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E1/2(u) =
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2

∫
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of a map u ∈ H1/2(S1;N), where

H1/2(S1;N) = {u ∈ H1/2(S1;Rn); u(z) ∈ N for a. e. z ∈ S1}.

Numerous results on regularity, “bubbling”, and quantization have
been obtained by Da Lio-Rivière, Da Lio-Martinazzi-Rivière,
R. Moser, Schikorra, and others, in particular, when N = Sk .
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∫
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|∇u|2dz

of its harmonic extension u ∈ H1(B ;Rn). Indeed, we have the
characterization (already used by R. Moser and Millot-Sire)

(−∆)1/2u = ∂ru

of the half-Laplacian as the Dirichlet-to-Neumann map. Thus, the
representation of the operators (−∆)1/2 and (−∆)1/4 in Fourier
space with symbols |ξ|,

√

|ξ|, and Parceval’s identity give

∫

B

|∇u|2dz =

∫

S1

u∂ru dφ

=

∫

S1

u(−∆)1/2u dφ =

∫

S1

|(−∆)1/4u|2dφ.



Connection with minimal surfaces

The characterization (−∆)1/2u = ∂ru of the half-Laplacian shows
that a half-harmonic map u ∈ H1/2(S1;Rn) induces a minimal
surface with free boundary on N (Da Lio-Rivière (2011)).



Connection with minimal surfaces

The characterization (−∆)1/2u = ∂ru of the half-Laplacian shows
that a half-harmonic map u ∈ H1/2(S1;Rn) induces a minimal
surface with free boundary on N (Da Lio-Rivière (2011)).
Indeed, the harmonic extension u ∈ H1(B ;Rn) of u satisfies

dπ(u)∂ru = dπ(u)
(

(−∆)1/2u
)

= 0.

Thus, ur · uφ = 0 on ∂B = S1, and the (analytic) Hopf differential

Φ = z2u2z = r2|ur |
2 − |uφ|

2 − 2irur · uφ

is real on ∂B = S1. Hence Φ(z) = const = Φ(0) = 0, showing that
u is conformal and therefore has vanishing mean curvature.



Connection with minimal surfaces

The characterization (−∆)1/2u = ∂ru of the half-Laplacian shows
that a half-harmonic map u ∈ H1/2(S1;Rn) induces a minimal
surface with free boundary on N (Da Lio-Rivière (2011)).
Indeed, the harmonic extension u ∈ H1(B ;Rn) of u satisfies

dπ(u)∂ru = dπ(u)
(

(−∆)1/2u
)

= 0.
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Φ = z2u2z = r2|ur |
2 − |uφ|

2 − 2irur · uφ

is real on ∂B = S1. Hence Φ(z) = const = Φ(0) = 0, showing that
u is conformal and therefore has vanishing mean curvature.

Moreover, from the condition dπ(u)∂ru = 0 we infer that u meets
N vertically.
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ut + dπ(u)∂ru = 0 (3)
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we view (3) as heat flow for E with a free boundary constraint.
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we extend Wettstein’s results to initial data of arbitrarily large (but
finite) energy.

Theorem (S.(2021)). Let N ⊂ R
n be a closed, smooth sub-manifold

of Rn, and suppose that the normal bundle T⊥N is parallelizable.
For any u0 ∈ H1/2(S1;N) there exists a unique global weak
solution u = u(t) of (3) (hence (2)) with u(0) = u0, whose energy
is non-increasing and which is smooth away from finitely many
points in space-time where non-trivial half-harmonic maps “bubble
off”. As t → ∞ suitably, u(t) converges to a half-harmonic limit
map away from finitely many non-trivial half-harmonic “bubbles”.
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• Even though (3) appears to be degenerate, within our framework
we are able to obtain similar smoothing properties as in the case of
the harmonic map heat flow of surfaces.

• When N is a smoothly embedded, oriented closed curve Γ ⊂ R
n

the flow (3) may be viewed as an alternative gradient flow for the
Plateau problem of disc-type minimal surfaces, the Plateau flow.
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• It is not clear whether the classical Plateau boundary condition
(requiring monotonicity) is preserved along the flow (3), even when
Γ is a strictly convex planar curve. But also without monotonicity
energy quantization holds (see below).

• It should be straightforward to extend our results to the case
when the disc B is replaced by a surface S of higher genus, if for
given initial data u0 ∈ H1/2(S1;N) we consider a family u = u(t)
in H1/2(S1;N) solving the equation (3), that is,

ut + dπ(u)∂νu = 0

instead of (2), where ν is the outward unit normal along ∂S = S1

and where for each time we harmonically extend u(t) to S ; see Da
Lio-Pigati (2020) in the time-independent case. Similarly, one
might study the flow (3) on a domain with multiple boundaries.

• In these cases, in order to obtain minimal surfaces one would
also need to flow the conformal type of the domain, similar to
Rupflin-Topping for harmonic map flow.
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oriented, closed hypersurface with smooth unit normal vector field
ν. There exists ρ > 0 such that the representation

T : N×]− ρ, ρ[∋ (p, s) → p + sν(p) ∈ Nρ = ∪p∈NBρ(p)

is a diffeomorphism. For q ∈ Nρ then T−1(q) = (p, h) with
p = πN(q) defines the signed distance function h = h(q). With a
cut-off function η ∈ C∞(R) such that η(s) = s for |s| < ρ/2,
η(s) = 0 for |s| ≥ 3ρ/4, we let

distN(q) = η(h(q)) in Nρ, distN(q) = 0 else.

Then for any u ∈ H1/2(S1;N) with harmonic extension u we have

ν(u)∂r
(

distN(u)
)

= ν(u)ν(u) · ur =: dπ⊥
N (u)ur

on ∂B = S1,where dπ⊥
N (p) = 1− dπN(p) for each p ∈ N is the

orthogonal projection to T⊥
p N.



A regularity estimate
To illustrate a key feature of our method, we re-derive a result
obtained by Da Lio-Rivière using fractional calculus.



A regularity estimate
To illustrate a key feature of our method, we re-derive a result
obtained by Da Lio-Rivière using fractional calculus.

Proposition. There exists δ > 0 such that for any smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = f on ∂B = S1,

with E (u) ≤ δ2 there holds
∫

S1

|∂φu|
2dφ ≤ C‖f ‖2L2(S1).



A regularity estimate
To illustrate a key feature of our method, we re-derive a result
obtained by Da Lio-Rivière using fractional calculus.

Proposition. There exists δ > 0 such that for any smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = f on ∂B = S1,

with E (u) ≤ δ2 there holds
∫

S1

|∂φu|
2dφ ≤ C‖f ‖2L2(S1).

Proof. We have the orthogonal decomposition

∂ru = dπN(u)∂ru + ν(u)ν(u) · ∂ru = f + ν(u)∂r (distN(u)).



A regularity estimate
To illustrate a key feature of our method, we re-derive a result
obtained by Da Lio-Rivière using fractional calculus.

Proposition. There exists δ > 0 such that for any smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = f on ∂B = S1,

with E (u) ≤ δ2 there holds
∫

S1

|∂φu|
2dφ ≤ C‖f ‖2L2(S1).

Proof. We have the orthogonal decomposition

∂ru = dπN(u)∂ru + ν(u)ν(u) · ∂ru = f + ν(u)∂r (distN(u)).

Extend ν(p) := ∇distN(p). Note that distN(u) ∈ H1
0 (B) with

‖∇(distN(u))‖
2
L2(B) ≤ C‖∇u‖2L2(B) ≤ Cδ2.



A regularity estimate
Moreover, distN(u) ∈ H1

0 (B) satisfies the equation

∆(distN(u)) = div(ν(u) · ∇u) = ∇u · dν(u)∇u in B (4)

with a right hand side similar to the equation for harmonic maps.



A regularity estimate
Moreover, distN(u) ∈ H1

0 (B) satisfies the equation

∆(distN(u)) = div(ν(u) · ∇u) = ∇u · dν(u)∇u in B (4)

with a right hand side similar to the equation for harmonic maps.
The basic L2-theory for the Laplace equation and Sobolev’s
embedding H1/2(B) →֒ L4(B) then give the estimate

‖distN(u)‖
2
H2(B) ≤ C‖∇u‖4L4(B) ≤ C‖∇u‖4

H1/2(B)
.



A regularity estimate
Moreover, distN(u) ∈ H1

0 (B) satisfies the equation

∆(distN(u)) = div(ν(u) · ∇u) = ∇u · dν(u)∇u in B (4)

with a right hand side similar to the equation for harmonic maps.
The basic L2-theory for the Laplace equation and Sobolev’s
embedding H1/2(B) →֒ L4(B) then give the estimate

‖distN(u)‖
2
H2(B) ≤ C‖∇u‖4L4(B) ≤ C‖∇u‖4

H1/2(B)
.

The divergence theorem gives

‖∂r (distN(u))‖
2
L2(S1) =

∫

∂B
|z · ∇(distN(u))|

2dφ

≤ C‖∇(distN(u))‖H1(B)‖∇(distN(u))‖L2(B) ≤ Cδ‖∇u‖2
H1/2(B)

.



A regularity estimate
Moreover, distN(u) ∈ H1

0 (B) satisfies the equation

∆(distN(u)) = div(ν(u) · ∇u) = ∇u · dν(u)∇u in B (4)

with a right hand side similar to the equation for harmonic maps.
The basic L2-theory for the Laplace equation and Sobolev’s
embedding H1/2(B) →֒ L4(B) then give the estimate

‖distN(u)‖
2
H2(B) ≤ C‖∇u‖4L4(B) ≤ C‖∇u‖4

H1/2(B)
.

The divergence theorem gives

‖∂r (distN(u))‖
2
L2(S1) =

∫

∂B
|z · ∇(distN(u))|

2dφ

≤ C‖∇(distN(u))‖H1(B)‖∇(distN(u))‖L2(B) ≤ Cδ‖∇u‖2
H1/2(B)

.

Fourier expansion shows ‖∇u‖2
H1/2(B)

= C‖∂ru‖
2
L2(S1);



A regularity estimate
Moreover, distN(u) ∈ H1

0 (B) satisfies the equation

∆(distN(u)) = div(ν(u) · ∇u) = ∇u · dν(u)∇u in B (4)

with a right hand side similar to the equation for harmonic maps.
The basic L2-theory for the Laplace equation and Sobolev’s
embedding H1/2(B) →֒ L4(B) then give the estimate

‖distN(u)‖
2
H2(B) ≤ C‖∇u‖4L4(B) ≤ C‖∇u‖4

H1/2(B)
.

The divergence theorem gives

‖∂r (distN(u))‖
2
L2(S1) =

∫

∂B
|z · ∇(distN(u))|

2dφ

≤ C‖∇(distN(u))‖H1(B)‖∇(distN(u))‖L2(B) ≤ Cδ‖∇u‖2
H1/2(B)

.

Fourier expansion shows ‖∇u‖2
H1/2(B)

= C‖∂ru‖
2
L2(S1); thus

‖∂φu‖
2
L2(S1) = ‖∂ru‖

2
L2(S1) = ‖f ‖2L2(S1) + ‖∂r (distN(u))‖

2
L2(S1)

≤ ‖f ‖2L2(S1) + Cδ‖∇u‖2
H1/2(B)

≤ ‖f ‖2L2(S1) + Cδ‖∂ru‖
2
L2(S1).



A threshold result
Corollary. (i) For any non-constant, smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = 0 on ∂B = S1, (5)

there holds E (u) ≥ δ2, where δ = δ(N) > 0.



A threshold result
Corollary. (i) For any non-constant, smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = 0 on ∂B = S1, (5)

there holds E (u) ≥ δ2, where δ = δ(N) > 0.

In particular, let N = Γ ⊂ R
3 a closed, smoothly embedded curve,

and let u ∈ H1(B ,Rn) be smooth, non-constant, harmonic, and
satisfying the generalized Plateau condition u ∈ H1/2(S1;N).



A threshold result
Corollary. (i) For any non-constant, smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = 0 on ∂B = S1, (5)

there holds E (u) ≥ δ2, where δ = δ(N) > 0.

In particular, let N = Γ ⊂ R
3 a closed, smoothly embedded curve,

and let u ∈ H1(B ,Rn) be smooth, non-constant, harmonic, and
satisfying the generalized Plateau condition u ∈ H1/2(S1;N).

(ii) u is conformal iff u solves (5), and then E (u) ≥ δ(Γ)2 > 0.



A threshold result
Corollary. (i) For any non-constant, smooth solution
u ∈ H1/2(S1;N) with harmonic extension u ∈ H1(B ,Rn) of

dπN(u)∂ru = 0 on ∂B = S1, (5)

there holds E (u) ≥ δ2, where δ = δ(N) > 0.

In particular, let N = Γ ⊂ R
3 a closed, smoothly embedded curve,

and let u ∈ H1(B ,Rn) be smooth, non-constant, harmonic, and
satisfying the generalized Plateau condition u ∈ H1/2(S1;N).

(ii) u is conformal iff u solves (5), and then E (u) ≥ δ(Γ)2 > 0.

Proof. Let γ : S1 → Γ be an arc-length reference parametrization
of Γ, and let u = γ ◦ ξ on ∂B = S1 for some smooth ξ : S1 → S1.
Then at any p ∈ S1 where |∂θu| = |∂ru| 6= 0 with some λ 6= 0 we
have

|dπΓ(u)∂ru| = |γ′(ξ) · ∂ru| = λ|∂θu · ∂ru| = 0,

and u is conformal iff u solves (5). The claim then follows from (i).
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Non-concentration of energy gives

regularity

Let u be a smooth solution of (3) on [0,T0[. For any δ > 0, any
T < T0 there exists a number R > 0 such that

sup
z0∈B, 0<t<T

∫

BR (z0)∩B
|∇u(t)|2dz < δ. (6)

In the following we show how condition (6) for suitably small δ > 0
allows to obtain higher and higher regularity.

Hence the flow (3) can only become singular at time T0 if energy
of size at least δ > 0 concentrates as t ↑ T0. (Energy concentration
can then be analyzed via the usual rescaling procedure.)
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2-bounds

Lemma. With a constant C > 0 depending only on N there holds

d

dt

(

∫

∂B
|uφ|

2dφ
)

+

∫

B

|∇uφ|
2dz ≤ C

∫

B

|∇u|2|uφ|
2dz .

Proof. Writing dπN(u) = 1− ν(u)× ν(u) we compute

1

2

d

dt

(

∫

∂B
|uφ|

2dφ
)

=

∫

∂B
uφ · uφ,tdφ = −

∫

∂B
uφφ · utdφ

=

∫

∂B
uφφ · dπN(u)urdφ = −

∫

∂B

(

uφ · urφ − uφ · ∂φ(ν(u) ν(u) · ur )
)

dφ

= −
1

2

∫

∂B
∂r (|uφ|

2)dφ−

∫

∂B
uφ · dν(u)uφ ν(u) · urdφ

= −

∫

B

|∇uφ|
2dz −

∫

B

∇u · ∇(ν(u) uφ · dν(u)uφ)dz .
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Let u be a smooth solution of (3) on [0,T0[, and for any δ > 0,
any T < T0 let R > 0 such that (6) holds on [0,T ].

From the previous lemma, with the multiplicative inequality

∫

B

|∇u|4ϕ2
zi ,R

dz ≤ Cδ

∫

BR (zi )
|∇2u|2dz + CδR−2

∫

BR (zi )
|∇u|2dz ,

where ϕzi ,R ∈ C∞
c (BR(zi )), we first obtain an integral H2-bound.

Proposition. There exist constants δ > 0 and C > 0 such that for
any T < T0 there holds

sup
0<t<T

∫

∂B
|uφ(t)|

2dφ+

∫ T

0

∫

B

|∇uφ|
2dx dt

≤

∫

∂B
|u0,φ|

2dφ+ CTR−2E (u0),

where R > 0 is as in (6) .
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With similar reasoning we also obtain a uniform H2-bound.

Proposition. For any smooth u0 ∈ H1/2(S1;N) and any T < T0 as
specified above, with a constant C > 0 possibly depending also on
T there holds

sup
0<t<T

∫

B

|∇uφ(t)|
2dx +

∫ T

0

∫

∂B
|uφr |

2dφ dt ≤ C .

Higher bounds can then be obtained with two lemmas like the
following.

Lemma For any k ≥ 2, with a constant C > 0 depending only on k

and Γ, for the solution u = u(t) to (2) for any 0 < t < T0 there
holds

d

dt

(

‖∇∂k
φu‖

2
L2(B)

)

+ ‖∂k
φur‖

2
L2(∂B)

≤ C
∑

1≤ji≤k+1,Σi ji=k+2

‖∇∂k
φu‖L2(B)‖Πi∇

jiu‖L2(B).
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• Local existence can be obtained with a contraction-mapping
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ut + (ε+ dπ(v))∂ru = 0, u|t=0
= u0,

using bounds similar to the previous lemma, which are uniform in
0 < ε ≪ 1.
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Reference: http://arxiv.org/abs/2202.02083
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