $\left\{B_{r}\left(C^{i}\right)\right\}_{i=0}^{k}$ of (small) radius $r>0$ is:

1) $C_{0} \in \bar{\Omega}$
2) $C^{i+1} \in \overline{B_{r}\left(C^{i}\right) \cap \Omega}$ with $\phi_{\boldsymbol{\nu}_{w}}\left(C^{i+1}\right)=\min \overline{B_{r}\left(C^{i}\right) \cap \Omega} \phi_{\boldsymbol{\nu}_{w}}$ for $i=1, \ldots, k$.
3) Endpoint: $\phi_{\boldsymbol{\nu}_{w}}\left(C^{k}\right)=\min \overline{B_{r}\left(C^{k}\right) \cap \Omega} \phi_{\boldsymbol{\nu}_{w}}$.

For any $C_{0} \in \bar{\Omega}$ which is not a local minimum (resp. maximum) and small $r>0$, minimal (resp. maximal) chain exists (for some finite $k \geq 1$), and $\cup_{i=0}^{k} B_{r}\left(C^{i}\right) \cap \Omega$ is connected using that angles are $<\pi$ at corners of Ω. Also, for sufficiently small r depending on various parameters, minimal/maximal chains do not intersect, using regularity $\|\phi\|_{C^{1, \alpha}(\bar{\Omega})} \leq C$.
Endpoint C^{k} is a local minimum (resp. maximum) of $\phi_{\boldsymbol{\nu}_{w}}$, and $\phi_{\boldsymbol{\nu}_{w}}$ is non-constant, thus $C^{k} \in \partial \Omega$ by strong maximum principle. From properties $\phi_{\boldsymbol{\nu}_{w}}$ above: for any minimal chain:
$C^{k} \in \Gamma_{\text {shock }}^{0} \cup\left\{P_{2}\right\}$.

Property 2.
If $A, B \in \Gamma_{\text {shock }}$ and $\boldsymbol{\nu}_{\text {sh }}(A)=\boldsymbol{\nu}_{\text {sh }}(B)$, with $A B \cdot \boldsymbol{\nu}(A)>0$, then $\phi_{\boldsymbol{\nu}_{w}}(A)>\phi_{\boldsymbol{\nu}_{w}}(B)$

Note: on picture, A lies on "convex" part of $\Gamma_{\text {shock, }}$, and B lies on "non-convex" part of $\Gamma_{\text {shock }}$. We use this in the argument: minimal chain ends in A, and we further reduce $\phi_{\boldsymbol{\nu}_{w}}$ by finding B on a "non-convex" part of $\Gamma_{\text {shock }}$, then B is not a point of local minimum of $\phi_{\boldsymbol{\nu}_{w}}$, can start a minimal chain at B. After several steps there is no place for endpoint of chain, a contradiction.

Steps of proof of convexity of $\Gamma_{\text {shock }}$

Suppose there exists $P \in \Gamma_{\text {shock }}^{0}$ with $\varphi_{\tau \tau}(P)<0$ ("wrong direction of convexity"). Recall $\phi=\varphi-\varphi_{1}$.
Let $Q_{1} Q_{2}$ be the maximal interval on $\Gamma_{\text {shock }}$ with $\phi_{\tau \tau}<0$ and $P \in Q_{1} Q_{2}$. Then $Q_{1} Q_{2} \subset\left(\Gamma_{\text {shock }}\right)^{0}$, by monotonicity cone of ϕ. Let $C \in Q_{1} Q_{2}$ be such that $\phi_{\boldsymbol{\nu}_{w}}(C)=\min _{Q_{1} Q_{2}} \phi_{\boldsymbol{\nu}_{w}}$.
By Property $1, C$ is not a point of local minimum of $\phi_{\boldsymbol{\nu}_{w}}$ relative to $\bar{\Omega}$. Then there exists a minimal chain (with r small) starting at C, with endpoint at C_{1}.

Then $\phi_{\boldsymbol{\nu}_{w}}\left(C_{1}\right)<\phi_{\boldsymbol{\nu}_{w}}(C)$, and $\phi_{\boldsymbol{\nu}_{w}}$ has a local minimum at C_{1}. By Property 1, $\phi_{\tau \tau}\left(C_{1}\right)>0$, i.e. C_{1} is on "convex" part of shock.

A contradiction would be obtained, if we show, by Property 2, existence D on $C C_{1}$ with $\phi_{\boldsymbol{\nu}_{w}}(D)=\min _{C C_{1}} \phi_{\boldsymbol{\nu}_{w}}<\phi_{\boldsymbol{\nu}_{w}}\left(C_{1}\right)$ and $\phi_{\tau \tau}(D) \leq 0$. Then there exists a minimal chain from D, it must end at $E \in C C_{1}$ and $\phi_{\boldsymbol{\nu}_{w}}(E)<\phi_{\boldsymbol{\nu}_{w}}(D)$, which contradicts the definition of D.

However, to use Property 2, we have to control the directions of $\boldsymbol{\nu}$ on $\Gamma_{\text {shock }}$. This requires extra steps.

We show $\max _{C C_{1}} \phi_{\boldsymbol{\nu}_{w}}>\phi_{\boldsymbol{\nu}_{w}}(C)$. Then there exists $A \in\left(C C_{1}\right)^{0}$ such that $\phi_{\boldsymbol{\nu}_{w}}(A)=\max _{C C_{1}} \phi_{\boldsymbol{\nu}_{w}}$. We show: A is a local maximum of $\phi_{\boldsymbol{\nu}_{w}}$ relative to $\bar{\Omega}$, and $\boldsymbol{\nu}(A) \neq \boldsymbol{\nu}(P)$ for all P in $C C_{1} \backslash A$. We can control directions of ν on subintervals $A C$ and $A C_{1}$.

We show, using Property 2 , that there exists C_{2} on $A C_{1}$ with $\phi_{\boldsymbol{\nu}_{w}}\left(C_{2}\right)=\min _{A C_{1}} \phi_{\boldsymbol{\nu}_{w}}<\phi_{\boldsymbol{\nu}_{w}}\left(C_{1}\right)$ and $\phi_{\tau \tau}\left(C_{2}\right) \leq 0$.

Then there exists a minimal chain from C_{2}; its endpoint C_{3} must be on $C C_{1}$ and $\phi_{\boldsymbol{\nu}_{w}}\left(C_{3}\right)<\phi_{\boldsymbol{\nu}_{w}}\left(C_{2}\right)$. It follows that $C_{3} \in A C$.

Now we show, using Property 2, that there exists C_{4} on $A C_{3}$ with $\phi_{\boldsymbol{\nu}_{w}}\left(C_{4}\right)=\min _{A C_{3}} \phi_{\boldsymbol{\nu}_{w}}<\phi_{\boldsymbol{\nu}_{w}}\left(C_{3}\right)$ and $\phi_{\tau \tau}\left(C_{4}\right) \leq 0$.

Then there exists a minimal chain from C_{4}; its endpoint C_{5} must be on $C_{2} C_{3}$ and $\phi_{\boldsymbol{\nu}_{w}}\left(C_{5}\right)<\phi_{\boldsymbol{\nu}_{w}}\left(C_{4}\right)$. It follows that $C_{5} \in A C_{2}$. But then

$$
\phi_{\boldsymbol{\nu}_{w}}\left(C_{5}\right)<\phi_{\boldsymbol{\nu}_{w}}\left(C_{4}\right)<\phi_{\boldsymbol{\nu}_{w}}\left(C_{3}\right)<\phi_{\boldsymbol{\nu}_{w}}\left(C_{2}\right)=\min _{A C_{1}} \phi_{\boldsymbol{\nu}_{w}},
$$

a contradiction.

Open problems

1) Prove existence of regular reflection solutions for Euler system. One of difficulties is in vorticity estimates, noticed by D. Serre for isentropic Euler system: vorticity is not in $L^{2}(\Omega)$. Singularities are expected near the tip of wedge. Thus one has to work in the low regularity framework: velocity is discontinuous (but subsonic) near tip of wedge. On the positive side, this may improve stability of solutions: For potential flow, regular reflection solution does not exist for non-symmetric perturbations of the incoming flow (J. Hu, 2018) because velocity cannot be subsonic and discontinuous in case of potential flow. For Euler system, existence for non-symmetric perturbations can be expected.
2) Uniqueness/nonuniqueness in various classes of solutions. For example, for reflection of oblique shock by a flat wall, in the class of self-similar solutions for Euler system, etc.
3) Mach reflection: develop apriori estimates.
