Phase Separation in Heterogeneous Media

Irene Fonseca
Carnegie Mellon University
Supported by the National Science Foundation (NSF)

International PDE Conference 2022 - Oxford, July 22, 2022

Overview

- Brief Introduction to Cahn-Hilliard
- Phase Transitions of Heterogeneous Media, The Critical Case $\varepsilon \sim \delta$ - Riccardo Cristoferi, IF, Adrian Hagerty, and Cristina Popovici (2019, 2020)
- Phase Transitions of Heterogeneous Media, The Subcritical Case $\varepsilon \ll \delta$ and Moving Wells - Riccardo Cristoferi, IF, Likhit Ganedi (2022, in progress)
- Allen-Cahn Phase Transitions of Heterogeneous Media, Critical Case - Rustum Choksi, IF, Jessica Lin, Raghavendra Venkatraman(2021-2022, in progress)
- What is next, and open problems ...

Brief Introduction to Cahn-Hilliard
 Van Der Waals (1893), Cahn and Hilliard (1958), Gurtin (1987)

Equilibrium behavior of a fluid with two stable phases . . . described by the Gibbs free energy

$$
I(u):=\int_{\Omega} W(u) d x
$$

$W: \mathbb{R} \rightarrow[0,+\infty) \ldots$ double well potential

$W(u):=\left(1-u^{2}\right)^{2},\{W=0\}=\{-1,1\}$

- $\Omega \subset \mathbb{R}^{N}$ open ($N \geqslant 2$), bounded, container
- $u: \Omega \rightarrow \mathbb{R}$ density of a fluid
- $\int_{\Omega} u d x=m \ldots m$ total mass of the fluid
- W double-well potential energy per unit volume
- $W^{-1}(\{0\})=\{a, b\} \ldots a<b \quad$ two phases of the fluid

Problem

Minimize total energy

$$
I(u)=\int_{\Omega} W(u) d x
$$

subject to $\int_{\Omega} u d x=m$

Solution

Assume $|\Omega|=1$ and $a<m<b$. Then minimizers are of the form

$$
u_{E}(x)= \begin{cases}a & \text { if } x \in E, \\ b & \text { if } x \in \Omega \backslash E,\end{cases}
$$

where $E \subseteq \Omega$ is any measurable set with $|E|=\frac{b-m}{b-a}$

NONUNIQUENESS OF SOLUTIONS

Selection via singular perturbations:

$$
I_{\varepsilon}(u):=\int_{\Omega}\left[W(u)+\frac{\varepsilon^{2}}{2}|\nabla u|^{2}\right] d x, \quad u \in C^{1}(\Omega), \varepsilon>0
$$

$\frac{\varepsilon^{2}}{2} \int_{\Omega}|\nabla u|^{2} d x \ldots$ surface energy penalization

Gurtin's Conjecture

$$
I_{\varepsilon}(u):=\int_{\Omega}\left[W(u)+\frac{\varepsilon^{2}}{2}|\nabla u|^{2}\right] d x, \quad u \in C^{1}(\Omega)
$$

$\{W=0\}=\{a, b\}$
"Preferred" minimizers u_{ε} of

$$
\min \left\{I_{\varepsilon}(u): u \in C^{1}(\Omega), \quad \int_{\Omega} u d x=m\right\}
$$

converge to $u_{E_{0}}$, where

$$
\operatorname{Per}_{\Omega}\left(E_{0}\right) \leqslant \operatorname{Per}_{\Omega}(E)
$$

over all sets of finite perimeter $E \subseteq \Omega$ with $|E|=\frac{b-m}{b-a}$

Modica-Mortola, 1977

Asymptotic behavior of minimizers to I_{ε} described via Γ-convergence. Scaling by ε^{-1} yields

$$
\begin{gathered}
\mathcal{F}_{\varepsilon}:=\varepsilon^{-1} I_{\varepsilon} \xrightarrow{\Gamma} \mathcal{F}, \\
\mathcal{F}(u):= \begin{cases}c_{W} \operatorname{Per}_{\Omega}\left(A_{0}\right) & u \in B V(\Omega ;\{a, b\}), \\
+\infty & u \in L^{1}(\Omega) \backslash B V(\Omega ;\{a, b\})\end{cases}
\end{gathered}
$$

where

$$
\begin{aligned}
A_{0} & :=\{u(x)=a\}, c_{W}:=\sqrt{2} \int_{a}^{b} \sqrt{W(s)} d s \\
\mathcal{F}_{\varepsilon}(u) & :=\frac{1}{\varepsilon} I_{\varepsilon}(u)=\int_{\Omega}\left[\frac{1}{\varepsilon} W(u)+\frac{\varepsilon}{2}|\nabla u|^{2}\right] d x
\end{aligned}
$$

$\mathcal{F}_{\varepsilon}$ and I_{ε} have the same minimizers

Γ-Convergence of Energy Functionals

Recall that a sequence of energy functionals $\mathcal{F}_{\varepsilon}: X^{\varepsilon} \rightarrow \mathbb{R} \Gamma$-converges (with respect to the topology τ) to a limiting functional $\mathcal{F}: Y \rightarrow \mathbb{R}$ if

- For any $u_{\varepsilon} \stackrel{\tau}{\rightharpoonup} u \in Y$, we have

$$
\mathcal{F}(u) \leqslant \liminf _{\varepsilon \rightarrow 0} \mathcal{F}_{\varepsilon}\left(u_{\varepsilon}\right)
$$

- For any $u \in Y$, there exists $u_{\varepsilon} \in X^{\varepsilon}$ with $u_{\varepsilon} \stackrel{\tau}{\rightharpoonup} u$ and

$$
\mathcal{F}(u) \geqslant(=) \limsup _{\varepsilon \rightarrow 0} \mathcal{F}_{\varepsilon}\left(u_{\varepsilon}\right) .
$$

Upshot: global minimizers of $\mathcal{F}_{\varepsilon}$ converge to global minimizers of \mathcal{F}.

So \ldots if we know the Γ-limit of $\left\{F_{\varepsilon}\right\}$ then we have a selection criterium: preferred minimizers of the original problem are minimizers of the Γ-limit \mathcal{F}

$$
\mathcal{F}_{\varepsilon}(u)=\int_{\Omega}\left[\frac{1}{\varepsilon} W(u)+\frac{\varepsilon}{2}|\nabla u|^{2}\right] d x, \quad u \in W^{1,2}(\Omega)
$$

Theorem

$\mathcal{F}_{\varepsilon} \xrightarrow{\Gamma} \mathcal{F}$ with respect to strong convergence in $L^{1}(\Omega)$, where

$$
\begin{gathered}
\mathcal{F}(u):= \begin{cases}c_{W} \operatorname{Per}_{\Omega}\left(u^{-1}(\{a\})\right) & \text { if } u \in B V(\Omega ;\{a, b\}), \int_{\Omega} u d x=m, \\
+\infty & \text { otherwise }\end{cases} \\
c_{W}:=\sqrt{2} \int_{a}^{b} \sqrt{W(s)} d s
\end{gathered}
$$

A non-exhaustive list of references:

- Modica (1987)
- Sternberg (1988)
- IF and Tartar (1989) - vectorial setting, at least linear growth at infinity
- Bouchitté (1990) - coupled perturbations of the form (scalar-valued case) $\frac{1}{\varepsilon} \int_{\Omega} W(x, u, \varepsilon \nabla u) d x$, moving wells
- Baldo (1990)- multiple phases
- Ambrosio (1990)- phases are compact sets
- Owen and Sternberg (1991), Barroso and IF (1994)
- IF and Popovici (2005)- coupled perturbations of the form (vector-valued case) $\frac{1}{\varepsilon} \int_{\Omega} W(x, u, \varepsilon \nabla u) d x$
- Conti, IF, Leoni (2002)- higher order Modica-Mortola type $\int_{\Omega}\left[\frac{1}{\varepsilon} W(\nabla u)+\varepsilon\left|\nabla^{2} u\right|^{2}\right] d x$
... Modern technologies, such as temperature-responsive polymers, take advantage of engineered inclusions.

Heterogeneities of the medium are exploited to obtain novel composite materials with specific physical properties.

To model such situations by using a variational approach based on the gradient theory, the potential and the wells have to depend on the spatial point, even in a discontinuous way.

Phase Transitions of Heterogeneous Media

 Mixture depending on position ... Lipid Rafts ... within the cell membrane there are many coexisting fluid phasesExperimental: phase separation occurs at the scale of nanometers, there is no macroscopic phase separation, thermal fluctuations play a role in the formation of nanodomains

- Simons and Ikonen (1997) proposed that proteins move along the cell membrane through "Lipid Rafts" by a chemical reaction between the lipids and cholesterol

Figure: Cell Membrane- (Source: Wikipedia)

Lipid Rafts

Figure: Fluorescent Imaging of Micron-scale fluid-fluid phase separation in giant unilamellar vesicles- Sengu

Figure: Macroscopic phase separation in a model membrane seeming to transition to a homogeneous material - Veatch and Keller (2002)

Modeling Considerations

- Assume all physiological parameters dependent on position
- Several different types of lipid rafts (so potentially different phases preferred at different positions)
- Use techniques of periodic homogenization to homogenize the submicroscopic phase separation into a macroscopic model
Fluids that exhibit periodic heterogeneity at small scales

$$
\mathcal{F}_{\varepsilon}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} W\left(\frac{x}{\delta(\varepsilon)}, u\right)+\frac{\varepsilon}{2}|\nabla u|^{2}\right] d x
$$

where ... preferred phases are encoded in
$W: \mathbb{R}^{N} \times \mathbb{R}^{d} \rightarrow[0,+\infty), N \geqslant 2, d \geqslant 1, \quad W(x, p)=0 \Longleftrightarrow p \in\{a(x), b(x)\}$,

$$
W(\cdot, p) \text { is } Q \text {-periodic for every } p
$$

and

$$
\delta(\varepsilon) \rightarrow 0 \text { as } \varepsilon \rightarrow 0 .
$$

Example: $W(x, p)=\chi_{E}(x) W_{1}(p)+\chi_{Q \backslash E} W_{2}(p)$
... shouldn't ask more than measurability w.r.t. x...
Goal: Identify Γ-limit of $\mathcal{F}_{\varepsilon}$

Sharp Interface Limit for Heterogeneous Phases (wells at $a(x)$ and $b(x))$ Without Homogenization

- Bouchitté (1990) ... a sharp interface limit in the scalar case
- Cristoferi and Gravina (2021) ... vectorial case under strict assumptions on the behavior near the wells

So start with fixed wells:

$$
W: \mathbb{R}^{N} \times \mathbb{R}^{d} \rightarrow[0,+\infty), N \geqslant 2, d \geqslant 1, \quad W(x, p)=0 \Longleftrightarrow p \in\{a, b\}
$$

The Critical Case $\delta(\varepsilon)=\varepsilon$: Riccardo Cristoferi, IF, Adrian

 Hagerty, and Cristina Popovici $(2019,2020)$
Theorem (R. Cristoferi, IF , A. Hagerty, C. Popovici, Interfaces

 Free Bound. $(2019,2020)$)Let $\delta(\varepsilon)=\varepsilon$. Then $\mathcal{F}_{\varepsilon} \stackrel{\Gamma}{\longrightarrow} \mathcal{F}$,

$$
\mathcal{F}(u):= \begin{cases}\int_{\partial^{*} A_{0}}^{\varepsilon} \sigma(\nu) d \mathcal{H}^{N-1} & u \in B V(\Omega ;\{a, b\}), \\ +\infty & \text { otherwise }\end{cases}
$$

where $A_{0}:=\{u(x)=a\}, \nu$ is the outward normal to A_{0},

$$
\sigma(\nu):=\lim _{T \rightarrow \infty} \inf _{u \in \mathcal{C}\left(T Q_{\nu}\right)}\left\{\frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[W(y, u(y))+\frac{|\nabla u(y)|^{2}}{2}\right] d y\right\}
$$

(anisotropic surface energy)
Ansini, Braides, Chiadò Piat (2003): W homogeneous, regularization $f\left(\frac{x}{\delta(\varepsilon)}, \nabla u\right) \ldots$ homogenization in the regularization term leads to fundamentally different phenomena

Cell Problem

$$
\sigma(\nu)=\lim _{T \rightarrow \infty} \inf _{u \in \mathcal{C}\left(T Q_{\nu}\right)}\left\{\frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[W(y, u(y))+\frac{|\nabla u(y)|^{2}}{2}\right] d y\right\}
$$

where

$$
\mathcal{C}\left(T Q_{\nu}\right):=\left\{u \in H^{1}\left(T Q_{\nu} ; \mathbb{R}^{d}\right): u(x)=\rho * u_{0, \nu} \text { on } \partial\left(T Q_{\nu}\right)\right\}
$$

$$
u_{0, \nu}(y):= \begin{cases}b & \text { if } y \cdot \nu>0 \\ a & \text { if } y \cdot \nu<0\end{cases}
$$

and (standard mollifier)

$$
\rho \in C_{c}^{\infty}(\mathbb{R}) \text { with } \int_{\mathbb{R}} \rho=1
$$

Source of Anisotropy

- If $\nu_{A}(x)$ is oriented with a direction of periodicity of W, the (local) recovery sequence would be obtained by using a rescaled version of the recovery sequence for $\sigma\left(\nu_{A}(x)\right)$ in each yellow cube and by setting z_{1} in the green region, and z_{2} in the pink one.
- If $\nu_{A}(x)$ is not oriented with a direction of periodicity of W, the above procedure does not guarantee that we recover the desired energy, since the energy of such functions is not the sum of the energy of each cube.

Proof: The Road Map

- Compactness: Bounded energy $\rightarrow B V$ structure
- Γ-liminf: "Lower-semicontinuity" result using blow-up techniques
- Γ-limsup: Recovery sequences
- Blow-Up Method
- Recovery sequences for polyhedral sets with $\nu \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$
- Density result and upper semicontinuity of σ

Challenge: Combining effects of oscillation and concentration: appearance of microstructure at scale ε within an interface of thickness ε.

Easy Case: Transition Layer Aligned with Principal Axes

If $\nu \in\left\{e_{1}, \ldots, e_{N}\right\}$, create recovery sequence by tiling optimal profiles from definition of σ.
Pick $T_{k} \subset \mathbb{N}$ and u_{k} s.t.

$$
\begin{gathered}
\sigma\left(e_{N}\right)=\lim _{k \rightarrow \infty} \frac{1}{T_{k}^{N-1}} \int_{T_{k} Q}\left[W\left(y, u_{k}(y)\right)+\left|\nabla u_{k}(y)\right|^{2}\right] d y, \\
v_{k}(x):=u_{k}\left(T_{k} x\right), \text { extended by } Q^{\prime} \text {-periodicity, } \\
v_{k, \varepsilon, r}(x):= \begin{cases}u_{0}(x) & \left|x_{N}\right| \geqslant \frac{\varepsilon T_{k}}{2 r} \\
v_{k}\left(\frac{r x}{\varepsilon T_{k}}\right) & \left|x_{N}\right|<\frac{\varepsilon T_{k}}{2 r}\end{cases} \\
u_{k, \varepsilon, r}(x):=v_{k, \varepsilon, r}\left(\frac{x}{r}\right) \rightarrow u \text { in } L^{1}(r Q)
\end{gathered}
$$

Transition Layer Aligned with Principal Axes, cont.

Blow up:

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{F(u ; r Q)}{r^{N-1}} \leqslant \lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{r^{N-1}} \int_{r Q}\left[\frac{1}{\varepsilon} W\left(x, u_{k, \varepsilon, r}\right)+\varepsilon\left|\nabla u_{k, \varepsilon, r}\right|^{2}\right] d x \\
&=\lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-\varepsilon T_{k} / 2 r}^{\varepsilon T_{k} / 2 r}[{\left[\frac{r}{\varepsilon} W\left(\frac{r}{\varepsilon} y, v_{k}\left(\frac{r y}{\varepsilon T_{k}}\right)\right)\right.} \\
&\left.\quad+\frac{r}{\varepsilon T_{k}^{2}}\left|\nabla v_{k}\left(\frac{r y}{\varepsilon T_{k}}\right)\right|^{2}\right] d y \\
&=\lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2}\left[T _ { k } W \left(\left(T_{k} \frac{r z^{\prime}}{\varepsilon T_{k}}, T_{k} z_{N}, v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right)\right.\right. \\
&\left.+\frac{1}{T_{k}}\left|\nabla v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right|^{2}\right] d z
\end{aligned}
$$

Since W and v_{k} are BOTH Q^{\prime}-periodic and $T_{k} \in \mathbb{N}$, we can use the Riemann Lebesgue Lemma:

$$
\begin{aligned}
\lim _{r \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2} & {\left[T_{k} W\left(\left(T_{k} \frac{r z^{\prime}}{\varepsilon T_{k}}, T_{k} z_{N}\right), v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right)\right.} \\
& \left.+\frac{1}{T_{k}}\left|\nabla v_{k}\left(\frac{r z^{\prime}}{\varepsilon T_{k}}, z_{N}\right)\right|^{2}\right] d z \\
=\lim _{r \rightarrow 0} \int_{Q^{\prime}} \int_{-1 / 2}^{1 / 2}[& T_{k} W\left(\left(T_{k} y^{\prime}, T_{k} z_{N}\right), v_{k}\left(y^{\prime}, z_{N}\right)\right. \\
& \left.\quad+\frac{1}{T_{k}}\left|\nabla v_{k}\left(y^{\prime}, z_{N}\right)\right|^{2} d z_{N}\right] d y^{\prime}
\end{aligned} \quad \begin{aligned}
& =\frac{1}{T_{k}^{N-1}} \int_{T_{k} Q}\left[W\left(x, u_{k}(x)\right)+\left|\nabla u_{k}(x)\right|^{2}\right] d x
\end{aligned}
$$

Other Transition Directions?

(a)

Aligned

(b)

Misaligned

Figure: Since W is Q-periodic, can tile along principal axes. What if the transition layer is not aligned?

Q-Periodic Implies $\lambda_{\nu} Q_{\nu}$-Periodic

Key observation: Periodic microstructure in principal directions \rightarrow periodicity in other directions.

Figure: Integer lattice contains copies of itself, rotated and scaled
$\triangleright W$ is $\lambda_{\nu} Q_{\nu}$-periodic for some $\lambda_{\nu} \in \mathbb{N}$, and for $\nu \in \Lambda:=\mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$: Dense!

A Bit of Linear Algebra

Let $\nu_{N} \in \Lambda=\mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$. There exist $\nu_{1}, \ldots, \nu_{N-1} \in \Lambda, \lambda_{\nu} \in \mathbb{N}$, s.t.

$$
\nu_{1}, \ldots, \nu_{N-1}, \nu_{N}
$$

o.n. basis of \mathbb{R}^{N} and

$$
W\left(x+n \lambda_{\nu} \nu_{i}, p\right)=W(x, p)
$$

a.e. $x \in Q$, all $n \in \mathbb{N}, p \in \mathbb{R}^{d}$.

Also use:
$\varepsilon>0, \nu \in \Lambda, S: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ rotation, $S e_{N}=\nu$.
Then there is a rotation $R: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ s.t. $R e_{N}=\nu, R e_{i} \in \Lambda$ all $i=1, \ldots, N-1,\|R-S\|<\varepsilon$

Properties of σ

- σ is well defined and finite
- the definition of σ does not depend on the choice of the mollifier
- $\sigma: \mathbb{S}^{N-1} \rightarrow[0,+\infty)$ is upper semicontinuous; actually σ is positively one-homogeneous and convex
- if $\nu \in \Lambda$ then
$\sigma(\nu)=\lim _{n \rightarrow \infty} \lim _{T \rightarrow \infty} \inf _{u \in \mathcal{C}\left(T Q_{n}\right)}\left\{\frac{1}{T^{N-1}} \int_{T Q_{n}}\left[W(y, u(y))+\frac{|\nabla u(y)|^{2}}{2}\right] d y\right\}$
where the normals to all faces of Q_{n} belong to Λ

Transition Layer Aligned with $\nu \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$

Same periodic tiling technique: Use $T_{k} \in \lambda_{\nu} \mathbb{N}$.

\triangleright Blow up method \rightarrow Recovery sequences for polyhedral sets A_{0} with normals to its facets in Λ

Recovery Sequences for Arbitrary $u \in B V(\Omega ;\{a, b\})$

- For $u \in B V(\Omega ;\{a, b\})$, we can find $u^{(n)} \in B V(\Omega ;\{a, b\})$ such that $A_{0}^{(n)}$ are polyhedral,

$$
\begin{gathered}
u^{(n)} \rightarrow u \text { in } L^{1} \\
\left|D u^{(n)}\right|(\Omega) \rightarrow|D u|(\Omega) .
\end{gathered}
$$

Since $\mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$ dense, can require $\nu^{(n)} \in \mathbb{Q}^{N} \cap \mathbb{S}^{N-1}$.

- Since σ upper-semicontinuous, by Reshetnyak's,

$$
\int_{\partial^{*} A_{0}} \sigma(\nu) d \mathcal{H}^{n-1} \leqslant \limsup _{n \rightarrow \infty} \int_{\partial^{*} A_{0}^{(n)}} \sigma\left(\nu^{(n)}\right) d \mathcal{H}^{n-1}
$$

- Find recovery sequences $u_{\varepsilon}^{(n)}$ for the $u^{(n)}$ so that

$$
\int_{\partial^{*} A_{0}^{(n)}} \sigma\left(\nu^{(n)}\right) d \mathcal{H}^{n-1} \leqslant \limsup _{\varepsilon \rightarrow 0^{+}} F_{\varepsilon}\left(u_{\varepsilon}^{(n)}\right)
$$

- Diagonalize!

Phase Transitions of Heterogeneous Media, The Subcritical

 Case $\varepsilon \ll \delta$ and Moving Wells - Riccardo Cristoferi, IF, Likhit Ganedi (2022, in progress)$$
\mathcal{F}_{\varepsilon}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} W\left(\frac{x}{\delta(\varepsilon)}, u\right)+\frac{\varepsilon}{2}|\nabla u|^{2}\right] d x
$$

Finite family of piecewise affine domains $\left\{E_{i}\right\}_{i=1}^{k}$ partitioning Q,

$$
W(y, p)=\sum_{i=1}^{k} \chi_{E_{i}}(y) W_{i}(y, p) \quad y \in Q, z \in \mathbb{R}^{d}
$$

$W_{i} \ldots$ Lipschitz
For general $x \in \Omega$, define $W(x, \cdot)$ by Q-periodicity Regime:

$$
\begin{gathered}
\frac{\varepsilon_{n}}{\delta_{n}} \rightarrow 0 \\
I_{n}(u):=\int_{\Omega}\left[W\left(\frac{x}{\delta_{n}}, u\right)+\varepsilon_{n}^{2}|\nabla u|^{2}\right] d x
\end{gathered}
$$

Conditions on W

1.

$$
W_{i}(y, p)=0 \quad \text { if and only if } \quad p \in\left\{a_{i}(y), b_{i}(y)\right\} \quad \forall y \in Q
$$

where a_{i}, b_{i} are Lipschitz
2. Behavior Near Wells: there exist $r>0, C>0$ such that
3. If $y \in Q \backslash\left\{a_{i}=b_{i}\right\}$ (wells need NOT be separated) then there exist $r>0, R>0, C>0$ s.t.

$$
\frac{1}{C}\left|p-a_{i}(y)\right|^{2} \leqslant W_{i}(y, p) \leqslant C\left|p-a_{i}(y)\right|^{2}
$$

if $y \in B\left(y_{0}, r\right)$ and $\left|p-a_{i}(y)\right| \leqslant R$, and

$$
\frac{1}{C}\left|p-b_{i}(y)\right|^{2} \leqslant W_{i}(y, p) \leqslant C\left|p-b_{i}(y)\right|^{2}
$$

if $\left|p-b_{i}(y)\right| \leqslant R$
4. there exists $C>0$ s. t. for all $|p|>C, W_{i}(y, p) \geqslant \frac{1}{C}|z|^{2}$.

Furthermore, $W_{i}(y, p) \leqslant C\left(1+|p|^{2}\right)$

Our framework includes Braides, Zeppieri (2009):

$$
\int_{0}^{1}\left[W^{(k)}\left(\frac{x}{\delta(\varepsilon)}, u\right)+\varepsilon^{2}\left|u^{\prime}\right|^{2}\right] d x
$$

Here $W: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ is given by

$$
W(y, s):= \begin{cases}\widetilde{W}(s-k) & y \in\left(0, \frac{1}{2}\right), \\ \widetilde{W}(s+k) & y \in\left(\frac{1}{2}, 1\right)\end{cases}
$$

with $\widetilde{W}(t):=\min \left\{(t-1)^{2},(t+1)^{2}\right\}$, and thus the wells are

$$
a(y)=\left\{\begin{array}{ll}
1-k & \text { for } y \in\left(0, \frac{1}{2}\right), \\
1+k & \text { else, }
\end{array} \quad b(y)= \begin{cases}-1-k & \text { for } y \in\left(0, \frac{1}{2}\right) . \\
-1+k & \text { else }\end{cases}\right.
$$

Zeroth Order Result

Theorem ($0^{\text {th }}$-order Γ-convergence)

Let $\left\{u_{n}\right\} \subset W^{1,2}\left(\Omega ; \mathbb{R}^{d}\right)$ have bounded energy. Then (up to a subsequence, not relabeled) $u_{n} \rightharpoonup u$ in $L^{2}\left(\Omega ; \mathbb{R}^{d}\right)$ for some $u \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right)$. Moreover, $I_{n} \Gamma$-converge to I_{0} with respect to the weak- L^{2} convergence:

$$
\begin{gathered}
I_{0}(u):=\int_{\Omega} W_{\mathrm{hom}}(u(x)) d x \\
W_{\mathrm{hom}}(z):=\min \left\{\int_{Q} W^{* *}(y, z+\varphi(y)) d y: \varphi \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right), \int_{Q} \varphi d y=0\right\} .
\end{gathered}
$$

Minimizers to the limit are of form:

$$
u(x)=\int_{Q} \mu(x, y) a(y) d y+\int_{Q}[1-\mu(x, y)] b(y) d y
$$

where $\mu \in L^{2}\left(\Omega ; L^{\infty}(Q ;[0,1])\right)$.

Comments on the Proof

- This was first done by Francfort and Müller (1994) for case of:

$$
\int_{\Omega} W\left(\frac{x}{\delta}, \nabla u(x)\right)+\varepsilon^{2}\left|\nabla^{2} u(x)\right|^{2} d x
$$

- Our proof uses simpler two-scale methods - these techniques have been applied in other contexts before, e.g. (Allaire (1992), IF and Zappale (2002))

Heuristic Scaling Analysis

$$
\mathcal{F}_{\varepsilon, \delta} \sim\left[\left(\frac{\varepsilon}{\delta}\right)^{2}\right]+\frac{1}{\mu}\left[\eta+\left(\frac{\varepsilon}{\delta}\right)^{2} \frac{1}{\eta}\right]+\frac{1}{\mu}\left[\gamma+\left(\frac{\varepsilon}{\delta}\right)^{2} \frac{1}{\gamma}\right]
$$

Divide by $\frac{\varepsilon}{\delta}$:

$$
\left[\frac{\varepsilon}{\delta}\right]+\frac{1}{\mu}\left[\left(\frac{\varepsilon}{\delta \eta}\right)^{-1}+\frac{\varepsilon}{\delta \eta}\right]+\frac{1}{\mu}\left[\left(\frac{\varepsilon}{\delta \gamma}\right)^{-1}+\frac{\varepsilon}{\delta \gamma}\right]
$$

First Order Energy

$$
\mathcal{F}_{n}(u):=\frac{\delta_{n} I_{n}(u)}{\varepsilon_{n}}=\int_{\Omega}\left[\frac{\delta_{n}}{\varepsilon_{n}} W\left(\frac{x}{\delta_{n}}, u(x)\right)+\varepsilon_{n} \delta_{n}|\nabla u(x)|^{2}\right] d x
$$

Unfolded(up to small boundary terms):

$$
\mathcal{F}_{n}^{1}(u): \approx \int_{\Omega} \int_{Q}\left[\frac{\delta_{n}}{\varepsilon_{n}} W\left(y, T_{\delta_{n}}(u)\right)+\frac{\varepsilon_{n}}{\delta_{n}}\left|\nabla_{y} T_{\delta_{n}}(u)\right|^{2}\right] d y d x
$$

Unfolding Operator - Cioranescu, Damlamian, Griso (2002), Visintin (2004)

$u \in L^{p}\left(\Omega ; \mathbb{R}^{d}\right), \varepsilon>0, \hat{\Omega}_{\varepsilon}:=\operatorname{int}\left(\bigcup_{k^{\prime} \in \mathbb{Z}^{n}}\left\{\varepsilon\left(Q+k^{\prime}\right): \varepsilon\left(Q+k^{\prime}\right) \subset \Omega\right\}\right)$.
The unfolding operator $T_{\varepsilon}: L^{p}\left(\Omega ; \mathbb{R}^{d}\right) \rightarrow L^{p}\left(\Omega ; L^{p}\left(Q ; \mathbb{R}^{d}\right)\right)$ is defined as:

$$
T_{\varepsilon}(u)(x, y):=u\left(\varepsilon\left\lfloor\frac{x}{\varepsilon}\right\rfloor+\varepsilon y\right) \quad \text { for a.e. } x \in \hat{\Omega}_{\varepsilon} \text { and } y \in Q
$$

where $\lfloor\cdot\rfloor$ denotes the least integer part, and $T_{\varepsilon}(u)$ is extended by some $f: Q \rightarrow \mathbb{R}^{d}$ on $\left(\Omega \backslash \hat{\Omega}_{\varepsilon}\right) \times Q$.

Unfolding Operator and Two Scale Convergence

$$
u_{\varepsilon} \stackrel{2-s}{\rightharpoonup} u_{0} \Longleftrightarrow T_{\varepsilon}\left(u_{\varepsilon}\right) \rightharpoonup u_{0} \quad \text { in } L^{p}\left(\Omega ; L^{p}\left(Q ; \mathbb{R}^{d}\right)\right)
$$

Two-Scale Convergence - G.Nguetseng (1989) and Allaire (1992)

$\left\{u_{\varepsilon}\right\} \in L^{p}\left(\Omega ; \mathbb{R}^{M}\right), u_{0} \in L^{p}\left(\Omega ; L^{p}\left(Q ; \mathbb{R}^{M}\right)\right)$. $\left\{u_{\varepsilon}\right\}$ weakly two-scale converges to u_{0} in $L^{p}\left(\Omega ; L^{p}\left(Q ; \mathbb{R}^{M}\right)\right)$, and we write $u_{\varepsilon}{ }^{2-s} u_{0}$, if for every $\varphi \in L^{p^{\prime}}\left(\Omega ; C_{\mathrm{per}}\left(Q ; \mathbb{R}^{M}\right)\right)$

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} u_{\varepsilon}(x) \cdot \varphi\left(x, \frac{x}{\varepsilon}\right) d x=\int_{\Omega} \int_{Q} u_{0}(x, y) \cdot \varphi(x, y) d y d x
$$

Some Properties of the Unfolding Operator

1.

$$
\int_{\Omega} u(x) d x=\int_{\hat{\Omega}_{\varepsilon}} \int_{Q} T_{\varepsilon}(u)(x, y) d y d x+\int_{\Omega \backslash \hat{\Omega}_{\varepsilon}} u(x) d x
$$

2. In particular,

$$
\int_{\Omega} W(u(x)) d x=\int_{\hat{\Omega}_{\varepsilon}} \int_{Q} W\left(T_{\varepsilon}(u)\right) d y d x+\int_{\Omega \backslash \hat{\Omega}_{\varepsilon}} W(u(x)) d x
$$

3. If $u \in W^{1, p}\left(\Omega ; \mathbb{R}^{d}\right)$, then $T_{\varepsilon}(\varepsilon \nabla u)=\nabla_{y} T_{\varepsilon}(u)$

Geodesic Energy

Define the function $\chi: \mathbb{R}^{d} \rightarrow\{1, \ldots, k\}$ by $\chi(y):=i$ if $y \in E_{i}$

Definition

For $p, q, z_{0} \in \mathbb{R}^{d}$ consider the class
$\mathcal{A}\left(p, q, z_{0}\right):=\left\{\gamma \in W^{1,1}\left((-1,1) ; \mathbb{R}^{d}\right): \gamma(-1)=p, \gamma(0)=z_{0}, \gamma(1)=q\right\}$.
Define $\mathrm{d}_{\mathrm{W}}:\left[J_{\chi} \cup\left(\bar{Q} \backslash S_{\chi}\right)\right] \times \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow[0, \infty)$ as

$$
\begin{aligned}
\mathrm{d}_{\mathrm{W}}(y, p, q):=\inf \{ & \int_{-1}^{0} 2 \sqrt{W_{i}(y, \gamma(t))}\left|\gamma^{\prime}(t)\right| d t \\
& \left.+\int_{0}^{1} 2 \sqrt{W_{j}(y, \gamma(t))}\left|\gamma^{\prime}(t)\right| d t\right\}
\end{aligned}
$$

if $\chi^{-}(y)=i$ and $\chi^{+}(y)=j$, where the infimum is taken over points $z_{0} \in \mathbb{R}^{d}$, and over curves $\gamma \in \mathcal{A}\left(p, q, z_{0}\right)$.

First Order Energy

Theorem (R. Cristoferi, IF, L. Ganedi $(2021,2022)$)

$\mathcal{F}_{n}^{1}(u)$ two-scale Γ-converge (Cherdantsev and Cherednichenko (2012)) with respect to the strong $L^{1}\left(\Omega ; L^{1}\left(Q ; \mathbb{R}^{d}\right)\right)$ topology to the functional

$$
\mathcal{F}^{1}(u):= \begin{cases}\int_{\Omega} \widetilde{\mathcal{F}^{1}}(\widetilde{u}(x, \cdot)) d x & \text { if } u \in \mathcal{R}, \\ +\infty & \text { else }\end{cases}
$$

where

$$
\widetilde{\mathcal{F}^{1}}(v):=\int_{\widetilde{Q} \cap J_{v}} \mathrm{~d}_{\mathrm{W}}\left(y, v^{-}(y), v^{+}(y)\right) d \mathcal{H}^{N-1}(y) .
$$

where
$\widetilde{\mathcal{R}}:=\left\{v \in L^{1}\left(\mathbb{R}^{N} ; \mathbb{R}^{d}\right): v\right.$ is Q-periodic, $v(y) \in\{a(y), b(y)\}$ a.e., $\left.\mathrm{BV}_{\mathrm{loc}}\left(Q_{0} ; \mathbb{R}^{d}\right)\right\}$

$$
Q_{0}:=Q \backslash\{x \in Q: a(x)=b(x)\}
$$

and

$$
\mathcal{R}:=\left\{v \in L^{2}\left(\Omega ; L^{1}\left(Q ; \mathbb{R}^{d}\right)\right): \widetilde{v}(x, \cdot) \in \widetilde{\mathcal{R}} \text { for a.e. } x \in \Omega\right\}
$$

where $\widetilde{v}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{d}$ denotes the Q-periodic extension of $v \in L^{1}\left(Q ; \mathbb{R}^{d}\right)$

Remember Lipid Rafts ...

At first order we see a local phase separation (namely in the second variable), but not a macroscopic phase separation, since this is averaged over the entire domain.

At the next order of the Γ-expansion we expect to see a macroscopic phase separation of a similar form as the one arising from homogenization of interfaces.

However, this problem will be more challenging as

$$
\min \mathcal{F}^{1} \text { can be nonzero }
$$

and the structure of minimizers of the mass constrained minimization problem (which is what is most interesting for applications) might be hard to identify.

Indeed:

$$
\min \left\{\mathcal{F}^{1}(u): u \in \mathcal{R}\right\}=0
$$

iff the Q-periodic extensions of a and b are continuous

Technical Challenges

1. Presence of two-scale variables
2. Discontinuities of the wells
3. Extension of sharp interface result of Cristoferi-Gravina (2021) without homogenization - Comes down to a question of uniformly bounding geodesic lengths, while in Cristoferi-Gravina (2021) the assume the condition that $W(x, p)=|p-a(x)|^{2}$ near the well $a(x)$ (similarly for $b(x)$), so that the geodesic is just a line
4. We do not impose wells being well-separated, they can merge (as opposed to Cristoferi-Gravina (2021))
5. Limsup inequality requires an approximation by simple functions quite delicate due to possible discontinuities in the wells

Allen-Cahn Phase Transitions of Heterogeneous Media,

 Critical Case- Rustum Choksi, IF, Jessica Lin, Raghavendra
Venkatraman(2021-2022, in progress)

And now the Gradient Flow $\varepsilon \rightarrow 0^{+}$asymptotics of solutions $\left\{u_{\varepsilon}\right\}_{\varepsilon>0}$ to a bistable reaction-diffusion PDE

$$
\begin{cases}\partial_{t} u_{\varepsilon}-\Delta u_{\varepsilon}=-\frac{1}{\varepsilon^{2}} a\left(\frac{x}{\varepsilon}\right) W^{\prime}\left(u_{\varepsilon}\right) & \text { in } \Omega_{T} \\ u_{\varepsilon}(x, 0) \approx \chi_{E}-\chi_{\bar{E}^{c}} & \text { in } \Omega, \\ \frac{\partial u_{\varepsilon}}{\partial n}=0 & \text { on } \partial \Omega \times(0, T],\end{cases}
$$

- $\Omega \subseteq \mathbb{R}^{N}, N \geqslant 2$, smooth, bounded domain, $\Omega_{T}:=\Omega \times(0, T]$
- $d=1$ (scalar case), $W(x, u):=a(x) W(u), W(u):=\left(1-u^{2}\right)^{2}$, double-well potential with wells at 1 and -1
- $a: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is \mathbb{T}^{N} periodic and C^{2}
- There exist $0<\theta<\Theta<\infty$ such that $a(\cdot)$ takes values on $[\theta, \Theta]$
- $E \subseteq \mathbb{R}^{N}$, where ∂E is the interface between the phases 1 and -1 ; $u_{\varepsilon}(x, 0) \approx \pm 1$
The heterogeneous Allen-Cahn equation is the L^{2} - gradient flow of $\frac{1}{\varepsilon} \mathcal{F}_{\varepsilon}$

$$
\mathcal{F}_{\varepsilon}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} a\left(\frac{x}{\varepsilon}\right) W(u)+\frac{\varepsilon}{2}|\nabla u|^{2}\right] d x
$$

A Familiar Asymptotic, Homogeneous Model: $a \equiv 1$

The asymptotic behaviour of (with $a \equiv 1$)

$$
\partial_{t} u_{\varepsilon}-\Delta u_{\varepsilon}=-\frac{1}{\varepsilon^{2}} W^{\prime}\left(u_{\varepsilon}\right)
$$

has been studied extensively, including (but not limited to)

- Rubinstein-Sternberg-Keller (matched asymptotics)
- Classical PDE Approach: De Mottoni-Schatzman; Chen; Alikakos-Bates-Chen
- Variational Approach: Bronsard-Kohn (radial symmetry)
- Viscosity Solution Approach: Evans-Soner-Souganidis; Barles-Souganidis; Barles-Da Lio
- Geometric Measure Theory Approach: Ilmanen; Mugnai and Röger; Röger-Schätzle, Sato, Tonegawa
In all cases, it is shown that u_{ε} converge to solutions of some notion of generalized mean curvature flow: normal velocity $=$ mean curvature

Characterizing the Limiting Behaviour

Homogenization Dream: Identify a function u such that $u_{\varepsilon} \rightarrow u$ (in some norm), where u solves an explicit "effective" PDE (a homogeneous version of the heterogeneous equation)
For

$$
\partial_{t} u_{\varepsilon}-\Delta u_{\varepsilon}=-\frac{1}{\varepsilon^{2}} a\left(\frac{x}{\varepsilon}\right) W^{\prime}\left(u_{\varepsilon}\right),
$$

one expects that as $\varepsilon \rightarrow 0,\left\{u_{\varepsilon}\right\}$ converges to the (stable) equilibria ($\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}= \pm 1$). Questions:

- What is the structure of the limiting/effective PDE (whose solution only takes the values of ± 1)?
- How will $a(\cdot)$ influence the limit?

The Transition Region when $a \equiv 1$

When $a \equiv 1$, an equilibrium solution solves

$$
\Delta u=\frac{1}{\varepsilon^{2}} W^{\prime}(u)
$$

Blowing up at a point x on the interface with normal $\nu(x)$, and looking for a $1 D$ profile $u(x) \approx q\left(\frac{x \cdot \nu}{\varepsilon}\right)$ leads to the heteroclinic solution:

$$
q^{\prime \prime}=W^{\prime}(q), \quad \lim _{z \rightarrow \pm \infty} q(z)= \pm 1
$$

Figure: Heteroclinic connection

Equipartition of Energy

The heteroclinic ODE

$$
q^{\prime \prime}=W^{\prime}(q), \quad \lim _{z \rightarrow \infty} q(z)= \pm 1
$$

is spatially invariant, so we have a conservation law, a.k.a equipartition of energy:

$$
\frac{\left(q^{\prime}\right)^{2}}{2}=W(q), \quad \lim _{z \rightarrow \infty} q(z)= \pm 1
$$

With our choice of $W, q(z)=\tanh \left(\frac{z}{\sqrt{2}}\right)$
Effective surface tension:
$\sigma=\int_{-\infty}^{\infty}\left[\frac{\left(q^{\prime}\right)^{2}}{2}+W(q)\right] d z=\int_{-\infty}^{\infty} 2 \sqrt{W(q)} \frac{\left|q^{\prime}\right|}{\sqrt{2}} d z=\sqrt{2} \int_{-1}^{1} \sqrt{W(s)} d s$
What about in a periodic medium, when a is non-constant?

Eikonal Equation with Riemmannian Metric

 Understand "one-dimensional" solutions of the "degenerate" Eikonal equation (equipartition of energy)$$
\frac{1}{2}|\nabla u|^{2}=a(y) W(u)
$$

- The case $a \equiv 1: \frac{1}{2}|\nabla u|^{2}=W(u)$ yields $u(x)=\tanh \left(\frac{x}{\sqrt{2}} \cdot \nu\right)$.
- Endow \mathbb{R}^{N} with a Riemannian metric conformal to the Euclidean one:

$$
d_{\sqrt{a}}\left(y_{1}, y_{2}\right)=\inf _{\gamma(0)=y_{1}, \gamma(1)=y_{2}} \int_{0}^{1} \sqrt{a(\gamma(t))}|\gamma(t)| d t .
$$

$$
\Sigma_{\nu}:=\{x: x \cdot \nu=0\}
$$

$h_{\nu}(x)=\operatorname{sign}(x \cdot \nu) d_{\sqrt{a}}\left(x, \Sigma_{\nu}\right) \ldots$ signed distance function to the plane Σ_{ν} in the \sqrt{a}-metric. Then

$$
\left|\nabla h_{\nu}(x)\right|=\sqrt{a}(x)
$$

Recall:

$$
q^{\prime}=\sqrt{2 W(q)} \ldots \text { with our choice of } W, q(z)=\tanh \left(\frac{z}{\sqrt{2}}\right)
$$

with $q(z) \rightarrow \pm 1$ as $z \rightarrow \infty$, then $u(x):=\left(q \circ h_{\nu}\right)(x)$ solves (a.e.). . . equipartition of energy

$$
\frac{1}{2}|\nabla u|^{2}=a(x) W(u) .
$$

When $a \equiv 1$

$$
\begin{aligned}
\sigma(\nu) \equiv \sigma_{0} & :=\int_{-\infty}^{\infty}\left[W(q \circ(y \cdot \nu))+|\nabla(q \circ(y \cdot \nu))|^{2}\right] d(y \cdot \nu) \\
& =2 \int_{-1}^{1} \sqrt{W(s)} d s .
\end{aligned}
$$

In general, would this hold with $u(x):=\left(q \circ h_{\nu}\right)(x)$ in place of $q \circ(y \cdot \nu)$? No, unless a is constant.

Recall:

$$
\begin{array}{r}
\sigma(\nu)=\lim _{T \rightarrow \infty} \frac{1}{T^{N-1}} \inf \left\{\int_{T Q_{\nu}}\left[a(y) W(u)+|\nabla u|^{2}\right] d y: u \in H^{1}\left(T Q_{\nu}\right),\right. \\
\left.u=\rho * u_{0, \nu} \text { on } \partial\left(T Q_{\nu}\right)\right\}
\end{array}
$$

$u_{0, \nu}(y):=\operatorname{sgn}(y \cdot \nu)$
Using De Giorgi's slicing method:

$$
\begin{array}{r}
\sigma(\nu)=\lim _{T \rightarrow \infty} \frac{1}{T^{N-1}} \inf \left\{\int_{T Q_{\nu}}\left[a(y) W(u)+|\nabla u|^{2}\right] d y: u \in H^{1}\left(T Q_{\nu}\right),\right. \\
\left.u=q \circ h_{\nu} \text { along } \partial\left(T Q_{\nu}\right)\right\} .
\end{array}
$$

. . . SO

$$
\sigma(\nu) \leqslant \liminf _{T \rightarrow \infty} \frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[a(y) W\left(q \circ h_{\nu}\right)+\left|\nabla\left(q \circ h_{\nu}\right)\right|^{2}\right] d y
$$

Bounds on σ

Theorem (R. Choksi, I. F., J. Lin, R. Venkastraman (2021))

$$
q(z):=\tanh (z), \quad z \in \mathbb{R}
$$

For $\nu \in \mathbb{S}^{N-1}$, define

$$
\begin{aligned}
& \underline{\lambda}(\nu):=\liminf _{T \rightarrow \infty} \frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[a(y) W\left(q \circ h_{\nu}\right)+\left|\nabla\left(q \circ h_{\nu}\right)\right|^{2}\right] d y \\
& \bar{\lambda}(\nu):=\limsup _{T \rightarrow \infty} \frac{1}{T^{N-1}} \int_{T Q_{\nu}}\left[a(y) W\left(q \circ h_{\nu}\right)+\left|\nabla\left(q \circ h_{\nu}\right)\right|^{2}\right] d y
\end{aligned}
$$

There exist $\Lambda_{0}>0$ and $\lambda_{0}: \mathbb{S}^{N-1} \rightarrow\left[0, \Lambda_{0}\right]$ such that

$$
\bar{\lambda}(\nu)-\lambda_{0}(\nu) \leqslant \sigma(\nu) \leqslant \underline{\lambda}(\nu)
$$

Already saw:

$$
\sigma(\nu) \leqslant \underline{\lambda}(\nu)
$$

Should we expect

$$
\underline{\lambda}(\nu)=\sigma(\nu)=\bar{\lambda}(\nu)
$$

i.e.,

$$
\lambda_{0}(\nu)=0 ?
$$

No if $\nu \in \mathbb{Q}^{N}:$ Feldman and Morfe showed that if so, then h_{ν} must be harmonic, and this is only if a is constant. Also no if ν is an irrational direction.

Homogenization of the Planar Metric Problem

 A natural, yet open, question concerns the large-scale homogenized behavior of h_{ν}, i.e., characterize the limit$$
\lim _{T \rightarrow \infty} \frac{h_{\nu}(T y)}{T}, \quad y \in \mathbb{R}^{N},
$$

in a suitable topology of functions. We are unable to fully resolve this question. Yet...

Theorem (R. Choksi, I. F. , J. Lin, R. Venkatraman (2021))

Let $\nu \in \mathbb{S}^{N-1}, a: \mathbb{R}^{N} \rightarrow \mathbb{R}$ Bohr almost periodic, i.e.,

$$
\left\{a(\cdot+z): z \in \mathbb{R}^{N}\right\}
$$

is relatively compact wrt $\|\cdot\|_{\infty}$. There exists $c(\nu) \in[\sqrt{\theta}, \sqrt{\Theta}]$ such that $c(\nu)=c(-\nu)$., and for every sequence $T_{n} \rightarrow \infty$, and every $K \subseteq \mathbb{R}^{N}$ compact, we have

$$
\lim _{n \rightarrow \infty} \sup _{y \in K}\left|\frac{1}{T_{n}} h_{\nu}\left(T_{n} y\right)-c(\nu)(y \cdot \nu)\right|=0
$$

How Can We Interpret It?

We can interpret this Theorem as a homogenization result for the Eikonal equation in half-spaces.

- Mantegazza and Mennucci (2003): for each fixed $\nu \in \mathbb{S}^{N-1}$, the functions $k_{n}(y):=T_{n}^{-1} h_{\nu}\left(T_{n}(y)\right)$ and $\ell(y):=c(\nu)(y \cdot \nu)$ are the unique viscosity solutions to

$$
\left\{\begin{array} { l l }
{ | \nabla k _ { n } | = \sqrt { a (T _ { n } y) } } & { \text { in } \{ y \cdot \nu \geqslant 0 \} , } \tag{1}\\
{ k _ { n } = 0 } & { \text { on } \Sigma _ { \nu } , }
\end{array} \text { and } \quad \left\{\begin{array}{ll}
|\nabla \ell|=c(\nu) & \text { in }\{y \cdot \nu \geqslant 0\} \\
\ell=0 & \text { on } \Sigma_{\nu}
\end{array}\right.\right.
$$

Theorem \Rightarrow viscosity solutions of the PDEs on the left side of (1) converge locally uniformly to the viscosity solution of the PDE on the right ("planar metric problem").

- Armstrong and Cardaliaguet (2018) introduced a viscous and stochastic version of these equations.
- Feldman and Souganidis, and Feldman $(2017,2019)$ studied them in the context of stochastic homogenization of geometric flows.
- We are unaware of any other homogenization results for planar metric problems in the the inviscid and periodic setting (1).

Open Problems

$$
\mathcal{F}_{\varepsilon, \delta}(u):=\int_{\Omega}\left[\frac{1}{\varepsilon} W\left(\frac{x}{\delta}, u(x)\right)+\varepsilon|\nabla u(x)|^{2}\right] d x
$$

- ε... width of the transition layer ... "energy" to form a phase transition
- δ...scale of periodicity
- $\left(\frac{\delta_{n}}{\varepsilon_{n}}\right)^{2}$..."energy" of microscopic patterns oscillating around the average of moving wells

1. Next order in Γ-expansion for this $\varepsilon \ll \delta$ case- Homogenization of interface
2. $\delta \ll \varepsilon$ expect to obtain the limit \mathcal{F}_{0}^{H} of a classical Modica-Mortola functional whose potential is the homogenization of the original potential W

- Fixed Wells
2.1 Hagerty - our general setting, $\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}^{3 / 2}}{\delta_{n}}=+\infty$
2.2 With Cristoferi and Likhit, JUST $\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}}{\delta_{n}}=+\infty$

More Open Problems

- Moving Wells
2.3 Ansini, Braides, Chiadò Piat (2003) - scalar, one dimensional case with jumping wells, and an explicit potential, $\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}^{3 / 2}}{\delta_{n}}=+\infty$
2.4 Conjecture: will depend on $\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}^{3 / 2}}{\delta_{n}}$

$$
\frac{\varepsilon_{n}^{3 / 2}}{\delta_{n}}=\left[\frac{\varepsilon_{n}}{\left(\frac{\delta_{n}}{\varepsilon_{n}}\right)^{2}}\right]^{\frac{1}{2}}
$$

$\lim _{n \rightarrow \infty} \frac{\varepsilon_{n}^{3 / 2}}{\delta_{n}}=+\infty \Rightarrow \varepsilon_{n}$ is dominated ($\rightarrow 0$ slower) by $\left(\frac{\delta_{n}}{\varepsilon_{n}}\right)^{2}$
3. Convergence of gradient flow

- $\varepsilon \sim \delta$ with a more general well function
- $\varepsilon \ll \delta$ open
- $\delta \ll \varepsilon$ open

Figure: When phase transitions and homogenization act at possibly different scales

A good place to stop ...

