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Bird blowing vapor rings

Figure: Red-winged blackbird blowing vapor rings. Photo by Kathrin
Swoboda (2019 Audubon Photography Awards).



Experimental vortex filament

Figure: A trefoil vortex knot in water imaged via light scattering off
micro-bubbles. (William Irvine’s Lab, U. Chicago, Nature Physics 2013.)



The Vortex Filament Equation The Model

The Vortex Filament Equation
A vortex filament is a thin tubular region of non-zero vorticity
surrounded by irrotational fluid.

Self induction: For small core radius, with circulation held constant,
the filament centerline γ(x, t) ∈ R3 moves with the fluid so that

γt(x, t) = v(γ(x, t), t),

where v(P, t) is the fluid velocity, and x is the arclength parameter.

Local approximation: As the core radius becomes zero, the dominant
diverging term in the local expansion of the velocity field gives (after
rescaling) the binormal motion (Da Rios, 1904):

(VFE) γt = γx × γxx = κB.

Here B is the binormal vector and κ is the curvature.
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The Vortex Filament Equation Connection with NLS

The Hasimoto Map

If a curve γ(x, t) evolves according to the VFE, the complex function

q(x, t) = H(γ) = 1
2κ ei

∫ x τ ds (Hasimoto Map)

of the curvature κ and the torsion τ solves the cubic focusing nonlinear
Schrödinger equation (H. Hasimoto, 1972):

iqt + qxx + 2|q|2q = 0. (NLS)

H
- qa(t) = ae2ia2t, a ∈ R+

Racing smoke rings Plane wave potentials
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The Vortex Filament Equation Connection with NLS

Understanding the Hasimoto Map

Recall the classical Frenet equations:

Tx = κN, Nx = −κT+τB, Bx = −τN.

–Unit tangent T, normal N, binormal
B form an orthonormal frame along
arclength-parametrized γ(x).

–The curvature κ and torsion τ
determine the curve up to rigid motion.
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An alternative is the orthonormal natural frame:

Tx = κ1U1 + κ2U2, (U1)x = −κ1T + σU2, (U2)x = −κ2T− σU1,

where σ is a constant twist. The relation with the Frenet system is

U1 + iU2 = (N + iB)eiθ, κ1 + iκ2 = κeiθ, θ =

∫ x

(τ(u)− σ) ds.

For σ = 0, these are frames of least rotation (Bishop, 1975) and
q = 1

2(κ1 + iκ2) gives the Hasimoto map.
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The Vortex Filament Equation Connection with NLS

Identifying R3 ∼= su(2) via

y −→
3∑

k=1

ykEk, where E1 =

(
−i 0
0 i

)
, E2 =

(
0 1
−1 0

)
, E3 =

(
0 i
i 0

)
,

and using transitivity of SU(2) on the space of orthormal triples, write

T = Ω−1E1Ω, U1 = Ω−1E2Ω, U2 = Ω−1E3Ω for Ω ∈ SU(2).

Substituting into the natural frame equations

Tx = κ1U1 + κ2U2, (U1)x = −κ1T + σU2, (U2)x = −κ2T− σU1,

and setting σ = 2λ and q = 1
2(κ1 + iκ2) = 1

2κeiθ, we obtain

Ωx =

(
−iλ iq
iq̄ iλ

)
Ω ⇐⇒

[
−E1

d

dx
+

(
0 q
−q̄ 0

)]
Ω = λΩ

the spatial part of the AKNS system1. Thus, the AKNS eigenvalue
problem arises as the 2λ-natural Frenet system for a space curve of
curvature κ and torsion τ .

1after Ablowitz, Kaup, Newell, and Segur (1974).
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The Vortex Filament Equation Connection with NLS

Inverting the Hasimoto Map

The Lax pair for the NLS equation is given by the AKNS system

φx =

(
−iλ iq
iq̄ iλ

)
φ, xφt =

(
i(|q|2 − 2λ2) 2iλq − qx

2iλq̄ − q̄x i(2λ2 − |q|2)

)
φ, (1)

for a C2-valued eigenfunction φ(x, t;λ) and complex potential q.

Given q, we can recover the curve and its natural frame from solving
the AKNS system.

A fundamental matrix solution Ω of (1) leads to an “inverse” of the
Hasimoto map via a formula due to Sym and Pohlmeyer:

Ω−1 dΩ

dλ

∣∣∣∣
λ=Λ0

=

(
−iγ1 γ2 + iγ3

−γ2 + iγ3 iγ1

)
' γ, Λ0 ∈ R.

Such γ solves the VFE (plus a tangential drift) and has curvature
κ = |q| and torsion τ = d

dxarg(q)− 2Λ0.
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Constructing Closed Vortex Filaments

Constructing Closed Vortex Filaments
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Constructing Closed Vortex Filaments Floquet spectrum

Floquet spectrum
For periodic NLS potentials q(x+ L, t) = q(x, t), the Floquet spectrum
is the set σ(q) of λ’s such that the eigenfunctions of the AKNS system
are bounded in x:

critical points (corners)

multiple periodic points

simple periodic points

continuous spectrum

Given Φ(x;λ) a fundamental matrix solution of the AKNS system with
Φ(0;λ) = I, we define the Floquet discriminant

∆(q;λ) = tr Φ(L;λ),

and represent the Floquet spectrum as

σ(q) = {λ ∈ C |∆(q;λ) ∈ R,−2 ≤ ∆ ≤ 2} ,
Key property: σ(q) is conserved under the NLS evolution.
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Constructing Closed Vortex Filaments Floquet spectrum

Examples of Floquet Spectra

L = 2π, q(x, t) ≡ 1 =
k

2

L = 4π, q(x, t) ≡ 1
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Constructing Closed Vortex Filaments Finite genus solutions

Finite genus potentials

Finite genus potentials q have 2g + 2 simple points λj ∈ σ and g + 1
critical points αk, where g is the genus of a hyperelliptic Riemann
surface with branch points λj .

y2 =

2g+2∏
i=1

(λ− λi)
!

1a

b1 a2

2b

Such potentials can be written in terms of Riemann θ-functions:

q(x, t) = Ae−iEx+iNt θ(iVx+ iWt+ r)

θ(iVx+ iWt)
,

with A,E,N ∈ R and vectors V,W, r ∈ Rg determined by period
integrals on Σ.
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Constructing Closed Vortex Filaments Finite genus solutions

The Baker-Akhiezer Eigenfunction

The Baker-Akhiezer eigenfunction (Its, Krichever, Previato) is key for
constructing finite genus NLS potentials and associated filaments.

Given a non-special divisor D of degree g + 1, there is a unique
C2-valued function ψ(x, t, P ), P = (λ, y) ∈ Σ such that:

– ψ is meromorphic on Σ \∞± with poles in D;
– ψ has prescribed essential singularities at ∞− and ∞+, respectively:

ψ ∼ e−i(λx+2λ2t)
[
( 1

0 ) +O(λ−1)
]
, ψ ∼ ei(λx+2λ2t)

[
( 0

1 ) +O(λ−1)
]

ψ =
ei(Ω1(P )+

1
2E)x+i(Ω2(P )− 1

2N)tθ(D)

θ(ixV + itW −D)θ(A(P )−D)

[
e−iEx+iNtθ(ixV + itW + A(P )−D)
−ieΩ3(P )θ(ixV + itW + A(P )−D− r)

]
,

where E,N ∈ R and V,W, r ∈ Rg are determined by period integrals
on Σ, Ωi’s are normalized Abelian integrals, D depends on the choice
of divisor D, and A is Abel map of Σ.
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Constructing Closed Vortex Filaments Finite genus solutions

Finite genus filaments
A VFE solution γ is given by the Sym-Pohlmeyer formula
Φ−1 dΦ

dλ

∣∣
λ=Λ0

, with Φ(x, t;λ) = [ψ(P+),ψ(P−)] constructed from the

Baker-Akhiezer eigenfunction at points P+, P− ∈ Σ projecting to
λ ∈ R.

For example, the expression for the E1-component of γ is

γ1 =

(
i(xΩ′1 + tΩ′2) +∇ log θ(iVx+ iWt−D) · dA(P )

dλ

)∣∣∣∣
λ=Λ0

.

Example: g = 1, cnoidal potential.

2

!

"

1

0

!

!

!

1

2

q = Ae−iEx+iNt cn(vx+ wt)
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Constructing Closed Vortex Filaments Finite genus solutions

Closure Conditions
Linear growth in x is controlled by the quasimomentum differential

Ω′1(λ)dλ =
λg+1 + c0λ

g + . . .+ cg√∏
i(λ− λi)

dλ.

Thus, a necessary condition for γ to be smoothly closed is Ω′1(Λ0) = 0.

Closure Conditions (Grinevich & Schmidt, C-Ivey)

A filament obtained by the Sym-Pohlmeyer formula from an L-periodic
q is smoothly closed of length L iff the reconstruction point Λ0 ∈ R is:
1. a real critical point, and 2. a double point of σ(q).

critical points (corners)

multiple periodic points

simple periodic points

continuous spectrum Possible 
reconstruction 
point
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Constructing Closed Vortex Filaments Finite genus solutions

Kida Filaments

General genus-1 solutions of the VFE evolve by rigid motion

(2,-3) (3,-8) (2,7)

(2,5) (3,-5)

and realize all (n,m) torus knots, n < |m| (Ivey & Singer, 1999).
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Constructing Closed Vortex Filaments Finite genus solutions

Figure: VFE evolution of a (2, 10)-torus knot (by Carter Rhea).
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Constructing Closed Vortex Filaments Small-amplitude torus knots and cable knots

Filaments of Constant Knot Type
determined by the spectrum
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Constructing Closed Vortex Filaments Isoperiodic Deformations

Small-amplitude filaments of arbitrary genus

Higher genus filaments can be constructed effectively in a
neighborhood of the (unphysical) multiply covered circle, by deforming
its spectrum while maintaining periodicity and closure.

Genus unpinches from 0 to 1

-

increasing deformation parameter
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Constructing Closed Vortex Filaments Isoperiodic Deformations

Isoperiodic Deformations

Deforming spectral data while maintaining periodicity and closure.

For given genus g, let λ1, . . . , λ2g+2 be the branch points, and
α0, . . . , αg be the zeros of the quasimomentum differential dΩ1.

For arbitrary real ‘controls’ c0(ξ), . . . , cg(ξ), the deformation

dλj
dξ

= −
g∑

k=0

ck
λj − αk

dαk
dξ

=
∑
` 6=k

ck + c`
α` − αk

− 1

2

2g+2∑
j=1

ck
λj − αk

preserves the frequencies V1, . . . , Vg (Grinevich & Schmidt 1995, after
Krichever 1994). Also,

Closure

If the Sym-Pohlmeyer formula at Λ0 = αk produces a closed curve, then
deformations with ck = 0 preserve closure.
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Constructing Closed Vortex Filaments Isoperiodic Deformations

Determining Frequencies
Suppose we start with a genus g solution, closed at α0.

• pinch g pairs of branch points by running g successive deformations,
first using

c0 = c1 = . . . = cg−1 = 0, cg = −1,

until one pair of branch points collides on the real axis, then using

c0 = c1 = . . . = cg−2 = cg = 0, cg−1 = −1,

until the next pair collides, and so on until only one pair remains.

• let δ1, . . . δg ∈ R be limiting values of α1, . . . , αg when this is over;
then a residue calculation gives

Vk = −2 sign(δk)
√
δ2
k + 1

Idea: Reverse this process, starting in genus zero and selecting the δk to
give desired frequencies.
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Constructing Closed Vortex Filaments Isoperiodic Deformations

Unpinching

– Start in genus g = 0 with a
plane wave potential/circular filament.

– Perform a sequence of closure-preserving
isoperiodic deformations.

_

2
_

_

a

2

!i

plane!"  i a

Each deformation ‘opens up’ a real double point δ to two simple points
λ’s and a critical point α, thus increasing the genus by 1 at each step.

Genus unpinches from 0 to 1
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Constructing Closed Vortex Filaments Isoperiodic Deformations

Iterated torus knots

Theorem (Cabling Theorem, C-Ivey)

Opening up additional real double points results in cable knots.

−→
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Constructing Closed Vortex Filaments Isoperiodic Deformations

Deformation Schemes
The notation [n;m1, . . . ,mg], n < |mk| and gcd(n,m1, . . . ,mg) = 1,
describes a sequence of deformations that:

• begins with the n-times covered circle, with α0 = 0 and selected double
points located at δk = − sign(mk)

√
(mk/n)2 − 1

• opens up δ1 = − sign(m1)
√

(m1/n)2 − 1, then

• opens up δ2 ≈ − sign(m2)
√

(m2/n)2 − 1, and so on.

Example: Deformation [4;−6,−13]

(2,-3) torus knot (2,-13) cable knot 24 / 33



Constructing Closed Vortex Filaments Isoperiodic Deformations

Deformation [8;−12, 10,−17]

(2,-3) torus knot
(2,5) cable

(2,-17) cable
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Constructing Closed Vortex Filaments Cabling Theorem

Cabling Theorem

Each deformation step is a cabling operation.

Theorem (C-Ivey)

The scheme [n;m1, . . . ,mg] produces a sequence of filaments γ(k),
beginning with a circle, such that

γ(k) is a closed genus k filament of length 2nπ/`k, where

`k = gcd(n,m1, . . . ,mk), 0 ≤ k ≤ g.

At any time t, γ(k) is a

(
`k−1

`k
,
mk

`k

)
cable about γ(k−1).

For example, the deformation [4;−6,−13] gives first a (2,−3) torus knot of

length 4π, and then a (2,−13) cable of length 8π on the trefoil.
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Constructing Closed Vortex Filaments Cabling Theorem

Invariance of knot type during the evolution

The following is an important consequence of the Cabling Theorem:

Corollary (Invariance of knot type)

The knot type of γ(k)(x, t; εk) is fixed for all time.

Remark. The VFE vector field is local =⇒ topological changes can
occur. Nonetheless, we construct a neighborhood of n-covered circles,
within the class of finite-gap VFE solutions, consisting of filaments
whose knot type is preserved.
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Constructing Closed Vortex Filaments Cabling Theorem

Still frames of the evolution of
a (2,5)-cable on a trefoil knot.

The dark yellow curve is the
modified trajectory of a single
point on the curve.
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Thank You!
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Sketch of Proof: Cabling Theorem

Outline of Proof: Analiticity

1. At kth step, branch points λj(ε) are analytic in ε.

Finite-gap potentials are determined by the Dirichlet spectrum
and branch points by trace formulas (Ablowitz-Ma), e.g.

=(q(x, t)) = −1

2

g∑
k=0

(λ2k + λ2k−1 − 2µk(x, t)) .

Dynamic Dirichlet eigenvalues µj(x, t), νj(x, t) are analytic in ε,
=⇒ q(x, t) is analytic in ε.
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Sketch of Proof: Cabling Theorem

Outline of Proof: Deformations of q and γ
2. Let q = q0 + εq1 +O(ε2), and expand q1 in terms of a biorthogonal

basis of squared eigenfunctions for q0:{
(ψ1)2

}∣∣
simple pts σ

{
ψ+

1 ψ
−
1

}∣∣
crit. pts κ

{
u(ψ+

1 )2 + u(ψ+
2 )2
}∣∣∣

double pts δ

At k step all simple and critical points, and all double points
except δk are stationary at order ε, so

q1 = u(ψ+
1 )2 + u(ψ+

2 )2
∣∣∣
δk
, u ∈ C

3. The Sym formula gives γ = γ0 + εγ1 +O(ε2) with:

γ1 =
−1

2(Λ0 − δk)2

(
(2 Imuψ+

1 ψ
+
2 )T + (Re q1)U + (Im q1)V

)
,

where (T,U, V ) is the natural frame of constant twist Λ0 along γ0.
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Sketch of Proof: Cabling Theorem

Outline of Proof: How γ1 winds about γ0

4. At step k, since q0 is close to the plane wave solution (γ0 close to
the circle)

arg(q1) is monotone in x, and winds mk times around
counterclockwise as x goes from 0 to nπ.

5. Because γ0 is length L = nπ/`k−1, then γ1 winds around mk times
for every `k−1 circuits of γ0.

=⇒ for sufficiently small ε, γ is a

(
`k−1

`k
,
mk

`k

)
cable about γ0.

6. The natural frame is unlinked with γ0. This follows from
continuity and White’s formula.
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Sketch of Proof: Cabling Theorem

Extra detail: Natural frames unlinked

Show that γ0 + εU is unlinked with γ0, using White’s formula:

Lk (γ0, γ0 + εU1) = Wr (γ0) +
1

2π

∫
(T × U) dU

= Wr (γ0) +
1

2π
LΛ0

If γ0 is close to the circle, its self-linking number (given by Pohl’s
formula) is zero:

0 = SL(γ0) = Wr(γ0) +
1

2π

∫
τ dx

Thus,

Lk (γ0, γ0 + εU) =
1

2π

∫
(Λ0 − τ) dx =

−1

2π

∫
Im

(
d log q0

dx

)
dx = 0
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