Knotted solutions of the Vortex Filament Equation without self-crossings

Annalisa Calini

College of Charleston

Collaborators: Thomas Ivey (CofC) and Stéphane Lafortune (CofC) Students: Kelly Epperson, Elena Fenici, Scotty Keith, Sybil Prince-Nelson, Carter Rhea, Phill Staley.

> INI Oxford Visit University of Oxford 22nd September 2022

Partially supported by the NSF through grants DMS-0608587 and DMS-1109017

Bird blowing vapor rings

Figure: Red-winged blackbird blowing vapor rings. Photo by Kathrin Swoboda (2019 Audubon Photography Awards).

Experimental vortex filament

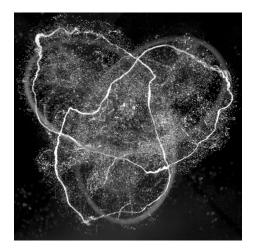


Figure: A trefoil vortex knot in water imaged via light scattering off micro-bubbles. (William Irvine's Lab, U. Chicago, Nature Physics 2013.)

The Vortex Filament Equation

A vortex filament is a thin tubular region of non-zero vorticity surrounded by irrotational fluid.

Self induction: For small core radius, with circulation held constant, the filament centerline $\gamma(x,t) \in \mathbb{R}^3$ moves with the fluid so that

 $\boldsymbol{\gamma}_t(x,t) = \mathbf{v}(\boldsymbol{\gamma}(x,t),t),$

where $\mathbf{v}(\mathbf{P}, t)$ is the fluid velocity, and x is the arclength parameter.

Local approximation: As the core radius becomes zero, the dominant diverging term in the local expansion of the velocity field gives (after rescaling) the *binormal motion* (Da Rios, 1904): γ

(VFE)
$$\boldsymbol{\gamma}_t = \boldsymbol{\gamma}_x \times \boldsymbol{\gamma}_{xx} = \kappa \mathbf{B}.$$

Here **B** is the binormal vector and κ is the curvature.

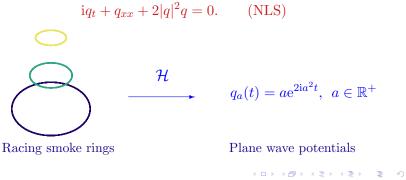
4 / 33

The Hasimoto Map

If a curve $\gamma(x,t)$ evolves according to the VFE, the complex function

$$q(x,t) = \mathcal{H}(\boldsymbol{\gamma}) = \frac{1}{2}\kappa e^{i\int^x \boldsymbol{\tau} \, \mathrm{d}s}$$
 (Hasimoto Map)

of the curvature κ and the torsion τ solves the cubic focusing nonlinear Schrödinger equation (H. Hasimoto, 1972):



Understanding the Hasimoto Map

Recall the classical Frenet equations:

 $\mathbf{T}_x = \kappa \mathbf{N}, \quad \mathbf{N}_x = -\kappa \mathbf{T} + \tau \mathbf{B}, \quad \mathbf{B}_x = -\tau \mathbf{N}.$

-Unit tangent **T**, normal **N**, binormal **B** form an orthonormal frame along arclength-parametrized $\gamma(x)$.

–The curvature κ and torsion τ determine the curve up to rigid motion.

An alternative is the orthonormal *natural frame*:

 $\mathbf{T}_x = \kappa_1 \mathbf{U}_1 + \kappa_2 \mathbf{U}_2, \quad (\mathbf{U}_1)_x = -\kappa_1 \mathbf{T} + \sigma \mathbf{U}_2, \quad (\mathbf{U}_2)_x = -\kappa_2 \mathbf{T} - \sigma \mathbf{U}_1,$ where σ is a constant twist. The relation with the Frenet system is

$$\mathbf{U}_1 + \mathrm{i}\mathbf{U}_2 = (\mathbf{N} + \mathrm{i}\mathbf{B})\mathrm{e}^{\mathrm{i}\theta}, \quad \kappa_1 + \mathrm{i}\kappa_2 = \kappa\mathrm{e}^{\mathrm{i}\theta}, \quad \theta = \int^x (\tau(u) - \sigma) \,\mathrm{d}s.$$

For $\sigma = 0$, these are frames of least rotation (Bishop, 1975) and $q = \frac{1}{2}(\kappa_1 + i\kappa_2)$ gives the Hasimoto map.

Identifying $\mathbb{R}^3 \cong \mathfrak{su}(2)$ via $\mathbf{y} \longrightarrow \sum_{k=1}^3 y_k E_k$, where $E_1 = \begin{pmatrix} -\mathbf{i} & 0\\ 0 & \mathbf{i} \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & \mathbf{i}\\ \mathbf{i} & 0 \end{pmatrix}$,

and using transitivity of SU(2) on the space of orthormal triples, write

 $T = \Omega^{-1} E_1 \Omega, \quad U_1 = \Omega^{-1} E_2 \Omega, \quad U_2 = \Omega^{-1} E_3 \Omega \quad \text{for } \Omega \in SU(2).$

Substituting into the natural frame equations

 $\mathbf{T}_x = \kappa_1 \mathbf{U}_1 + \kappa_2 \mathbf{U}_2, \quad (\mathbf{U}_1)_x = -\kappa_1 \mathbf{T} + \sigma \mathbf{U}_2, \quad (\mathbf{U}_2)_x = -\kappa_2 \mathbf{T} - \sigma \mathbf{U}_1,$

and setting $\sigma = 2\lambda$ and $q = \frac{1}{2}(\kappa_1 + i\kappa_2) = \frac{1}{2}\kappa e^{i\theta}$, we obtain

$$\Omega_x = \begin{pmatrix} -i\lambda & iq \\ i\bar{q} & i\lambda \end{pmatrix} \Omega \quad \Longleftrightarrow \quad \left[-E_1 \frac{d}{dx} + \begin{pmatrix} 0 & q \\ -\bar{q} & 0 \end{pmatrix} \right] \Omega = \lambda \Omega$$

the spatial part of the AKNS system¹. Thus, the AKNS eigenvalue problem arises as the 2λ -natural Frenet system for a space curve of curvature κ and torsion τ .

¹after Ablowitz, Kaup, Newell, and Segur (1974).

Inverting the Hasimoto Map

The Lax pair for the NLS equation is given by the AKNS system

$$\boldsymbol{\phi}_{x} = \begin{pmatrix} -\mathrm{i}\lambda & \mathrm{i}q\\ \mathrm{i}\bar{q} & \mathrm{i}\lambda \end{pmatrix} \boldsymbol{\phi}, \qquad x\boldsymbol{\phi}_{t} = \begin{pmatrix} \mathrm{i}(|q|^{2} - 2\lambda^{2}) & 2\mathrm{i}\lambda q - q_{x}\\ 2\mathrm{i}\lambda\bar{q} - \bar{q}_{x} & \mathrm{i}(2\lambda^{2} - |q|^{2}) \end{pmatrix} \boldsymbol{\phi}, \quad (1)$$

for a \mathbb{C}^2 -valued eigenfunction $\phi(x, t; \lambda)$ and *complex potential* q. Given q, we can recover the curve and its natural frame from solving the AKNS system.

A fundamental matrix solution Ω of (1) leads to an "inverse" of the Hasimoto map via a formula due to Sym and Pohlmeyer:

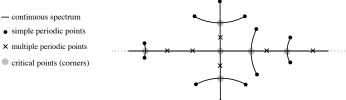
$$\Omega^{-1} \left. \frac{\mathrm{d}\Omega}{\mathrm{d}\lambda} \right|_{\lambda=\Lambda_0} = \begin{pmatrix} -\mathrm{i}\gamma_1 & \gamma_2 + \mathrm{i}\gamma_3 \\ -\gamma_2 + \mathrm{i}\gamma_3 & \mathrm{i}\gamma_1 \end{pmatrix} \simeq \boldsymbol{\gamma}, \qquad \Lambda_0 \in \mathbb{R}.$$

Such γ solves the VFE (plus a tangential drift) and has curvature $\kappa = |q|$ and torsion $\tau = \frac{d}{dx} \arg(q) - 2\Lambda_0$.

Constructing Closed Vortex Filaments

Floquet spectrum

For periodic NLS potentials q(x + L, t) = q(x, t), the Floquet spectrum is the set $\sigma(q)$ of λ 's such that the eigenfunctions of the AKNS system are bounded in x:



Given $\Phi(x; \lambda)$ a fundamental matrix solution of the AKNS system with $\Phi(0; \lambda) = I$, we define the *Floquet discriminant*

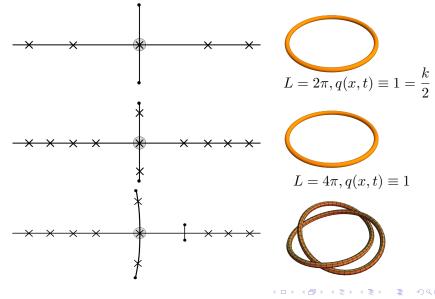
 $\Delta(q;\lambda) = \operatorname{tr} \Phi(L;\lambda),$

and represent the Floquet spectrum as

 $\sigma(q) = \left\{ \lambda \in \mathbb{C} \, | \, \Delta(q; \lambda) \in \mathbb{R}, -2 \le \Delta \le 2 \right\},\,$

Key property: $\sigma(q)$ is conserved under the NLS evolution.

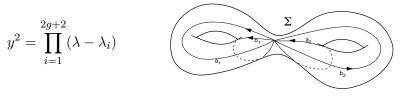
Examples of Floquet Spectra



11/33

Finite genus potentials

Finite genus potentials q have 2g + 2 simple points $\lambda_j \in \sigma$ and g + 1 critical points α_k , where g is the genus of a hyperelliptic Riemann surface with branch points λ_j .



Such potentials can be written in terms of Riemann θ -functions:

$$q(x,t) = Ae^{-iEx+iNt} \frac{\theta(i\mathbf{V}x+i\mathbf{W}t+\mathbf{r})}{\theta(i\mathbf{V}x+i\mathbf{W}t)},$$

with $A, E, N \in \mathbb{R}$ and vectors $\mathbf{V}, \mathbf{W}, \mathbf{r} \in \mathbb{R}^{g}$ determined by period integrals on Σ .

The Baker-Akhiezer Eigenfunction

The Baker-Akhiezer eigenfunction (Its, Krichever, Previato) is key for constructing finite genus NLS potentials and associated filaments.

Given a non-special divisor \mathcal{D} of degree g + 1, there is a unique \mathbb{C}^2 -valued function $\psi(x, t, P), P = (\lambda, y) \in \Sigma$ such that:

 $-\psi$ is meromorphic on $\Sigma \setminus \infty_{\pm}$ with poles in \mathcal{D} ;

– ψ has prescribed essential singularities at ∞_{-} and ∞_{+} , respectively:

$$\boldsymbol{\psi} \sim e^{-\mathrm{i}(\lambda x + 2\lambda^2 t)} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + O(\lambda^{-1}) \right], \qquad \boldsymbol{\psi} \sim e^{\mathrm{i}(\lambda x + 2\lambda^2 t)} \left[\begin{pmatrix} 0 \\ 1 \end{pmatrix} + O(\lambda^{-1}) \right]$$

$$\boldsymbol{\psi} = \frac{\mathrm{e}^{\mathrm{i}(\Omega_1(P) + \frac{1}{2}E)x + \mathrm{i}(\Omega_2(P) - \frac{1}{2}N)t}\boldsymbol{\theta}(\mathbf{D})}{\boldsymbol{\theta}(\mathrm{i}x\mathbf{V} + \mathrm{i}t\mathbf{W} - \mathbf{D})\boldsymbol{\theta}(\boldsymbol{\mathcal{A}}(P) - D)} \begin{bmatrix} \mathrm{e}^{-\mathrm{i}Ex + \mathrm{i}Nt}\boldsymbol{\theta}(\mathrm{i}x\mathbf{V} + \mathrm{i}t\mathbf{W} + \boldsymbol{\mathcal{A}}(P) - \mathbf{D}) \\ -\mathrm{i}\mathrm{e}^{\Omega_3(P)}\boldsymbol{\theta}(\mathrm{i}x\mathbf{V} + \mathrm{i}t\mathbf{W} + \boldsymbol{\mathcal{A}}(P) - \mathbf{D} - \mathbf{r}) \end{bmatrix}$$

where $E, N \in \mathbb{R}$ and $\mathbf{V}, \mathbf{W}, \mathbf{r} \in \mathbb{R}^{g}$ are determined by period integrals on Σ , Ω_{i} 's are normalized Abelian integrals, \mathbf{D} depends on the choice of divisor \mathcal{D} , and \mathcal{A} is Abel map of Σ .

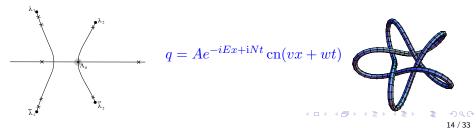
Finite genus filaments

A VFE solution γ is given by the Sym-Pohlmeyer formula $\Phi^{-1} \frac{d\Phi}{d\lambda}\Big|_{\lambda=\Lambda_0}$, with $\Phi(x,t;\lambda) = [\psi(P^+), \psi(P^-)]$ constructed from the Baker-Akhiezer eigenfunction at points $P^+, P^- \in \Sigma$ projecting to $\lambda \in \mathbb{R}$.

For example, the expression for the E_1 -component of γ is

$$\gamma_1 = \left(\mathrm{i}(x\Omega_1' + t\Omega_2') + \nabla \log \theta (\mathrm{i}\mathbf{V}x + \mathrm{i}\mathbf{W}t - \mathbf{D}) \cdot \frac{\mathrm{d}\mathcal{A}(P)}{\mathrm{d}\lambda} \right) \Big|_{\lambda = \Lambda_0}.$$

Example: g = 1, cnoidal potential.



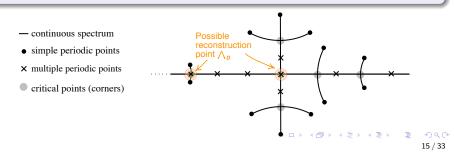
Closure Conditions

Linear growth in x is controlled by the quasimomentum differential $\Omega_1'(\lambda) d\lambda = \frac{\lambda^{g+1} + c_0 \lambda^g + \ldots + c_g}{\sqrt{\prod_i (\lambda - \lambda_i)}} d\lambda.$

Thus, a necessary condition for γ to be smoothly closed is $\Omega'_1(\Lambda_0) = 0$.

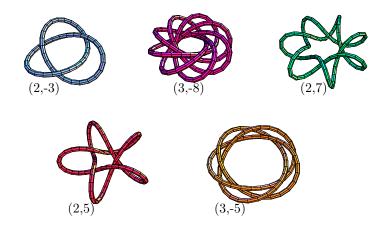
Closure Conditions (Grinevich & Schmidt, C-Ivey)

A filament obtained by the Sym-Pohlmeyer formula from an L-periodic q is smoothly closed of length L iff the reconstruction point $\Lambda_0 \in \mathbb{R}$ is: 1. a real critical point, and 2. a double point of $\sigma(q)$.



Kida Filaments

General genus-1 solutions of the VFE evolve by rigid motion



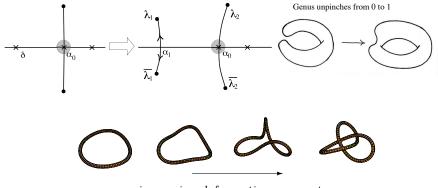
and realize all (n, m) torus knots, n < |m| (Ivey & Singer, 1999).

Figure: VFE evolution of a (2, 10)-torus knot (by Carter Rhea).

Filaments of Constant Knot Type determined by the spectrum

Small-amplitude filaments of arbitrary genus

Higher genus filaments can be constructed effectively in a neighborhood of the (unphysical) multiply covered circle, by deforming its spectrum while maintaining periodicity and closure.



 $increasing \ deformation \ parameter$

Isoperiodic Deformations

Deforming spectral data while maintaining periodicity and closure.

For given genus g, let $\lambda_1, \ldots, \lambda_{2g+2}$ be the branch points, and $\alpha_0, \ldots, \alpha_q$ be the zeros of the quasimomentum differential $d\Omega_1$.

For arbitrary real 'controls' $c_0(\xi), \ldots, c_g(\xi)$, the deformation

$$\frac{d\lambda_j}{d\xi} = -\sum_{k=0}^g \frac{c_k}{\lambda_j - \alpha_k} \qquad \frac{d\alpha_k}{d\xi} = \sum_{\ell \neq k} \frac{c_k + c_\ell}{\alpha_\ell - \alpha_k} - \frac{1}{2} \sum_{j=1}^{2g+2} \frac{c_k}{\lambda_j - \alpha_k}$$

preserves the frequencies V_1, \ldots, V_g (Grinevich & Schmidt 1995, after Krichever 1994). Also,

Closure

If the Sym-Pohlmeyer formula at $\Lambda_0 = \alpha_k$ produces a closed curve, then deformations with $c_k = 0$ preserve closure.

Determining Frequencies

Suppose we start with a genus g solution, closed at α_0 .

 \bullet pinch g pairs of branch points by running g successive deformations, first using

$$c_0 = c_1 = \ldots = c_{g-1} = 0, \quad c_g = -1,$$

until one pair of branch points collides on the real axis, then using

$$c_0 = c_1 = \ldots = c_{g-2} = c_g = 0, \quad c_{g-1} = -1,$$

until the next pair collides, and so on until only one pair remains.

• let $\delta_1, \ldots, \delta_g \in \mathbb{R}$ be limiting values of $\alpha_1, \ldots, \alpha_g$ when this is over; then a residue calculation gives

$$V_k = -2\operatorname{sign}(\delta_k)\sqrt{\delta_k^2 + 1}$$

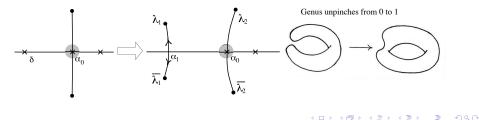
Idea: Reverse this process, starting in genus zero and selecting the δ_k to give desired frequencies.

Unpinching

– Start in genus g = 0 with a plane wave potential/circular filament.

– Perform a sequence of closure-preserving isoperiodic deformations.

Each deformation 'opens up' a real double point δ to two simple points λ 's and a critical point α , thus increasing the genus by 1 at each step.



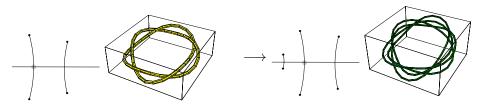
λ-plane

_i <u>a</u>

Iterated torus knots

Theorem (Cabling Theorem, C-Ivey)

Opening up additional real double points results in cable knots.



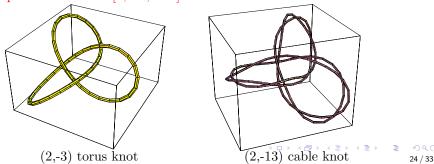
Deformation Schemes

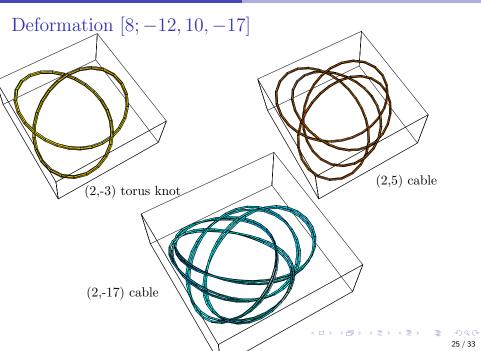
The notation $[n; m_1, \ldots, m_g]$, $n < |m_k|$ and $gcd(n, m_1, \ldots, m_g) = 1$, describes a sequence of deformations that:

• begins with the *n*-times covered circle, with $\alpha_0 = 0$ and selected double points located at $\delta_k = -\operatorname{sign}(m_k)\sqrt{(m_k/n)^2 - 1}$

- opens up $\delta_1 = -\operatorname{sign}(m_1)\sqrt{(m_1/n)^2 1}$, then
- opens up $\delta_2 \approx -\operatorname{sign}(m_2)\sqrt{(m_2/n)^2-1}$, and so on.

Example: Deformation [4; -6, -13]





Cabling Theorem

Each deformation step is a cabling operation.

Theorem (C-Ivey)

The scheme $[n; m_1, \ldots, m_g]$ produces a sequence of filaments $\gamma^{(k)}$, beginning with a circle, such that

γ^(k) is a closed genus k filament of length 2nπ/ℓ_k, where
ℓ_k = gcd(n, m₁,..., m_k), 0 ≤ k ≤ g.
At any time t, γ^(k) is a (ℓ_{k-1}/ℓ_k, m_k/ℓ_k) cable about γ^(k-1).

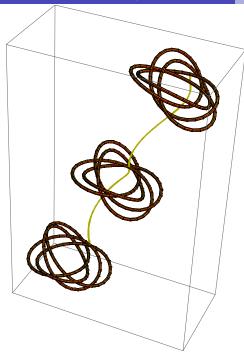
For example, the deformation [4; -6, -13] gives first a (2, -3) torus knot of length 4π , and then a (2, -13) cable of length 8π on the trefoil.

Invariance of knot type during the evolution

The following is an important consequence of the Cabling Theorem:

Corollary (Invariance of knot type) The knot type of $\gamma^{(k)}(x,t;\epsilon_k)$ is fixed for all time.

Remark. The VFE vector field is local \implies topological changes can occur. Nonetheless, we construct a neighborhood of *n*-covered circles, within the class of finite-gap VFE solutions, consisting of filaments whose knot type is preserved.



Still frames of the evolution of a (2,5)-cable on a trefoil knot.

The dark yellow curve is the modified trajectory of a single point on the curve.

イロト イポト イヨト イヨト

Thank You!

Outline of Proof: Analiticity

1. At kth step, branch points $\lambda_j(\epsilon)$ are analytic in ϵ .

Finite-gap potentials are determined by the Dirichlet spectrum and branch points by trace formulas (Ablowitz-Ma), e.g.

$$\Im(q(x,t)) = -\frac{1}{2} \sum_{k=0}^{g} \left(\lambda_{2k} + \lambda_{2k-1} - 2\mu_k(x,t)\right)$$

Dynamic Dirichlet eigenvalues $\mu_j(x,t), \nu_j(x,t)$ are analytic in ϵ , $\implies q(x,t)$ is analytic in ϵ .

Outline of Proof: Deformations of q and γ

2. Let $q = q_0 + \epsilon q_1 + O(\epsilon^2)$, and expand q_1 in terms of a biorthogonal basis of squared eigenfunctions for q_0 :

$$\left\{ (\psi_1)^2 \right\} \Big|_{\text{simple pts } \sigma} \left\{ \psi_1^+ \psi_1^- \right\} \Big|_{\text{crit. pts } \kappa} \left\{ u(\psi_1^+)^2 + \overline{u(\psi_2^+)^2} \right\} \Big|_{\text{double pts } \delta}$$

At k step all simple and critical points, and all double points except δ_k are *stationary* at order ϵ , so

$$q_1 = u(\psi_1^+)^2 + \overline{u(\psi_2^+)^2}\Big|_{\delta_k}, \qquad u \in \mathbb{C}$$

3. The Sym formula gives $\gamma = \gamma_0 + \epsilon \gamma_1 + O(\epsilon^2)$ with:

$$\gamma_1 = \frac{-1}{2(\Lambda_0 - \delta_k)^2} \left((2 \operatorname{Im} u \psi_1^+ \psi_2^+) T + (\operatorname{Re} q_1) U + (\operatorname{Im} q_1) V \right),$$

where (T, U, V) is the *natural frame* of constant twist Λ_0 along γ_0 .

Outline of Proof: How γ_1 winds about γ_0

4. At step k, since q_0 is close to the plane wave solution (γ_0 close to the circle)

 $\arg(q_1)$ is monotone in x, and winds m_k times around counterclockwise as x goes from 0 to $n\pi$.

5. Because γ_0 is length $L = n\pi/\ell_{k-1}$, then γ_1 winds around m_k times for every ℓ_{k-1} circuits of γ_0 .

 \implies for sufficiently small ϵ , γ is a $\left(\frac{\ell_{k-1}}{\ell_k}, \frac{m_k}{\ell_k}\right)$ cable about γ_0 .

6. The natural frame is unlinked with γ_0 . This follows from continuity and White's formula.

Extra detail: Natural frames unlinked

Show that $\gamma_0 + \epsilon U$ is unlinked with γ_0 , using White's formula:

$$Lk (\gamma_0, \gamma_0 + \epsilon U_1) = Wr (\gamma_0) + \frac{1}{2\pi} \int (T \times U) dU$$
$$= Wr (\gamma_0) + \frac{1}{2\pi} L\Lambda_0$$

If γ_0 is close to the circle, its self-linking number (given by *Pohl's formula*) is zero:

$$0 = \operatorname{SL}(\gamma_0) = \operatorname{Wr}(\gamma_0) + \frac{1}{2\pi} \int \tau \, dx$$

Thus,

$$\operatorname{Lk}\left(\gamma_{0},\gamma_{0}+\epsilon U\right)=\frac{1}{2\pi}\int(\Lambda_{0}-\tau)\,dx=\frac{-1}{2\pi}\int\operatorname{Im}\left(\frac{d\log q_{0}}{dx}\right)\,dx=0$$