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Maximum entropy 
production as 
admissibilty for 
physical solutions.   

Let’s start with the first set of slides
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Turbulence is the outstanding problem of 
class ica l ph ys ics .  

En tropy is  th e log volum e of a  surface of 
con s tan t en ergy

En ergy is  depen den t on  deta ils  of 
ph ys ics , con sequen tly, so is  en tropy.
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Maximization of entropy prodiction is a 
fun dm en ta l law  of th eoretica l ph ys ics , but 
rem ain s  disputed am on g m ath em atician s . 
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Maxim um  en tropy is  w ell un ders tood in  1D.
En tropy m axim izin g sh ock  w aves  a re 
ph ys ica l, oth er sh ock  w aves  a re n ot. 
Correction  due to Hugon iot, corrects  error of 
Riem an n .



Shock w ave en tropy m axim izes  th e 
en ergy diss ipa tion  ra te associa ted w ith  
flu id particle pos ition s . Diss ipa tion  is  
Fourier’s  law  of viscous  h ea t prodiction .
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Energy depends on physics. For single 
flu id in com press ible flu ids , en ergy is  th e  
fluctua tion  of velocity an d vorticity. 

Maxium  ra te of en tropy production  refers  
to both . Maxim um  ra te of en ergy 
diss ipa tion  refers  to both .

7



Two fluid turbulence has an additional 
en ergy of m ixin g, rela ted to Fick ’s  law .
Non ph ys ica l turbulen t m ixin g flow s  can  
fa il to m axim ize s in gle flu id en tropy.
.
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Nonphysical two fluid mixing flows are 
n ot cla im ed to m axim ize tw o flu id 
en tropy. Maxim iza tion  of s in gle flu id 
en tropy is  n ot relevan t for tw o flu id 
m ixin g flow s  an d does  n ot con tradict 
m axim um  en tropy production  as  an  
adm iss ibility prin ciple
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Theorem: Lebesgue measure, as a linear 
fun ction a l on  ph ase space, m axim izes  
en tropy production  rela tive to com parison  
m easures , in cludin g oth er solu tion s  of th e 
Euler/Navier-Stok es  equation s .
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Proof (in a short outline): 
En tropy is  con vex due to th e log volum e in  
its  defin ition .

Log in tegra l ≥ in tegra l log
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Questions?

user@mail.me
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Convergence of 
Resummed
Renormalized 
Perturbation 
Theory

Let’s start with the first set of slides
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Classical s toch as tic ph ys ics an d quan tum  
field th eory (QFT) sh are an  overlap in  
m uch  of th eir s tructure. Th e th ree in fin ite 
even  m om en ts  a re com m on . Th e 
Lagran gian s  defin ed by th e tran sport of 
en ergy are s im ila r. Ren orm alized 
perturba tion  th eory (RPT), w h ich  is  a  
program  to m ap th e Lagran gian  in to th e 
expon en t, h as  m an y com m on  fea tures .  
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Classical stochastic physics has a finite 
global gauge group, but in  con tras t to QFT, 
n o loca l gauge group. Th e flu ids  gauge 
group is  defin ed by th e sym m etry u i(x,t) -> 
-u ix,t) in  each  spa tia l direction  i. For 
gen eric ph ys ics , th e gauge group is  s i,ple 
n on Abelian , an d gives  th e th ree in fin ite 
m om en ts . For in com pess ible flu ids , on ly 
tw o m om en ts  a re in fin ite.  
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The three (or tw o) in fin ite m om en ts  a re 
eva lua ted in  a  Sobolev space of n ega tive 
in dex. Th is   a llow s  use of m ath em atica l 
tools  in  th eir an a lys is . 
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The converged resummed renormalized 
perturba tion  th eory defin es  a  m appin g of 
s ta tis tica l m om em ts  of  turbulen ce in to 
closed orien ted surfaces  in  3-space.
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Surface discontinuities produce a Gibbs 
ph en om en a  an d so RPT is   asym ptotic, n ot 
con vergen t. Th us  w e use resum m ation  
m eth ods  to obta in  con vergen ce. Itera ted 
a rith m etic m ean s . 
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Some terms in RPT (the first tw o or th ree 
even  m om en ts) a re in fin ite.  Th ese a re 
eva lua ted in  Sobolev spaces  of n ega tive 
in dex, w h ereupon  th ey becom e fin ite. 
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The proof is quite technical.We 
expect to h ave an  a rXiv vers ion  
sh ortly.  
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The conceptual basis for the proof depends 
on :
1. Prim e sequen ces
2. Bell n um ber expan s ion s : Each  term  is  a  

sum  of products  of prim e sequen ces
3. Law  of la rge n um bers  to con trol th e Bell 

n um ber expan s ion
4. Prim e sequen ces  h ave fin ite expecta tion  

va lues  in  som e Sobolev n orm
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A sequence is a linear 
com bin a tion  of products  of 
quadra tic term s  Du µvDu µv from  
th e Lagran gian . It is  prim e if it 
can n ot be w ritten  as  a  product to 
tw o subsequen ces . 
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Given a finite set X j ={1, … , j}, th e Bell n um ber 
Bj is  th e set of partition s  of Xj in to 
n on overlappin g subsets .

Th ese subsets  label prim e sequen ce factors  
an d th e Bell n um ber sum  labels  a ll poss ible 
factoriza tion s . 
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Given a finite set X j ={1, … , j}, th e Bell n um ber 
Bj is  th e set of partition s  of Xj in to 
n on overlappin g subsets .

Com bin a toric es tim ates  of th is  sum  depen d 
on  Borel resum m ation , th e law  of la rge 
n um bers . 
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Anayltic estimates depend  on convergence 
properties  of vacuum  expecta tion  va lues  for 
prim e sequen ces  in  poss ibly n ega tive in dex 
Sobolev n orm s.
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Questions?
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States of fully 
developed turbulence 
as vorticity  spheres 
and tori ( knotted) of 
various genus.  
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Twisted



Vacuum state, multiple vortex spheres
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The vacuum state is fully 
developed turbulence.



A  torus Vortex rings are 
commonly observed 
turbulent structures. 
They are the first 
excited state of 
turbulence
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A knotted torus
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Genus 2 torus
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Low energy states 
of turbulence :
vacuum (vortex 
sphere), torus 
(vortex ring), 
higher genus tori



Conjectured PhaseTransitions
(motivated by lore from fluids)

Systematic across fluids ---
quantum quarks and Yang -Mills 
gauge fields ---
and quantized general relativity
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Fluid phase 
transitions

▪ Laminar 
to 
turbulent 
transition

▪ Finit e gauge 
group, no gauge 
group related 
phase transition 

▪ Fluid is a 
matter 
field.

▪ Helicity 
transition
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Yang-Mills + quarks, phase 
transitions

▪ Quantum 
mechanics 
and atoms to 
elementary 
particles 
transition

▪ Gauge group 
chiral symmetry 
breaking. Plasma 
to strong 
particles 
transition 

▪ Matter field 
chiral 
symmetry 
breaking. 
Plasma to 
weak particles 
transtion
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Quantum General Relativity 
String theory 2D conformal 
quantum fields

▪ Dark matter 
to quantum 
general 
relativity 
with strings 

▪ Gauge group 
chiral symmetry 
breaking. Plasma 
to strong 
particles 
transition 

▪ Matter field 
chiral 
symmetry 
breaking. 
Plasma to 
weak particles 
transtion
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Summary

▪ 1. Maximun entropy 
production as 
admissibility condition.

▪ 2. Renormalized 
perturbation theory: 
resumed, convergent

▪ 3. Turbulent states as 
vortex spheres, tori 

▪ 4. Fluids as a window 
into QFT, quantum 
general relativity 
phase transitions. 
Dark matter 
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Questions?

Thanks
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