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Overview

I Brief Introduction to Cahn-Hilliard

I Phase Transitions of Heterogeneous Media, The Critical Case ε ∼ δ
– Riccardo Cristoferi, IF, Adrian Hagerty, and Cristina Popovici
(2019, 2020)

I Phase Transitions of Heterogeneous Media, The Subcritical Case
ε� δ and Moving Wells – Riccardo Cristoferi, IF, Likhit Ganedi
(2022, in progress)

I Allen-Cahn Phase Transitions of Heterogeneous Media, Critical Case
– Rustum Choksi, IF, Jessica Lin, Raghavendra
Venkatraman(2021-2022, in progress)

I What is next, and open problems . . .



Brief Introduction to Cahn-Hilliard
Van Der Waals (1893), Cahn and Hilliard (1958), Gurtin (1987)

Equilibrium behavior of a fluid with two stable phases . . . described by the
Gibbs free energy

I(u) :=

ˆ
Ω

W (u) dx

W : R→ [0,+∞) . . . double well potential

W (u) := (1− u2)2, {W = 0} = {−1, 1}



I Ω ⊂ RN open (N > 2), bounded, container
I u : Ω→ R density of a fluid
I
´

Ω
u dx = m . . .m total mass of the fluid

I W double-well potential energy per unit volume
I W−1 ({0}) = {a, b} . . . a < b two phases of the fluid

Problem
Minimize total energy

I(u) =

ˆ
Ω

W (u) dx

subject to
´

Ω
u dx = m



Solution
Assume |Ω| = 1 and a < m < b. Then minimizers are of the form

uE (x) =

{
a if x ∈ E,
b if x ∈ Ω \ E,

where E ⊆ Ω is any measurable set with |E| = b−m
b−a

NONUNIQUENESS OF SOLUTIONS

Selection via singular perturbations:

Iε(u) :=

ˆ
Ω

[
W (u) +

ε2

2
|∇u|2

]
dx, u ∈ C1 (Ω) , ε > 0

ε2

2

´
Ω
|∇u|2 dx . . . surface energy penalization



Gurtin’s Conjecture

Iε(u) :=

ˆ
Ω

[
W (u) +

ε2

2
|∇u|2

]
dx, u ∈ C1 (Ω)

{W = 0} = {a, b}

“Preferred” minimizers uε of

min

{
Iε(u) : u ∈ C1 (Ω) ,

ˆ
Ω

u dx = m

}
converge to uE0

, where

PerΩ (E0) 6 PerΩ (E)

over all sets of finite perimeter E ⊆ Ω with |E| = b−m
b−a



Modica-Mortola, 1977

Asymptotic behavior of minimizers to Iε described via Γ-convergence.
Scaling by ε−1 yields

Fε := ε−1Iε
Γ−→ F ,

F(u) :=

{
cW PerΩ(A0) u ∈ BV (Ω; {a, b}),
+∞ u ∈ L1(Ω) \BV (Ω; {a, b})

where

A0 := {u(x) = a}, cW :=
√

2

ˆ b

a

√
W (s)ds

Fε(u) :=
1

ε
Iε(u) =

ˆ
Ω

[
1

ε
W (u) +

ε

2
|∇u|2

]
dx

Fε and Iε have the same minimizers



Γ-Convergence of Energy Functionals
Recall that a sequence of energy functionals Fε : Xε → R Γ-converges
(with respect to the topology τ) to a limiting functional F : Y → R if

I For any uε
τ−⇀ u ∈ Y , we have

F(u) 6 lim inf
ε→0

Fε(uε).

I For any u ∈ Y , there exists uε ∈ Xε with uε
τ−⇀ u and

F(u) > (=) lim sup
ε→0

Fε(uε).

Upshot: global minimizers of Fε converge to global minimizers of F .

So . . . if we know the Γ-limit of {Fε} then we have a selection criterium:
preferred minimizers of the original problem are minimizers of the Γ-limit

F



Fε(u) =

ˆ
Ω

[
1

ε
W (u) +

ε

2
|∇u|2

]
dx, u ∈W 1,2 (Ω)

Theorem

Fε
Γ→ F with respect to strong convergence in L1 (Ω), where

F(u) :=

{
cW PerΩ

(
u−1 ({a})

)
if u ∈ BV (Ω; {a, b}) ,

´
Ω
u dx = m,

+∞ otherwise

cW :=
√

2

ˆ b

a

√
W (s) ds



A non-exhaustive list of references:

I Modica (1987)
I Sternberg (1988)
I IF and Tartar (1989) – vectorial setting, at least linear growth at

infinity
I Bouchitté (1990) – coupled perturbations of the form (scalar-valued

case) 1
ε

´
Ω
W (x, u, ε∇u)dx, moving wells

I Baldo (1990)– multiple phases
I Ambrosio (1990)– phases are compact sets
I Owen and Sternberg (1991), Barroso and IF (1994)
I IF and Popovici (2005)– coupled perturbations of the form

(vector-valued case) 1
ε

´
Ω
W (x, u, ε∇u)dx

I Conti, IF, Leoni (2002)– higher order Modica-Mortola type´
Ω

[
1
εW (∇u) + ε|∇2u|2

]
dx

I . . .



. . .Modern technologies, such as temperature-responsive polymers, take
advantage of engineered inclusions.

Heterogeneities of the medium are exploited to obtain novel composite
materials with specific physical properties.

To model such situations by using a variational approach based on the
gradient theory, the potential and the wells have to depend on the spatial
point, even in a discontinuous way.



Phase Transitions of Heterogeneous Media
Mixture depending on position . . . Lipid Rafts . . . within the cell
membrane there are many coexisting fluid phases
Experimental: phase separation occurs at the scale of nanometers, there
is no macroscopic phase separation, thermal fluctuations play a role in
the formation of nanodomains

I Simons and Ikonen (1997) proposed that proteins move along the
cell membrane through "Lipid Rafts" by a chemical reaction between
the lipids and cholesterol

Figure: Cell Membrane– (Source: Wikipedia)



Lipid Rafts

Figure: Fluorescent Imaging of Micron-scale fluid-fluid phase separation in giant
unilamellar vesicles– Sengupta et.al. (2007)

Figure: Macroscopic phase separation in a model membrane seeming to
transition to a homogeneous material – Veatch and Keller (2002)



Modeling Considerations
I Assume all physiological parameters dependent on position
I Several different types of lipid rafts (so potentially different phases

preferred at different positions)
I Use techniques of periodic homogenization to homogenize the

submicroscopic phase separation into a macroscopic model
Fluids that exhibit periodic heterogeneity at small scales

Fε(u) :=

ˆ
Ω

[
1

ε
W

(
x

δ(ε)
, u

)
+
ε

2
|∇u|2

]
dx

where . . . preferred phases are encoded in

W : RN×Rd → [0,+∞), N > 2, d > 1, W (x, p) = 0 ⇐⇒ p ∈ {a(x), b(x)},

W (·, p) is Q-periodic for every p,
and

δ(ε)→ 0 as ε→ 0.

Example: W (x, p) = χE(x)W1(p) + χQ\EW2(p)
. . . shouldn’t ask more than measurability w.r.t. x . . .

Goal: Identify Γ-limit of Fε



Sharp Interface Limit for Heterogeneous Phases (wells at
a(x) and b(x)) Without Homogenization

I Bouchitté (1990) . . . a sharp interface limit in the scalar case
I Cristoferi and Gravina (2021) . . . vectorial case under strict

assumptions on the behavior near the wells

So start with fixed wells:

W : RN ×Rd → [0,+∞), N > 2, d > 1, W (x, p) = 0 ⇐⇒ p ∈ {a, b},



The Critical Case δ(ε) = ε : Riccardo Cristoferi, IF, Adrian
Hagerty, and Cristina Popovici (2019, 2020)

Theorem (R. Cristoferi, IF , A. Hagerty, C. Popovici, Interfaces
Free Bound.(2019, 2020))

Let δ(ε) = ε. Then Fε
Γ−→ F ,

F(u) :=


ˆ
∂∗A0

σ(ν)dHN−1 u ∈ BV (Ω; {a, b}),

+∞ otherwise

where A0 := {u(x) = a}, ν is the outward normal to A0,

σ(ν) := lim
T→∞

inf
u∈C(TQν)

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) +

|∇u(y)|2

2

]
dy

}
(anisotropic surface energy)

Ansini, Braides , Chiadò Piat (2003): W homogeneous, regularization
f
(

x
δ(ε) ,∇u

)
. . . homogenization in the regularization term leads to

fundamentally different phenomena



Cell Problem

σ(ν) = lim
T→∞

inf
u∈C(TQν)

{
1

TN−1

ˆ
TQν

[
W (y, u(y)) +

|∇u(y)|2

2

]
dy

}
where

C(TQν) :=
{
u ∈ H1(TQν ;Rd) : u(x) = ρ ∗ u0,ν on ∂(TQν)

}

u0,ν(y) :=

{
b if y · ν > 0,

a if y · ν < 0,

and (standard mollifier) ρ ∈ C∞c (R) with
´
R ρ = 1



Source of Anisotropy

• If νA(x) is oriented with a direction of periodicity of W , the (local)
recovery sequence would be obtained by using a rescaled version of the
recovery sequence for σ(νA(x)) in each yellow cube and by setting z1 in
the green region, and z2 in the pink one.

• If νA(x) is not oriented with a direction of periodicity of W , the above
procedure does not guarantee that we recover the desired energy, since
the energy of such functions is not the sum of the energy of each cube.



Proof: The Road Map
I Compactness: Bounded energy → BV structure
I Γ-liminf: “Lower-semicontinuity" result using blow-up

techniques
I Γ-limsup: Recovery sequences

I Blow-Up Method
I Recovery sequences for polyhedral sets with ν ∈ QN ∩ SN−1

I Density result and upper semicontinuity of σ
Challenge: Combining effects of oscillation and concentration:
appearance of microstructure at scale ε within an interface of thickness ε.



Easy Case: Transition Layer Aligned with Principal Axes

If ν ∈ {e1, . . . , eN}, create recovery sequence by tiling optimal profiles
from definition of σ.
Pick Tk ⊂ N and uk s.t.

σ(eN ) = lim
k→∞

1

TN−1
k

ˆ
TkQ

[
W (y, uk(y)) + |∇uk(y)|2

]
dy,

vk(x) := uk(Tkx), extended by Q′-periodicity,

vk,ε,r(x) :=


u0(x) |xN | > εTk

2r

vk

(
rx
εTk

)
|xN | < εTk

2r

uk,ε,r(x) := vk,ε,r

(x
r

)
→ u in L1(rQ)



Transition Layer Aligned with Principal Axes, cont.

Blow up:

lim
r→0

F (u; rQ)

rN−1
6 lim
r→0

lim
ε→0

1

rN−1

ˆ
rQ

[
1

ε
W (x, uk,ε,r) + ε|∇uk,ε,r|2

]
dx

= lim
r→0

lim
ε→0

ˆ
Q′

ˆ εTk/2r

−εTk/2r

[
r

ε
W

(
r

ε
y, vk

(
ry

εTk

))
+

r

εT 2
k

∣∣∣∣∇vk ( ry

εTk

)∣∣∣∣2 ]dy
= lim
r→0

lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk

rz′

εTk
, TkzN , vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz



Since W and vk are BOTH Q′-periodic and Tk ∈ N, we can use the
Riemann Lebesgue Lemma:

lim
r→0

lim
ε→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW

((
Tk

rz′

εTk
, TkzN

)
, vk

(
rz′

εTk
, zN

))
+

1

Tk

∣∣∣∣∇vk( rz′εTk
, zN

)∣∣∣∣2 ]dz
= lim
r→0

ˆ
Q′

ˆ 1/2

−1/2

[
TkW ((Tky

′, TkzN ), vk(y′, zN )

+
1

Tk
|∇vk(y′, zN )|2dzN

]
dy′

=
1

TN−1
k

ˆ
TkQ

[
W (x, uk(x)) + |∇uk(x)|2

]
dx



Other Transition Directions?

(a)
Aligned

(b)
Misaligned

Figure: Since W is Q-periodic, can tile along principal axes. What if the
transition layer is not aligned?



Q-Periodic Implies λνQν-Periodic
Key observation: Periodic microstructure in principal directions →
periodicity in other directions.

Figure: Integer lattice contains copies of itself, rotated and scaled

B W is λνQν-periodic for some λν ∈ N, and for ν ∈ Λ := QN ∩ SN−1:
Dense!



A Bit of Linear Algebra . . .

Let νN ∈ Λ = QN ∩ SN−1. There exist ν1, . . . , νN−1 ∈ Λ, λν ∈ N, s.t.

ν1, . . . , νN−1, νN

o.n. basis of RN and

W (x+ nλννi, p) = W (x, p)

a.e. x ∈ Q, all n ∈ N, p ∈ Rd.
Also use:
ε > 0, ν ∈ Λ, S : RN → RN rotation, SeN = ν.

Then there is a rotation R : RN → RN s.t. ReN = ν, Rei ∈ Λ all
i = 1, . . . , N − 1, ||R− S|| < ε



Properties of σ

• σ is well defined and finite

• the definition of σ does not depend on the choice of the mollifier

• σ : SN−1 → [0,+∞) is upper semicontinuous; actually σ is positively
one-homogeneous and convex

• if ν ∈ Λ then

σ(ν) = lim
n→∞

lim
T→∞

inf
u∈C(TQn)

{
1

TN−1

ˆ
TQn

[
W (y, u(y)) +

|∇u(y)|2

2

]
dy

}
where the normals to all faces of Qn belong to Λ



Transition Layer Aligned with ν ∈ QN ∩ SN−1

Same periodic tiling technique: Use Tk ∈ λνN.

B Blow up method → Recovery sequences for polyhedral sets A0 with
normals to its facets in Λ



Recovery Sequences for Arbitrary u ∈ BV (Ω; {a, b})

I For u ∈ BV (Ω; {a, b}), we can find u(n) ∈ BV (Ω; {a, b}) such that
A

(n)
0 are polyhedral,

u(n) → u in L1

|Du(n)|(Ω)→ |Du|(Ω).

Since QN ∩ SN−1 dense, can require ν(n) ∈ QN ∩ SN−1.
I Since σ upper-semicontinuous, by Reshetnyak’s,

ˆ
∂∗A0

σ(ν)dHn−1 6 lim sup
n→∞

ˆ
∂∗A

(n)
0

σ
(
ν(n)

)
dHn−1

I Find recovery sequences u(n)
ε for the u(n) so that

ˆ
∂∗A

(n)
0

σ
(
ν(n)

)
dHn−1 6 lim sup

ε→0+

Fε

(
u(n)
ε

)
I Diagonalize!



Phase Transitions of Heterogeneous Media, The Subcritical
Case ε� δ and Moving Wells – Riccardo Cristoferi, IF,

Likhit Ganedi (2022, in progress)

Fε(u) :=

ˆ
Ω

[
1

ε
W

(
x

δ(ε)
, u

)
+
ε

2
|∇u|2

]
dx

Finite family of piecewise affine domains {Ei}ki=1 partitioning Q,

W (y, p) =

k∑
i=1

χEi(y)Wi(y, p) y ∈ Q, z ∈ Rd

Wi . . . Lipschitz
For general x ∈ Ω, define W (x, ·) by Q-periodicity
Regime:

εn
δn
→ 0

In(u) :=

ˆ
Ω

[
W

(
x

δn
, u

)
+ ε2

n|∇u|2
]
dx



Conditions on W
1.

Wi(y, p) = 0 if and only if p ∈ {ai(y), bi(y)} ∀y ∈ Q

where ai, bi are Lipschitz
2. Behavior Near Wells: there exist r > 0, C > 0 such that
3. If y ∈ Q \ {ai = bi} (wells need NOT be separated) then there

exist r > 0, R > 0, C > 0 s.t.

1

C
|p− ai(y)|2 6Wi(y, p) 6 C|p− ai(y)|2

if y ∈ B(y0, r) and |p− ai(y)| 6 R, and

1

C
|p− bi(y)|2 6Wi(y, p) 6 C|p− bi(y)|2

if |p− bi(y)| 6 R

4. there exists C > 0 s. t. for all |p| > C, Wi(y, p) > 1
C |z|

2.
Furthermore, Wi(y, p) 6 C(1 + |p|2)



Our framework includes Braides, Zeppieri (2009):

ˆ 1

0

[
W (k)

(
x

δ(ε)
, u

)
+ ε2|u′|2

]
dx

Here W : R× R→ [0,∞) is given by

W (y, s) :=

{
W̃ (s− k) y ∈

(
0, 1

2

)
,

W̃ (s+ k) y ∈
(

1
2 , 1
)
,

with W̃ (t) := min{(t− 1)2, (t+ 1)2}, and thus the wells are

a(y) =

{
1− k for y ∈

(
0, 1

2

)
,

1 + k else,
, b(y) =

{
−1− k for y ∈

(
0, 1

2

)
.

−1 + k else



Zeroth Order Result

Theorem (0th-order Γ-convergence)

Let {un} ⊂W 1,2(Ω;Rd) have bounded energy. Then (up to a subsequence, not
relabeled) un ⇀ u in L2(Ω;Rd) for some u ∈ L2(Ω;Rd). Moreover, In Γ-converge to
I0 with respect to the weak-L2 convergence:

I0(u) :=

ˆ
Ω
Whom(u(x)) dx

Whom(z) := min

{ ˆ
Q
W ∗∗(y, z + ϕ(y)) dy : ϕ ∈ L2(Ω;Rd),

ˆ
Q
ϕdy = 0

}
.

Minimizers to the limit are of form:

u(x) =

ˆ
Q

µ(x, y)a(y)dy +

ˆ
Q

[1− µ(x, y)]b(y)dy

where µ ∈ L2(Ω;L∞(Q; [0, 1])).



Comments on the Proof

I This was first done by Francfort and Müller (1994) for case of:
ˆ

Ω

W
(x
δ
,∇u(x)

)
+ ε2|∇2u(x)|2 dx

I Our proof uses simpler two-scale methods – these techniques have
been applied in other contexts before, e.g. (Allaire (1992), IF and
Zappale (2002))



Heuristic Scaling Analysis

Fε,δ ∼
[(ε

δ

)2
]

+
1

µ

[
η +

(ε
δ

)2 1

η

]
+

1

µ

[
γ +

(ε
δ

)2 1

γ

]
Divide by ε

δ :[ ε
δ

]
+

1

µ

[(
ε

δη

)−1

+
ε

δη

]
+

1

µ

[(
ε

δγ

)−1

+
ε

δγ

]



First Order Energy

Fn(u) :=
δnIn(u)

εn
=

ˆ
Ω

[
δn
εn
W

(
x

δn
, u(x)

)
+ εnδn|∇u(x)|2

]
dx

Unfolded(up to small boundary terms):

F1
n(u) :≈

ˆ
Ω

ˆ
Q

[
δn
εn
W (y, Tδn(u)) +

εn
δn
|∇yTδn(u)|2

]
dy dx

Unfolding Operator – Cioranescu, Damlamian, Griso (2002),
Visintin (2004)

u ∈ Lp(Ω;Rd), ε > 0, Ω̂ε := int
(⋃

k′∈Zn{ε(Q+ k′) : ε(Q+ k′) ⊂ Ω}
)
.

The unfolding operator Tε : Lp(Ω;Rd)→ Lp(Ω;Lp(Q;Rd)) is defined as:

Tε(u)(x, y) := u
(
ε
⌊x
ε

⌋
+ εy

)
for a.e. x ∈ Ω̂ε and y ∈ Q,

where b·c denotes the least integer part, and Tε(u) is extended by some
f : Q→ Rd on (Ω \ Ω̂ε)×Q .



Unfolding Operator and Two Scale Convergence

uε
2−s
⇀ u0 ⇐⇒ Tε(uε) ⇀ u0 in Lp(Ω;Lp(Q;Rd))

Two-Scale Convergence – G.Nguetseng (1989) and Allaire
(1992)

{uε} ∈ Lp(Ω;RM ), u0 ∈ Lp(Ω;Lp(Q;RM )). {uε} weakly two-scale converges
to u0 in Lp(Ω;Lp(Q;RM )), and we write uε

2−s
⇀ u0, if for every

ϕ ∈ Lp
′
(Ω;Cper(Q;RM ))

lim
ε→0

ˆ
Ω

uε(x) · ϕ
(
x,
x

ε

)
dx =

ˆ
Ω

ˆ
Q

u0(x, y) · ϕ(x, y) dy dx



Some Properties of the Unfolding Operator

1. ˆ
Ω

u(x) dx =

ˆ
Ω̂ε

ˆ
Q

Tε(u)(x, y) dydx +

ˆ
Ω\Ω̂ε

u(x) dx

2. In particular,
ˆ

Ω

W (u(x)) dx =

ˆ
Ω̂ε

ˆ
Q

W (Tε(u)) dydx +

ˆ
Ω\Ω̂ε

W (u(x)) dx

3. If u ∈W 1,p(Ω;Rd), then Tε(ε∇u) = ∇yTε(u)



Geodesic Energy
Define the function χ : Rd → {1, . . . , k} by χ(y) := i if y ∈ Ei

Definition

For p, q, z0 ∈ Rd consider the class

A(p, q, z0) :=
{
γ ∈W 1,1((−1, 1);Rd) : γ(−1) = p, γ(0) = z0, γ(1) = q

}
.

Define dW :
[
Jχ ∪

(
Q \ Sχ

) ]
× Rd × Rd → [0,∞) as

dW(y, p, q) := inf

{ˆ 0

−1

2
√
Wi(y, γ(t))|γ′(t)|dt

+

ˆ 1

0

2
√
Wj(y, γ(t))|γ′(t)|dt

}

if χ−(y) = i and χ+(y) = j, where the infimum is taken over points
z0 ∈ Rd, and over curves γ ∈ A(p, q, z0).



First Order Energy
Theorem (R. Cristoferi, IF, L. Ganedi (2021, 2022))
F1
n(u) two-scale Γ-converge (Cherdantsev and Cherednichenko (2012)) with respect

to the strong L1(Ω;L1(Q;Rd)) topology to the functional

F1(u) :=


ˆ

Ω
F̃1(ũ(x, ·)) dx if u ∈ R,

+∞ else,

where
F̃1(v) :=

ˆ
Q̃∩Jv

dW(y, v−(y), v+(y)) dHN−1(y).

where

R̃ :=
{
v ∈ L1(RN ;Rd) :v is Q-periodic, v(y) ∈ {a(y), b(y)}a.e.,BVloc(Q0;Rd)

}
Q0 := Q \ {x ∈ Q : a(x) = b(x)}

and

R :=
{
v ∈ L2(Ω;L1(Q;Rd)) : ṽ(x, ·) ∈ R̃ for a.e. x ∈ Ω

}
,

where ṽ : RN → Rd denotes the Q-periodic extension of v ∈ L1(Q;Rd)



Remember Lipid Rafts . . .

At first order we see a local phase separation (namely in the second
variable), but not a macroscopic phase separation, since this is averaged
over the entire domain.

At the next order of the Γ-expansion we expect to see a macroscopic
phase separation of a similar form as the one arising from homogenization
of interfaces.

However, this problem will be more challenging as

minF1 can be nonzero

and the structure of minimizers of the mass constrained minimization
problem (which is what is most interesting for applications) might be
hard to identify.

Indeed:
min{F1(u) : u ∈ R} = 0

iff the Q-periodic extensions of a and b are continuous



Technical Challenges

1. Presence of two-scale variables
2. Discontinuities of the wells
3. Extension of sharp interface result of Cristoferi-Gravina (2021)

without homogenization – Comes down to a question of uniformly
bounding geodesic lengths, while in Cristoferi-Gravina (2021) the
assume the condition that W (x, p) = |p− a(x)|2 near the well a(x)
(similarly for b(x)), so that the geodesic is just a line

4. We do not impose wells being well-separated, they can merge (as
opposed to Cristoferi-Gravina (2021))

5. Limsup inequality requires an approximation by simple functions
quite delicate due to possible discontinuities in the wells



Allen-Cahn Phase Transitions of Heterogeneous Media,
Critical Case– Rustum Choksi, IF, Jessica Lin, Raghavendra

Venkatraman(2021-2022, in progress)
And now the Gradient Flow ε→ 0+ asymptotics of solutions {uε}ε>0 to
a bistable reaction-diffusion PDE

∂tuε −∆uε = − 1
ε2 a
(
x
ε

)
W ′(uε) in ΩT

uε(x, 0) ≈ χE − χEc in Ω,
∂uε
∂n = 0 on ∂Ω× (0, T ],

I Ω ⊆ RN , N > 2, smooth, bounded domain, ΩT := Ω× (0, T ]
I d = 1 (scalar case), W (x, u) := a(x)W (u), W (u) := (1− u2)2,

double-well potential with wells at 1 and −1
I a : RN → R is TN periodic and C2

I There exist 0 < θ < Θ <∞ such that a(·) takes values on [θ,Θ]
I E ⊆ RN , where ∂E is the interface between the phases 1 and −1;
uε(x, 0) ≈ ±1

The heterogeneous Allen-Cahn equation is the L2− gradient flow of 1
εFε

Fε(u) :=

ˆ
Ω

[
1

ε
a
(x
ε

)
W (u) +

ε

2
|∇u|2

]
dx

(or Fε w.r.t. a slow time-scale) . . . so “old” W
(
x
ε , u
)
is now a

(
x
ε

)
W (u)

. . . decoupled



A Familiar Asymptotic, Homogeneous Model: a ≡ 1

The asymptotic behaviour of (with a ≡ 1)

∂tuε −∆uε = − 1

ε2
W ′(uε)

has been studied extensively, including (but not limited to)

I Rubinstein-Sternberg-Keller (matched asymptotics)
I Classical PDE Approach: De Mottoni-Schatzman; Chen;

Alikakos-Bates-Chen
I Variational Approach: Bronsard-Kohn (radial symmetry)
I Viscosity Solution Approach: Evans-Soner-Souganidis;

Barles-Souganidis; Barles-Da Lio
I Geometric Measure Theory Approach: Ilmanen; Mugnai and Röger;

Röger-Schätzle, Sato, Tonegawa

In all cases, it is shown that uε converge to solutions of some notion of
generalized mean curvature flow: normal velocity = mean curvature



Characterizing the Limiting Behaviour

Homogenization Dream: Identify a function u such that uε → u (in some
norm), where u solves an explicit “effective” PDE (a homogeneous
version of the heterogeneous equation)
For

∂tuε −∆uε = − 1

ε2
a
(x
ε

)
W ′(uε),

one expects that as ε→ 0, {uε} converges to the (stable) equilibria
(limε→0 uε = ±1). Questions:

I What is the structure of the limiting/effective PDE (whose solution
only takes the values of ±1)?

I How will a(·) influence the limit?



The Transition Region when a ≡ 1
When a ≡ 1, an equilibrium solution solves

∆u =
1

ε2
W ′(u)

Blowing up at a point x on the interface with normal ν(x), and looking
for a 1D profile u(x) ≈ q

(
x·ν
ε

)
leads to the heteroclinic solution:

q′′ = W ′(q), lim
z→±∞

q(z) = ±1

Figure: Heteroclinic connection



Equipartition of Energy

The heteroclinic ODE

q′′ = W ′(q), lim
z→∞

q(z) = ±1

is spatially invariant, so we have a conservation law, a.k.a equipartition
of energy:

(q′)2

2
= W (q), lim

z→∞
q(z) = ±1

With our choice of W , q(z) = tanh
(
z√
2

)
Effective surface tension:

σ =

ˆ ∞
−∞

[
(q′)2

2
+W (q)

]
dz =

ˆ ∞
−∞

2
√
W (q)

|q′|√
2
dz =

√
2

ˆ 1

−1

√
W (s) ds

What about in a periodic medium, when a is non-constant?



Eikonal Equation with Riemmannian Metric
Understand “one-dimensional” solutions of the “degenerate” Eikonal
equation (equipartition of energy)

1

2
|∇u|2 = a(y)W (u)

I The case a ≡ 1: 1
2 |∇u|

2 = W (u) yields u(x) = tanh
(
x√
2
· ν
)
.

I Endow RN with a Riemannian metric conformal to the Euclidean
one:

d√a(y1, y2) = inf
γ(0)=y1,γ(1)=y2

ˆ 1

0

√
a(γ(t))| ˙γ(t)| dt.

Σν := {x : x · ν = 0}
hν(x) = sign(x · ν)d√a(x,Σν) . . . signed distance function to the
plane Σν in the

√
a−metric. Then

|∇hν(x)| =
√
a(x)



Recall:

q′ =
√

2W (q) . . .with our choice ofW, q(z) = tanh

(
z√
2

)
with q(z)→ ±1 as z →∞, then u(x) := (q ◦ hν)(x) solves
(a.e.). . . equipartition of energy

1

2
|∇u|2 = a(x)W (u).

When a ≡ 1

σ(ν) ≡ σ0 :=

ˆ ∞
−∞

[
W (q ◦ (y · ν)) + |∇(q ◦ (y · ν))|2

]
d(y · ν)

= 2

ˆ 1

−1

√
W (s) ds.

In general, would this hold with u(x) := (q ◦ hν)(x) in place of
q ◦ (y · ν)? No, unless a is constant.



Recall:

σ(ν) = lim
T→∞

1

TN−1
inf
{ˆ

TQν

[
a(y)W (u) + |∇u|2

]
dy : u ∈ H1(TQν),

u = ρ ∗ u0,ν on ∂(TQν)
}

u0,ν(y) := sgn(y · ν)
Using De Giorgi’s slicing method:

σ(ν) = lim
T→∞

1

TN−1
inf
{ˆ

TQν

[
a(y)W (u) + |∇u|2

]
dy : u ∈ H1(TQν),

u = q ◦ hν along ∂(TQν)
}
.

. . . so

σ(ν) 6 lim inf
T→∞

1

TN−1

ˆ
TQν

[a(y)W (q ◦ hν) + |∇(q ◦ hν)|2] dy



Bounds on σ

Theorem (R. Choksi, I. F., J. Lin, R. Venkastraman (2021))

q(z) := tanh(z), z ∈ R.

For ν ∈ SN−1, define

λ(ν) := lim inf
T→∞

1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy,

λ(ν) := lim sup
T→∞

1

TN−1

ˆ
TQν

[
a(y)W (q ◦ hν) + |∇(q ◦ hν)|2

]
dy.

There exist Λ0 > 0 and λ0 : SN−1 → [0,Λ0] such that

λ(ν)− λ0(ν) 6 σ(ν) 6 λ(ν).

Already saw:

σ(ν) 6 λ(ν).



Should we expect

λ(ν) = σ(ν) = λ(ν)

i.e.,
λ0(ν) = 0?

No if ν ∈ QN : Feldman and Morfe showed that if so, then hν must be
harmonic, and this is only if a is constant.
Also no if ν is an irrational direction.



Homogenization of the Planar Metric Problem
A natural, yet open, question concerns the large-scale homogenized
behavior of hν , i.e., characterize the limit

lim
T→∞

hν(Ty)

T
, y ∈ RN ,

in a suitable topology of functions. We are unable to fully resolve this
question. Yet . . .

Theorem (R. Choksi, I. F. , J. Lin, R. Venkatraman (2021))
Let ν ∈ SN−1, a : RN → R Bohr almost periodic, i.e.,

{a(·+ z) : z ∈ RN}

is relatively compact wrt || · ||∞. There exists c(ν) ∈ [
√
θ,
√

Θ] such that
c(ν) = c(−ν)., and for every sequence Tn →∞, and every K ⊆ RN
compact, we have

lim
n→∞

sup
y∈K

∣∣∣∣ 1

Tn
hν(Tny)− c(ν)(y · ν)

∣∣∣∣ = 0.



How Can We Interpret It?
We can interpret this Theorem as a homogenization result for the Eikonal
equation in half-spaces.
• Mantegazza and Mennucci (2003): for each fixed ν ∈ SN−1, the
functions kn(y) := T−1

n hν(Tn(y)) and `(y) := c(ν)(y · ν) are the unique
viscosity solutions to{
|∇kn| =

√
a(Tny) in {y · ν > 0},

kn = 0 on Σν ,
and

{
|∇`| = c(ν) in {y · ν > 0},
` = 0 on Σν .

(1)

Theorem ⇒ viscosity solutions of the PDEs on the left side of (1)
converge locally uniformly to the viscosity solution of the PDE on the
right (“planar metric problem”).
• Armstrong and Cardaliaguet (2018) introduced a viscous and stochastic
version of these equations .
• Feldman and Souganidis, and Feldman (2017, 2019) studied them in
the context of stochastic homogenization of geometric flows.
• We are unaware of any other homogenization results for planar metric
problems in the the inviscid and periodic setting (1).



Open Problems

Fε,δ(u) :=

ˆ
Ω

[
1

ε
W
(x
δ
, u(x)

)
+ ε|∇u(x)|2

]
dx

I ε . . . width of the transition layer . . . “energy” to form a phase
transition

I δ . . . scale of periodicity

I
(
δn
εn

)2

. . . “energy” of microscopic patterns oscillating around the
average of moving wells

1. Next order in Γ−expansion for this ε� δ case– Homogenization of
interface

2. δ � ε expect to obtain the limit FH0 of a classical Modica-Mortola
functional whose potential is the homogenization of the original
potential W
• Fixed Wells
2.1 Hagerty – our general setting, limn→∞

ε
3/2
n
δn

= +∞
2.2 With Cristoferi and Likhit, JUST limn→∞

εn
δn

= +∞



More Open Problems

• Moving Wells

2.3 Ansini, Braides , Chiadò Piat (2003) – scalar, one dimensional case

with jumping wells, and an explicit potential, limn→∞
ε3/2n

δn
= +∞

2.4 Conjecture: will depend on limn→∞
ε3/2n

δn

ε
3/2
n

δn
=

 εn(
δn
εn

)2


1
2

limn→∞
ε3/2n

δn
= +∞ ⇒ εn is dominated (→ 0 slower) by

(
δn
εn

)2

3. Convergence of gradient flow
I ε ∼ δ with a more general well function
I ε� δ open
I δ � ε open



Figure: When phase transitions and homogenization act at possibly different
scales



A good place to stop . . .


