Quantization of the Willmore Energy in Riemannian Manifolds

Alexis Michelat

University of Oxford (UK), Mathematical Institute

Oxbridge PDE Conference 2022

13 April 2022

Part 1: Euclidean Theory

I. Early History: Elasticity Theory

The integral of mean curvature squared

$$\int_{\Sigma} H^2 d \operatorname{vol}_g = \frac{1}{4} \int_{\Sigma} (\kappa_1 + \kappa_2)^2 d \operatorname{vol}_g \tag{1}$$

was first introduced by **D.-S. Poisson** in 1814 and by **S. Germain** in 1815 to model elastic membranes. Inspired by Euler's **elastica**.

I. Early History: Elasticity Theory

The integral of mean curvature squared

$$\int_{\Sigma} H^2 d \mathrm{vol}_g = \frac{1}{4} \int_{\Sigma} (\kappa_1 + \kappa_2)^2 d \mathrm{vol}_g \tag{1}$$

was first introduced by **D.-S. Poisson** in 1814 and by **S. Germain** in 1815 to model elastic membranes. Inspired by Euler's **elastica**.

Euler-Lagrange equation found by Poisson:

$$Z - pX - qY + (\epsilon^{2}a^{3}\pi - 2\Pi)kH + \frac{\epsilon^{2}b^{3}k\pi}{2} \cdot GH$$
$$- \frac{\epsilon^{3}b^{3}\pi}{8} \left[\frac{1+q^{2}}{2k} \cdot \frac{d^{3}H}{dx^{2}} - \frac{pq}{k} \cdot \frac{d^{3}H}{dx dy} + \frac{1+p^{2}}{2k} \cdot \frac{d^{3}H}{dy^{2}} - pH\frac{dH}{dx} - qH\frac{dH}{dy} + kH^{3} \right] = 0. \qquad (a).$$

I. Early History: Elasticity Theory

The integral of mean curvature squared

$$\int_{\Sigma} H^2 d \operatorname{vol}_g = \frac{1}{4} \int_{\Sigma} (\kappa_1 + \kappa_2)^2 d \operatorname{vol}_g \tag{1}$$

was first introduced by **D.-S. Poisson** in 1814 and by **S. Germain** in 1815 to model elastic membranes. Inspired by Euler's **elastica**.

Euler-Lagrange equation found by Poisson:

$$Z - pX - qY + (\epsilon^{2}a^{3}\pi - 2\Pi)kH + \frac{\epsilon^{2}b^{3}k\pi}{2} \cdot GH$$
$$- \frac{\epsilon^{3}b^{3}\pi}{8} \left[\frac{1+q^{2}}{2k} \cdot \frac{d^{2}H}{dx^{2}} - \frac{pq}{k} \cdot \frac{d^{3}H}{dx dy} + \frac{1+p^{3}}{2k} \cdot \frac{d^{3}H}{dy^{3}} - pH\frac{dH}{dx} - qH\frac{dH}{dy} + kH^{3} \right] = 0. \qquad (a).$$

We can rewrite it (once we neglect the forces) as

$$\Delta_g H + 2H(H^2 - K) = 0.$$
⁽²⁾

I. Early History: Euler-Lagrange equation

Why did Poisson only considered the mean curvature squared?

I. Early History: Euler-Lagrange equation

Why did Poisson only considered the mean curvature squared? He had already found (an elementary form of) Gauss-Bonnet theorem!

un coëfficient constant. Cela tient à ce que l'on a identiquement $\delta \cdot \iint \frac{k \ dx \ dy}{e^{\frac{1}{2}}} = \iint \delta\left(\frac{k}{e^{\frac{1}{2}}}\right) \cdot dx \ dy = 0$, lorsque l'on a seulement égard aux termes qui, après les intégrations par parties, restent sous le double signe \iint , et que

I. Early History: Euler-Lagrange equation

Why did Poisson only considered the mean curvature squared? He had already found (an elementary form of) Gauss-Bonnet theorem!

un coëfficient constant. Cela tient à ce que l'on a identiquement $\delta \cdot \iint \frac{k \ dx \ dy}{e^{y}} = \iint \delta \left(\frac{k}{e^{y}} \right) \cdot dx \ dy = 0$, lorsque l'on a seulement égard aux termes qui, après les intégrations par parties, restent sous le double signe \iint , et que

His PhD student Olinde Rodrigues identified in 1815 the constant:

S'il s'agit d'une portion quelconque de surface développable, le rayon mobile ne décrira qu'une simple courbe, et l'intégrale sera nulle; ce qui est d'ailleurs évident, puisqu'on a alors $rt - s^2 = o$. Dans le cas d'une surface fermée et convexe dans toute son étendue, telle qu'un ellipsoïde, on aura

$$\int \int \frac{(r\,t-s^*)\,dx\,dy}{(1+p^*+q^*)^{\frac{1}{2}}} = 4\,\pi\,;$$

Theorem (Blaschke-Thomsen, *Konformminimalflächen*, 1923) *The Willmore energy W is a conformal invariant*.

Theorem (Blaschke-Thomsen, *Konformminimalflächen*, 1923) *The Willmore energy W is a conformal invariant*.

Consequence : inversions of minimal surfaces (H = 0) are Willmore surfaces.

Theorem (Blaschke-Thomsen, *Konformminimalflächen*, 1923) *The Willmore energy W is a conformal invariant*.

Consequence : inversions of minimal surfaces (H = 0) are Willmore surfaces.

Theorem (Willmore, 1965) For all immersion $\vec{\Phi} : \Sigma \to \mathbb{R}^n$ from a closed surface Σ , we have $W(\vec{\Phi}) \ge 4\pi$, with equality if and only if $\Sigma = S^2$ and $\vec{\Phi}(S^2)$ is a round sphere.

Theorem (Blaschke-Thomsen, *Konformminimalflächen*, 1923) *The Willmore energy W is a conformal invariant*.

Consequence : inversions of minimal surfaces (H = 0) are Willmore surfaces.

Theorem (Willmore, 1965) For all immersion $\vec{\Phi} : \Sigma \to \mathbb{R}^n$ from a closed surface Σ , we have $W(\vec{\Phi}) \ge 4\pi$, with equality if and only if $\Sigma = S^2$ and $\vec{\Phi}(S^2)$ is a round sphere.

Only scalar **conformal invariant** of \mathbb{R}^3 (Mondino-Nguyen, *Ann. Inst. Fourier* 2018).

Theorem (Blaschke-Thomsen, *Konformminimalflächen*, 1923) *The Willmore energy W is a conformal invariant*.

Consequence : inversions of minimal surfaces (H = 0) are Willmore surfaces.

Theorem (Willmore, 1965) For all immersion $\vec{\Phi} : \Sigma \to \mathbb{R}^n$ from a closed surface Σ , we have $W(\vec{\Phi}) \ge 4\pi$, with equality if and only if $\Sigma = S^2$ and $\vec{\Phi}(S^2)$ is a round sphere.

Only scalar **conformal invariant** of \mathbb{R}^3 (Mondino-Nguyen, *Ann. Inst. Fourier* 2018).

It appears in various fields : **Hawking mass** (1972) in **general relativity**, Helfrich energy (1973) to model the **elasticity of cellular membranes**, and in the construction of spectacle lens (patent by Katzman-Rubinstein 2001).

The Euler-Lagrange equation

$$\Delta_g H + 2H(H^2 - K_g) = 0$$

is a 4th-order non-linear elliptic PDE, and requires $H \in L^3$, whilst $H \in L^2$ only!

The Euler-Lagrange equation

$$\Delta_g H + 2H(H^2 - K_g) = 0$$

is a 4th-order non-linear elliptic PDE, and requires $H \in L^3$, whilst $H \in L^2$ only!

A weak formulation should exist for $\vec{\Phi}: \Sigma \to S^3$ is Willmore if and only if its conformal Gauss map $\vec{\psi}: \Sigma \to S^{3,1}$ is **harmonic**

$$-\Delta \vec{\psi} = |\nabla \vec{\psi}|_h^2 \vec{\psi},\tag{3}$$

where $\vec{\psi} = (H, H\vec{\Phi} + \vec{n})$ and $\vec{n} : \Sigma \to S^2$ is the unit normal.

The Euler-Lagrange equation

$$\Delta_g H + 2H(H^2 - K_g) = 0$$

is a 4th-order non-linear elliptic PDE, and requires $H \in L^3$, whilst $H \in L^2$ only!

A weak formulation should exist for $\vec{\Phi}: \Sigma \to S^3$ is Willmore if and only if its conformal Gauss map $\vec{\psi}: \Sigma \to S^{3,1}$ is **harmonic**

$$-\Delta \vec{\psi} = |\nabla \vec{\psi}|_h^2 \vec{\psi},\tag{3}$$

where $\vec{\psi} = (H, H\vec{\Phi} + \vec{n})$ and $\vec{n} : \Sigma \to S^2$ is the unit normal.

Notice that
$$W(\vec{\Phi}) = \int_{\Sigma} |\nabla \vec{\psi}|_h^2 d \operatorname{vol}_g + 2\pi \chi(\Sigma)$$

 $= \frac{1}{4} \int_{\Sigma} |d\vec{n}|_g^2 d \operatorname{vol}_g + \pi \chi(\Sigma)$

If $\vec{\Phi}$ is Willmore $\Delta \vec{H} = 2 H^3 \vec{n}$.

If $\vec{\Phi}$ is Willmore $\Delta \vec{H} = 2 H^3 \vec{n}$.

Notice that although $\Delta \vec{H} \in H^{-2}$, the right-hand side is not defined!

If $\vec{\Phi}$ is Willmore $\Delta \vec{H} = 2 H^3 \vec{n}$.

Notice that although $\Delta \vec{H} \in H^{-2}$, the right-hand side is not defined!

Theorem (Rivière, *Invent. Math.* 2008) A weak immersion $\vec{\Phi}: \Sigma \to \mathbb{R}^n$ is Willmore if and only if

$$d\left(\ast_{g}\vec{H}-3\ast_{g}\pi_{\vec{n}}\left(d\vec{H}\right)+\star\left(d\vec{n}\wedge\vec{H}\right)\right)=0.$$
(4)

If $\vec{\Phi}$ is Willmore $\Delta \vec{H} = 2 H^3 \vec{n}$.

Notice that although $\Delta \vec{H} \in H^{-2}$, the right-hand side is not defined!

Theorem (Rivière, *Invent. Math.* 2008) A weak immersion $\vec{\Phi}: \Sigma \to \mathbb{R}^n$ is Willmore if and only if

$$d\left(\ast_{g}\vec{H}-3\ast_{g}\pi_{\vec{n}}\left(d\vec{H}\right)+\star\left(d\vec{n}\wedge\vec{H}\right)\right)=0.$$
(4)

In \mathbb{R}^3 with conformal coordinates, the equation becomes

div
$$\left(2\nabla \vec{H} - 3H\nabla \vec{n} + \vec{H} \times \nabla^{\perp} \vec{n}\right) = 0,$$
 (5)

where $\nabla^{\perp} = (-\partial_{x_2}, \partial_{x_1}).$

If $\vec{\Phi}$ is Willmore $\Delta \vec{H} = 2 H^3 \vec{n}$.

Notice that although $\Delta \vec{H} \in H^{-2}$, the right-hand side is not defined!

Theorem (Rivière, *Invent. Math.* 2008) A weak immersion $\vec{\Phi}: \Sigma \to \mathbb{R}^n$ is Willmore if and only if

$$d\left(\ast_{g}\vec{H}-3\ast_{g}\pi_{\vec{n}}\left(d\vec{H}\right)+\star\left(d\vec{n}\wedge\vec{H}\right)\right)=0.$$
(4)

In \mathbb{R}^3 with conformal coordinates, the equation becomes

div
$$\left(2\nabla \vec{H} - 3H\nabla \vec{n} + \vec{H} \times \nabla^{\perp} \vec{n}\right) = 0,$$
 (5)

where $\nabla^{\perp} = (-\partial_{x_2}, \partial_{x_1})$. It follows from **Noether**'s theorem too.

If $\vec{\Phi}$ is Willmore $\Delta \vec{H} = 2 H^3 \vec{n}$.

Notice that although $\Delta \vec{H} \in H^{-2}$, the right-hand side is not defined!

Theorem (Rivière, *Invent. Math.* 2008) A weak immersion $\vec{\Phi} : \Sigma \to \mathbb{R}^n$ is Willmore if and only if

$$d\left(\ast_{g}\vec{H}-3\ast_{g}\pi_{\vec{n}}\left(d\vec{H}\right)+\star\left(d\vec{n}\wedge\vec{H}\right)\right)=0.$$
(4)

In \mathbb{R}^3 with conformal coordinates, the equation becomes

div
$$\left(2\nabla \vec{H} - 3H\nabla \vec{n} + \vec{H} \times \nabla^{\perp} \vec{n}\right) = 0,$$
 (5)

where $\nabla^{\perp} = (-\partial_{x_2}, \partial_{x_1})$. It follows from **Noether**'s theorem too.

Metaphysical explanation for the existence of a divergence form: Rivière's theorem on conformally invariant problems (*Invent. Math.* 2006).

III. Analytic Challenges: Loss of Compactness

Theorem (Bernard-Rivière, Ann. of Math. 2014) Let $\{\vec{\Phi}_k\}_{k\in\mathbb{N}}: \Sigma \to \mathbb{R}^n$ be a sequence of Willmore immersions. Assume that

$$\limsup_{k\to\infty} W(\vec{\Phi}_k) < \infty,$$

and that the conformal class of $\vec{\Phi}_k^* g_{\mathbb{R}^n}$ stays within a compact subset of the moduli space. Then, up to a subsequence, we have

$$\lim_{k \to \infty} W(\vec{\Phi}_k) = W(\vec{\Phi}_\infty) + \sum_{j=1}^q \left(W(\vec{\Psi}_j) - 4\pi \,\theta_j \right), \tag{6}$$

where $\vec{\Phi}_{\infty} : \Sigma \to \mathbb{R}^n$ and $\vec{\Psi}_j : S^2 \to \mathbb{R}^n$ are branched Willmore $\theta_j \in \mathbb{N}$.

III. Analytic Challenges: Loss of Compactness

Theorem (Bernard-Rivière, Ann. of Math. 2014) Let $\{\vec{\Phi}_k\}_{k\in\mathbb{N}}: \Sigma \to \mathbb{R}^n$ be a sequence of Willmore immersions. Assume that

$$\limsup_{k\to\infty} W(\vec{\Phi}_k) < \infty,$$

and that the conformal class of $\vec{\Phi}_k^* g_{\mathbb{R}^n}$ stays within a compact subset of the moduli space. Then, up to a subsequence, we have

$$\lim_{k \to \infty} W(\vec{\Phi}_k) = W(\vec{\Phi}_\infty) + \sum_{j=1}^q \left(W(\vec{\Psi}_j) - 4\pi \,\theta_j \right), \tag{6}$$

where $\vec{\Phi}_{\infty} : \Sigma \to \mathbb{R}^n$ and $\vec{\Psi}_j : S^2 \to \mathbb{R}^n$ are branched Willmore $\theta_j \in \mathbb{N}$. **Refinement:** Laurain-Rivière (*Duke Math. J.* 2018) in the case of degenerating conformal class.

III. Analytic Challenges: Loss of Compactness

Theorem (Bernard-Rivière, Ann. of Math. 2014) Let $\{\vec{\Phi}_k\}_{k\in\mathbb{N}}: \Sigma \to \mathbb{R}^n$ be a sequence of Willmore immersions. Assume that

$$\limsup_{k\to\infty} W(\vec{\Phi}_k) < \infty,$$

and that the conformal class of $\vec{\Phi}_k^* g_{\mathbb{R}^n}$ stays within a compact subset of the moduli space. Then, up to a subsequence, we have

$$\lim_{k \to \infty} W(\vec{\Phi}_k) = W(\vec{\Phi}_\infty) + \sum_{j=1}^q \left(W(\vec{\Psi}_j) - 4\pi \,\theta_j \right), \tag{6}$$

where $\vec{\Phi}_{\infty} : \Sigma \to \mathbb{R}^n$ and $\vec{\Psi}_j : S^2 \to \mathbb{R}^n$ are branched Willmore $\theta_j \in \mathbb{N}$. **Refinement:** Laurain-Rivière (*Duke Math. J.* 2018) in the case of degenerating conformal class.

Example of loss of compactness by Nicolas Marque (IMRN, 2021).

IV. Proof of the Energy Quantization

Using the boundedness of energy, there are finitely many bubbles. Bubble domain :

$$\int_{B_{\rho_k}(0)} |\nabla \vec{n}_k|^2 dx \ge \varepsilon_0 > 0 \qquad \text{for all } k \in \mathbb{N},$$

where $\rho_k \rightarrow 0$.

IV. Proof of the Energy Quantization

Using the boundedness of energy, there are finitely many bubbles. Bubble domain :

$$\int_{B_{\rho_k}(0)} |\nabla \vec{n}_k|^2 dx \geq \varepsilon_0 > 0 \qquad \text{for all } k \in \mathbb{N},$$

where $\rho_k \rightarrow 0$.

Neck region: annulus $\Omega_k(\alpha) = B_{\alpha R_k} \setminus \overline{B}_{\alpha^{-1}\rho_k}(0)$. By Rivière's ε -regularity, we need only prove that

$$\lim_{\alpha\to 0}\limsup_{k\to\infty}\int_{\Omega_k(\alpha)}|\nabla\vec{n}_k|^2_{g_k}dx=0.$$

This is called the no-neck (energy) property.

IV. Proof of the Energy Quantization

Using the boundedness of energy, there are finitely many bubbles. Bubble domain :

$$\int_{B_{\rho_k}(0)} |\nabla \vec{n}_k|^2 dx \geq \varepsilon_0 > 0 \qquad \text{for all } k \in \mathbb{N},$$

where $\rho_k \rightarrow 0$.

Neck region: annulus $\Omega_k(\alpha) = B_{\alpha R_k} \setminus \overline{B}_{\alpha^{-1}\rho_k}(0)$. By Rivière's ε -regularity, we need only prove that

$$\lim_{\alpha\to 0}\limsup_{k\to\infty}\int_{\Omega_k(\alpha)}|\nabla\vec{n}_k|^2_{g_k}dx=0.$$

This is called the no-neck (energy) property. It is equivalent to

$$\lim_{\alpha \to 0} \limsup_{k \to \infty} \int_{\Omega_k(\alpha)} H_k^2 d \operatorname{vol}_{g_k} = 0.$$
(7)

The idea of proof is due to Lin-Rivière in the setting of Ginzburg-Landau vortices (*CPAM*, 2001) and harmonic maps in manifolds (*Duke Math. J.* 2002), then extended by Rivière to Yang-Mills functional (*CAG*, 2002), biharmonic maps (Laurain-Rivière *Adv. Calc. Var.* 2013), and the Willmore energy (Bernard-Rivière, *Ann. of Math.* 2014).

The idea of proof is due to Lin-Rivière in the setting of Ginzburg-Landau vortices (*CPAM*, 2001) and harmonic maps in manifolds (*Duke Math. J.* 2002), then extended by Rivière to Yang-Mills functional (*CAG*, 2002), biharmonic maps (Laurain-Rivière *Adv. Calc. Var.* 2013), and the Willmore energy (Bernard-Rivière, *Ann. of Math.* 2014).

First, one proves a uniform $L^{2,1}$ estimate:

$$\left\|e^{\lambda_k}H_k\right\|_{\mathrm{L}^{2,1}(\Omega_k(\alpha))} \leq C.$$
(8)

The idea of proof is due to Lin-Rivière in the setting of Ginzburg-Landau vortices (*CPAM*, 2001) and harmonic maps in manifolds (*Duke Math. J.* 2002), then extended by Rivière to Yang-Mills functional (*CAG*, 2002), biharmonic maps (Laurain-Rivière *Adv. Calc. Var.* 2013), and the Willmore energy (Bernard-Rivière, *Ann. of Math.* 2014).

First, one proves a uniform $L^{2,1}$ estimate:

$$\left\|e^{\lambda_{k}}H_{k}\right\|_{\mathrm{L}^{2,1}(\Omega_{k}(\alpha))}\leq C.$$
(8)

Then, one shows an $L^{2,\infty}$ quantization:

$$\lim_{\alpha \to 0} \limsup_{k \to \infty} \left\| e^{\lambda_k} H_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(\alpha))} = 0.$$
(9)

The idea of proof is due to Lin-Rivière in the setting of Ginzburg-Landau vortices (*CPAM*, 2001) and harmonic maps in manifolds (*Duke Math. J.* 2002), then extended by Rivière to Yang-Mills functional (*CAG*, 2002), biharmonic maps (Laurain-Rivière *Adv. Calc. Var.* 2013), and the Willmore energy (Bernard-Rivière, *Ann. of Math.* 2014).

First, one proves a uniform $L^{2,1}$ estimate:

$$\left\|e^{\lambda_k}H_k\right\|_{\mathrm{L}^{2,1}(\Omega_k(\alpha))} \leq C.$$
(8)

Then, one shows an $L^{2,\infty}$ quantization:

$$\lim_{\alpha \to 0} \limsup_{k \to \infty} \left\| e^{\lambda_k} H_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(\alpha))} = 0.$$
(9)

Finally, using the $L^{2,1}/L^{2,\infty}$ duality (17), we deduce that

$$\int_{\Omega_k(\alpha)} e^{2\lambda_k} H_k^2 \, dx \leq \left\| e^{\lambda_k} H_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(\alpha))} \left\| e^{\lambda_k} H_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(\alpha))} \underset{\substack{k \to \infty \\ \alpha \to 0}}{\longrightarrow} 0.$$

Recall the Willmore equation

$$\operatorname{div}\left(2\nabla \vec{H}_{k}-3H_{k}\nabla \vec{n}+\vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}\right)=0 \quad \text{in } B(0,1).$$
(10)

Recall the Willmore equation

$$\operatorname{div}\left(2\nabla \vec{H}_{k}-3H_{k}\nabla \vec{n}+\vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}\right)=0 \quad \text{in } B(0,1). \quad (10)$$

By the Poincaré lemma, there exists $ec{L}_k: B(0,1) o \mathbb{R}^3$ such that

$$\nabla^{\perp}\vec{L}_{k} = 2\,\nabla\vec{H}_{k} - 3\,H_{k}\,\nabla\vec{n} + \vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}.$$
(11)

Recall the Willmore equation

$$\operatorname{div}\left(2\nabla \vec{H}_{k}-3H_{k}\nabla \vec{n}+\vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}\right)=0 \quad \text{in } B(0,1). \quad (10)$$

By the Poincaré lemma, there exists $ec{L}_k: B(0,1) o \mathbb{R}^3$ such that

$$\nabla^{\perp}\vec{L}_{k} = 2\,\nabla\vec{H}_{k} - 3\,H_{k}\,\nabla\vec{n} + \vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}.$$
(11)

We have the following conservation laws:

$$\begin{cases} \nabla^{\perp} \vec{\Phi}_{k} \times \nabla \vec{L}_{k} = 0 \\ \nabla^{\perp} \vec{\Phi}_{k} \times \nabla \vec{L}_{k} + 2\nabla H_{k} \cdot \nabla^{\perp} \vec{\Phi}_{k} = 0 \end{cases}$$
(12)

Recall the Willmore equation

$$\operatorname{div}\left(2\nabla \vec{H}_{k}-3H_{k}\nabla \vec{n}+\vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}\right)=0 \quad \text{in } B(0,1). \quad (10)$$

By the Poincaré lemma, there exists $ec{L}_k: B(0,1) o \mathbb{R}^3$ such that

$$\nabla^{\perp}\vec{L}_{k} = 2\,\nabla\vec{H}_{k} - 3\,H_{k}\,\nabla\vec{n} + \vec{H}_{k}\times\nabla^{\perp}\vec{n}_{k}.$$
(11)

We have the following conservation laws:

$$\begin{cases} \nabla^{\perp} \vec{\Phi}_{k} \times \nabla \vec{L}_{k} = 0 \\ \nabla^{\perp} \vec{\Phi}_{k} \times \nabla \vec{L}_{k} + 2\nabla H_{k} \cdot \nabla^{\perp} \vec{\Phi}_{k} = 0 \end{cases}$$
(12)

Therefore, there exists $(S_k, ec{R}_k): B(0,1) o \mathbb{R} imes \mathbb{R}^3$ such that

$$\begin{cases} \nabla S_k = \nabla \vec{\Phi}_k \cdot \vec{L}_k \\ \nabla \vec{R}_k = \nabla \vec{\Phi}_k \times \vec{L}_k + 2H_k \nabla \vec{\Phi}_k. \end{cases}$$
(13)
VI. Conservation Laws

The functions S_k and \vec{R}_k solve the system

$$\begin{cases} \Delta S_k = \nabla \vec{n}_k \cdot \nabla^{\perp} \vec{R}_k \\ \Delta \vec{R}_k = \nabla \vec{R}_k \times \nabla^{\perp} \vec{n}_k - \nabla S_k \cdot \nabla^{\perp} \vec{n}_k \end{cases}$$
(14)

VI. Conservation Laws

The functions S_k and \vec{R}_k solve the system

$$\begin{cases} \Delta S_k = \nabla \vec{n}_k \cdot \nabla^{\perp} \vec{R}_k \\ \Delta \vec{R}_k = \nabla \vec{R}_k \times \nabla^{\perp} \vec{n}_k - \nabla S_k \cdot \nabla^{\perp} \vec{n}_k \end{cases}$$
(14)

Those are Jacobian systems!

VI. Conservation Laws

The functions S_k and \vec{R}_k solve the system

$$\begin{cases} \Delta S_k = \nabla \vec{n}_k \cdot \nabla^{\perp} \vec{R}_k \\ \Delta \vec{R}_k = \nabla \vec{R}_k \times \nabla^{\perp} \vec{n}_k - \nabla S_k \cdot \nabla^{\perp} \vec{n}_k \end{cases}$$
(14)

Those are Jacobian systems!

Lemma (Wente, 1969) Let $a, b \in W^{1,2}(\Omega, \mathbb{R})$. Let $u : \Omega \to \mathbb{R}$ be the solution of

$$\begin{cases} -\Delta u = \langle \nabla a, \nabla^{\perp} b \rangle & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

Then, we have $\nabla u \in L^{2,1}(\Omega)$, and

 $\left\| \nabla u \right\|_{\mathrm{L}^{2,1}(\Omega)} \leq C(\Omega) \left\| \nabla a \right\|_{\mathrm{L}^{2}(\Omega)} \left\| \nabla b \right\|_{\mathrm{L}^{2}(\Omega)}.$

In particular, $u \in L^{\infty}(\Omega)$ by the Sobolev embedding $W^{1,(2,1)}(\Omega) \hookrightarrow C^{0}(\Omega)$.

We need only prove that $\nabla S_k, \nabla \vec{R}_k \in L^2$.

We need only prove that $\nabla S_k, \nabla \vec{R}_k \in L^2$. By Rivière's ε -regularity, we have on $\Omega_k(1/2)$

$$e^{\lambda_k}|ec{L}_k|(x)\leq rac{C}{|x|}.$$

We need only prove that $\nabla S_k, \nabla \vec{R}_k \in L^2$. By Rivière's ε -regularity, we have on $\Omega_k(1/2)$

$$e^{\lambda_k}|ec{L}_k|(x)\leq rac{C}{|x|}.$$

In particular, $e^{\lambda_k} \vec{L}_k \in L^{2,\infty}(\Omega_k(1/2)).$

We need only prove that $\nabla S_k, \nabla \vec{R}_k \in L^2$. By Rivière's ε -regularity, we have on $\Omega_k(1/2)$

$$e^{\lambda_k}|ec{\mathcal{L}}_k|(x)\leq rac{\mathcal{C}}{|x|}.$$

In particular, $e^{\lambda_k}ec{L}_k\in L^{2,\infty}(\Omega_k(1/2)).$ By the system

$$\begin{cases} \nabla S_k = \nabla \vec{\Phi}_k \cdot \vec{L}_k \\ \nabla \vec{R}_k = \nabla \vec{\Phi}_k \times \vec{L}_k + 2H_k \nabla \vec{\Phi}_k. \end{cases}$$

we deduce that $\nabla S_k, \nabla \vec{R}_k \in L^{2,\infty}(\Omega_k(1/2)).$

VI. Improved Wente Inequality

Lemma

Let $a \in W^{1,2}(\Omega, \mathbb{R}), b \in W^{1,(2,\infty)}(\Omega, \mathbb{R})$. Let $u : \Omega \to \mathbb{R}$ be the solution of

$$\begin{cases} -\Delta u = \langle \nabla a, \nabla^{\perp} b \rangle & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

Then, we have $\nabla u \in L^2(\Omega)$, and

$$\left\| \nabla u \right\|_{\mathrm{L}^{2}(\Omega)} \leq C_{2}(\Omega) \left\| \nabla a \right\|_{\mathrm{L}^{2}(\Omega)} \left\| \nabla b \right\|_{\mathrm{L}^{2,\infty}(\Omega)}.$$

VI. Improved Wente Inequality

Lemma

Let $a \in W^{1,2}(\Omega,\mathbb{R}), b \in W^{1,(2,\infty)}(\Omega,\mathbb{R})$. Let $u : \Omega \to \mathbb{R}$ be the solution of

$$\begin{cases} -\Delta u = \langle \nabla a, \nabla^{\perp} b \rangle & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

Then, we have $\nabla u \in L^2(\Omega)$, and

$$\left\|
abla u \right\|_{\mathrm{L}^{2}(\Omega)} \leq C_{2}(\Omega) \left\|
abla a \right\|_{\mathrm{L}^{2}(\Omega)} \left\|
abla b \right\|_{\mathrm{L}^{2,\infty}(\Omega)}.$$

Using versions of those inequalities on annuli, we get successively $\nabla S_k, \nabla \vec{R}_k \in L^2(\Omega_k(1/4))$ and $\nabla S_k, \nabla \vec{R}_k \in L^{2,1}(\Omega_k(1/8))$.

VI. Improved Wente Inequality

Lemma

Let $a \in W^{1,2}(\Omega,\mathbb{R}), b \in W^{1,(2,\infty)}(\Omega,\mathbb{R}).$ Let $u: \Omega \to \mathbb{R}$ be the solution of

$$\begin{cases} -\Delta u = \langle \nabla a, \nabla^{\perp} b \rangle & \text{ in } \Omega \\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

Then, we have $\nabla u \in L^2(\Omega)$, and

$$\|\nabla u\|_{\mathrm{L}^{2}(\Omega)} \leq C_{2}(\Omega) \|\nabla a\|_{\mathrm{L}^{2}(\Omega)} \|\nabla b\|_{\mathrm{L}^{2,\infty}(\Omega)}.$$

Using versions of those inequalities on annuli, we get successively $\nabla S_k, \nabla \vec{R}_k \in L^2(\Omega_k(1/4))$ and $\nabla S_k, \nabla \vec{R}_k \in L^{2,1}(\Omega_k(1/8))$. By the identity

$$-2\,e^{2\lambda_k}\vec{H}_k = \nabla\vec{R}_k \times \nabla^{\perp}\vec{\Phi}_k + \nabla^{\perp}S_k \cdot \nabla\vec{\Phi}_k,$$

we deduce that

$$\left\|e^{\lambda_k}\vec{H}_k\right\|_{\mathrm{L}^{2,1}(\Omega_k(1/8)))}\leq C.$$

Part 2: Riemannian Theory

I. The Case of Riemannian Manifolds

Let (M^3, h) be a closed Riemannian manifold. If $\vec{\Phi}: S^2 \to M^3$ is a smooth immersion, we define

$$W(\vec{\Phi}) = W_{(M^3,h)}(\vec{\Phi}) = \int_{S^2} (H^2 + \overline{K}) d\mathrm{vol}_g,$$

where $g = \vec{\Phi}^* h$ is the induced metric, H is the mean curvature, and $\overline{K} = K(\vec{\Phi}_* TS^2)$ is the curvature of the 2-plan spanned by $\vec{\Phi}$.

I. The Case of Riemannian Manifolds

Let (M^3, h) be a closed Riemannian manifold. If $\vec{\Phi}: S^2 \to M^3$ is a smooth immersion, we define

$$W(\vec{\Phi}) = W_{(M^3,h)}(\vec{\Phi}) = \int_{S^2} \left(H^2 + \overline{K}\right) d\mathrm{vol}_g,$$

where $g = \vec{\Phi}^* h$ is the induced metric, H is the mean curvature, and $\overline{K} = K(\vec{\Phi}_* TS^2)$ is the curvature of the 2-plan spanned by $\vec{\Phi}$.

Conformal Invariance: for all Riemannian manifold (N^3, k) , if $\Psi : (M^3, h) \to (N^3, k)$ is a conformal diffeomorphism $(\Psi^* k = e^{2u} h \text{ for some smooth function } u : M^3 \to \mathbb{R})$, then

$$W_{(N^{3},k)}(\Psi \circ \vec{\Phi}) = W_{(M^{3},h)}(\vec{\Phi}).$$
 (15)

I. The Case of Riemannian Manifolds

Let (M^3, h) be a closed Riemannian manifold. If $\vec{\Phi}: S^2 \to M^3$ is a smooth immersion, we define

$$W(\vec{\Phi}) = W_{(M^3,h)}(\vec{\Phi}) = \int_{S^2} \left(H^2 + \overline{K}\right) d\mathrm{vol}_g,$$

where $g = \vec{\Phi}^* h$ is the induced metric, H is the mean curvature, and $\overline{K} = K(\vec{\Phi}_* TS^2)$ is the curvature of the 2-plan spanned by $\vec{\Phi}$.

Conformal Invariance: for all Riemannian manifold (N^3, k) , if $\Psi : (M^3, h) \to (N^3, k)$ is a conformal diffeomorphism $(\Psi^* k = e^{2u} h \text{ for some smooth function } u : M^3 \to \mathbb{R})$, then

$$W_{(N^{3},k)}(\Psi \circ \vec{\Phi}) = W_{(M^{3},h)}(\vec{\Phi}).$$
 (15)

II. Main Result

Theorem (M. & Mondino, 2021) Let $\{\vec{\Phi}_k\}_{k\in\mathbb{N}}: S^2 \to M^3$ be a sequence of Willmore immersions, and assume that

$$\limsup_{k\to\infty}\left(W(\vec{\Phi}_k)+\operatorname{Area}(\vec{\Phi}_k)\right)<\infty.$$

Then, up to a subsequence, the following energy identity holds

$$\lim_{k\to\infty}W(\vec{\Phi}_k)=W(\vec{\Phi}_\infty)+\sum_{i=1}^pW(\vec{\Psi}_i)+\sum_{j=1}^q\left(W_{\mathbb{R}^n}(\vec{\chi}_j)-4\pi\,\theta_j\right),$$

where $\vec{\Psi}_i$ and $\vec{\chi}_j$ are Willmore spheres respectively into M^3 or \mathbb{R}^3 and $\theta_j \in \mathbb{N}$.

(1) The extra hypothesis is natural by conformal invariance: if $\pi: S^3 \setminus \{N\} \to \mathbb{R}^3$ is the stereographic projection, and $\widetilde{\vec{\Phi}} = \pi \circ \vec{\Phi}: S^2 \to \mathbb{R}^3$

$$\int_{\mathcal{S}^2} (H^2 + 1) d \mathrm{vol}_g = \int_{\mathcal{S}^2} |\widetilde{H}|^2 d \mathrm{vol}_{\widetilde{g}}.$$

In particular, the hypothesis on boundedness of area held in Bernard-Rivière's theorem.

(1) The extra hypothesis is natural by conformal invariance: if $\pi: S^3 \setminus \{N\} \to \mathbb{R}^3$ is the stereographic projection, and $\widetilde{\vec{\Phi}} = \pi \circ \vec{\Phi}: S^2 \to \mathbb{R}^3$

$$\int_{\mathcal{S}^2} (H^2 + 1) d \mathrm{vol}_g = \int_{\mathcal{S}^2} |\widetilde{H}|^2 d \mathrm{vol}_{\widetilde{g}}.$$

In particular, the hypothesis on boundedness of area held in Bernard-Rivière's theorem.

(2) Application of this theorem to find compactness results.

(1) The extra hypothesis is natural by conformal invariance: if $\pi: S^3 \setminus \{N\} \to \mathbb{R}^3$ is the stereographic projection, and $\widetilde{\vec{\Phi}} = \pi \circ \vec{\Phi}: S^2 \to \mathbb{R}^3$

$$\int_{\mathcal{S}^2} (H^2 + 1) d \mathrm{vol}_g = \int_{\mathcal{S}^2} |\widetilde{H}|^2 d \mathrm{vol}_{\widetilde{g}}.$$

In particular, the hypothesis on boundedness of area held in Bernard-Rivière's theorem.

- (2) Application of this theorem to find compactness results.
- (3) In ℝⁿ, the space of Willmore tori of energy W ≤ 8π − δ (δ > 0) is compact (Kuwert-Schätzle Ann. of Math. 2004 for n = 3, Rivière Invent. Math. n ≥ 3).

(1) The extra hypothesis is natural by conformal invariance: if $\pi: S^3 \setminus \{N\} \to \mathbb{R}^3$ is the stereographic projection, and $\widetilde{\vec{\Phi}} = \pi \circ \vec{\Phi}: S^2 \to \mathbb{R}^3$

$$\int_{\mathcal{S}^2} (H^2 + 1) d \mathrm{vol}_g = \int_{\mathcal{S}^2} |\widetilde{H}|^2 d \mathrm{vol}_{\widetilde{g}}.$$

In particular, the hypothesis on boundedness of area held in Bernard-Rivière's theorem.

- (2) Application of this theorem to find compactness results.
- (3) In ℝⁿ, the space of Willmore tori of energy W ≤ 8π − δ (δ > 0) is compact (Kuwert-Schätzle Ann. of Math. 2004 for n = 3, Rivière Invent. Math. n ≥ 3).
- (4) Application to the **Willmore flow** (Kuwert-Schätzle *Ann. of Math.* [2001, 2004], Palmurella-Rivière *Adv. Math.* 2022).

III. Analytic Difficulties

Critical points satisfy the Euler-Lagrange equation

 $\Delta_g H + 2H(H^2 - K_g) + \operatorname{Ric}(\vec{n}, \vec{n})H + \langle (\nabla_{\vec{n}} R)(\vec{e}_1, \vec{e}_2)\vec{e}_2, \vec{e}_1 \rangle = 0.$ (16)

It requires that $H \in L^3(S^2)$ though $\vec{\Phi} \in W^{2,2}(S^2)$.

III. Analytic Difficulties

Critical points satisfy the Euler-Lagrange equation

$$\Delta_{g}H + 2H(H^{2} - K_{g}) + \operatorname{Ric}(\vec{n}, \vec{n})H + \langle (\nabla_{\vec{n}}R)(\vec{e}_{1}, \vec{e}_{2})\vec{e}_{2}, \vec{e}_{1} \rangle = 0.$$
(16)

It requires that $H \in L^3(S^2)$ though $\vec{\Phi} \in W^{2,2}(S^2)$.

Using Mondino-Rivière's result in Riemannian manifolds (*Adv. Math.* 2013), the equation (16) becomes $(\vec{H} = H\vec{n})$

$$\begin{aligned} &\operatorname{Re}\left(\nabla_{\overline{z}}\left(\nabla_{z}\vec{H}-3\nabla_{z}^{N}\vec{H}-i\star_{h}\left(\nabla_{z}\vec{n}\wedge\vec{H}\right)\right)\right)\\ &=\frac{1}{2}e^{2\lambda}\left(\operatorname{Ric}(\vec{n},\vec{n})H-2\,\overline{K}\,H+\langle(\nabla_{\vec{n}}R)(\vec{e}_{1},\vec{e}_{2})\vec{e}_{2},\vec{e}_{1}\rangle\right)\vec{n}\\ &+\frac{1}{2}e^{2\lambda}\left(\mathscr{R}_{2}(d\vec{\Phi})-8\operatorname{Re}\left(\langle R(\vec{e}_{\overline{z}},\vec{e}_{z})\vec{e}_{z},\vec{H}\rangle\vec{e}_{\overline{z}}\right)\right),\end{aligned}$$

where $e^{2\lambda} = 2|\partial_z \vec{\Phi}|^2$, $\vec{e}_z = \partial_z \vec{\Phi}$, and $\vec{n} : S^2 \to S^2$ is the unit normal.

Let $\varphi : (0,\infty) \to (0,\infty)$ be a concave function such that $\varphi(0) = 0$, and $\Omega \subset \mathbb{R}^n$. For all measurable $f : \Omega \to \mathbb{R}^m$, define the norm

$$\|f\|_{N(\varphi)} = \int_0^\infty \varphi(\lambda_f(t)) \, dt,$$

where $\lambda_f(t) = \mathscr{L}^n(\Omega \cap \{x : |f(x)| > t\}).$

Let $\varphi : (0,\infty) \to (0,\infty)$ be a concave function such that $\varphi(0) = 0$, and $\Omega \subset \mathbb{R}^n$. For all measurable $f : \Omega \to \mathbb{R}^m$, define the norm

$$\|f\|_{N(\varphi)} = \int_0^\infty \varphi(\lambda_f(t)) \, dt,$$

where $\lambda_f(t) = \mathscr{L}^n(\Omega \cap \{x : |f(x)| > t\}).$

Theorem (Steigerwalt-White, 1971) The functional $\|\cdot\|_{N(\varphi)}$ is a norm and $(N(\varphi), \|\cdot\|_{N(\varphi)})$ is a Banach space.

Let $\varphi : (0,\infty) \to (0,\infty)$ be a concave function such that $\varphi(0) = 0$, and $\Omega \subset \mathbb{R}^n$. For all measurable $f : \Omega \to \mathbb{R}^m$, define the norm

$$\|f\|_{N(\varphi)} = \int_0^\infty \varphi(\lambda_f(t)) \, dt,$$

where $\lambda_f(t) = \mathscr{L}^n(\Omega \cap \{x : |f(x)| > t\}).$

Theorem (Steigerwalt-White, 1971) The functional $\|\cdot\|_{N(\varphi)}$ is a norm and $(N(\varphi), \|\cdot\|_{N(\varphi)})$ is a Banach space.

Dual Spaces. Define the decreasing rearrangement $f_* : \mathbb{R}_+ \to \mathbb{R}_+ \cup \{\infty\}$ of f by $f_*(t) = \inf \mathbb{R}_+ \cap \{s : \lambda_f(s) \le t\}$, and

$$\|f\|_{\mathcal{M}(\varphi)} = \sup_{t>0} \frac{1}{\varphi(t)} \int_0^t f_*(s) ds.$$

Theorem (Steigerwalt-White, 1971)

(1) Assume that $\varphi(t) = o(t)$ as $t \to \infty$. Then $M(\varphi)$ is a norm and $(M(\varphi), \|\cdot\|_{M(\varphi)})$ is a Banach space.

(2) For all $(f,g) \in N(\varphi) \times M(\varphi)$, we have $f \cdot g \in L^1(X,\mu)$ and

$$\left|\int_{X} f \cdot g \, d\mu\right| \leq \|f\|_{N(\varphi)} \, \|g\|_{M(\varphi)} \,. \tag{17}$$

In particular, we have $N(\varphi)^* = M(\varphi)$.

Remark If $L^{p,1} = N(t^{\frac{1}{p}})$ and $L^{p,\infty} = M(t^{1-\frac{1}{p}})$, we recover that $(L^{p,1})^* = L^{p',\infty}$ for all 1 .

(1) Prove that e^{λ_k} is bounded in L^p for some p > 2 independent of k. It follows from our assumption on the boundedness of area.

- (1) Prove that e^{λ_k} is bounded in L^p for some p > 2 independent of k. It follows from our assumption on the boundedness of area.
- (2) Using Bernard-Rivière's approach, get a uniform Harnack inequality

$$\|\lambda_k - d_k \log |z| - A_k\|_{L^{\infty}(\Omega_k(\alpha))} \leq C,$$

where $d_k \xrightarrow[k \to \infty]{} d > -1$.

- (1) Prove that e^{λ_k} is bounded in L^p for some p > 2 independent of k. It follows from our assumption on the boundedness of area.
- (2) Using Bernard-Rivière's approach, get a uniform Harnack inequality

$$\|\lambda_k - d_k \log |z| - A_k\|_{L^{\infty}(\Omega_k(\alpha))} \leq C,$$

where
$$d_k \xrightarrow[k \to \infty]{} d > -1.$$

(3) Construct by convolution a function \vec{U}_k such that

$$\partial_z \vec{U}_k = i \left(\nabla_z \vec{H}_k - 3 \nabla_z^N \vec{H}_k - i \star_h \left(\nabla_z \vec{n}_k \wedge \vec{H}_k \right) \right) = \vec{Y}_k, \quad (18)$$

and satisfying the estimates

$$ert ec{U}_k ert \leq rac{\mathcal{C}}{ert z ert} \left(1 + \log_+\left(rac{R_k}{ert z ert}
ight)
ight),$$

 $\operatorname{Im}\left(ec{U}_k
ight) \in W^{1,(2,\infty)}(B(0,R_k)).$

An estimate

$$|u(z)| \leq rac{\mathcal{C}}{|z|} \left(\log\left(rac{R}{|z|}
ight) + 1
ight) \qquad ext{for all } z \in B(0,R)$$

implies that $u \in M(\varphi) = L^{2,\infty}_{\log^{\beta}}(B(0,R))$ (with $\beta = 1$), where for all $0 \le \beta \le 1$

$$arphi_eta(t) = \sqrt{t} \left(1 + \log^eta_+ \left(R \sqrt{rac{\pi}{t}}
ight)
ight).$$

An estimate

$$|u(z)| \leq rac{\mathcal{C}}{|z|} \left(\log\left(rac{R}{|z|}
ight) + 1
ight) \qquad ext{for all } z \in B(0,R)$$

implies that $u \in M(\varphi) = L^{2,\infty}_{\log^{\beta}}(B(0,R))$ (with $\beta = 1$), where for all $0 \le \beta \le 1$

$$arphi_eta(t) = \sqrt{t} \left(1 + \log^eta_+ \left(R \sqrt{rac{\pi}{t}}
ight)
ight).$$

By a standard decomposition, one need only consider holomorphic maps.

Lemma

Let $u: B(0, R) \to \mathbb{C}$ be a holomorphic function and fix some $0 \le \alpha < 1$ and $0 \le \beta \le 1$. If $u \in L^{2,\infty}_{\log^{\beta}}(B(0, R))$, then $u \in W^{1,1} \cap L^{2,1}(B(0, \alpha R))$ and

$$\|u\|_{{\rm L}^{2,1}(B(0,\alpha R))} + \|\nabla u\|_{{\rm L}^{1}(B(0,\alpha R))} \leq \frac{C\alpha}{(1-\sqrt{\alpha})^{\frac{5}{2}}} \log^{\beta}\left(\frac{2}{1-\sqrt{\alpha}}\right) \|u\|_{{\rm L}^{2,\infty}_{\log^{\beta}}(B(0,R))}.$$

By a fixed point argument (cf. Mondino-Rivière), $\exists \alpha_0 > 0$ and \vec{L}_k such that $\nabla_z \vec{L}_k = \vec{Y}_k$

$$e^{\lambda_k} |ec{\mathcal{L}}_k| \leq rac{\mathcal{C}}{|z|} + \psi_k \qquad ext{in } \Omega_k(lpha_0)$$

where $\psi_k \in L^p(B(0, \alpha_0 R_k))$ for some p > 2 independent of k.

By a fixed point argument (cf. Mondino-Rivière), $\exists \alpha_0 > 0$ and \vec{L}_k such that $\nabla_z \vec{L}_k = \vec{Y}_k$

$$e^{\lambda_k} |\vec{L}_k| \leq \frac{C}{|z|} + \psi_k \quad \text{in } \Omega_k(\alpha_0)$$

where $\psi_k \in L^p(B(0, \alpha_0 R_k))$ for some p > 2 independent of k.

By a generalisation of Rivière's **conservation laws** (Mondino-Rivière), we construct S_k , $\vec{R}_k \in W^{1,(2,\infty)}(B(0, \alpha_0 R_k))$ such that

$$\begin{cases} \partial_z S_k = \langle \partial_z \vec{\Phi}_k, \overline{\vec{L}_k} \rangle & \text{ in } B(0, \alpha_0 R_k) \\ \operatorname{Im}(S_k) = 0 & \text{ on } \partial B(0, \alpha_0 R_k), \end{cases}$$
(19)

$$\begin{cases} \nabla_{z}\vec{R}_{k} = \partial_{z}\vec{\Phi}_{k} \wedge \vec{L}_{k} - 2i\,\partial_{z}\vec{\Phi}_{k} \wedge \vec{H}_{k} & \text{ in } B(0,\alpha_{0}R_{k}) \\ \operatorname{Im}\left(\vec{R}_{k}\right) = 0 & \text{ on } \partial B(0,\alpha_{0}R_{k}). \end{cases}$$
(20)

Using Calderón-Zygmund estimates, we prove that $\operatorname{Im}(S_k), \operatorname{Im}(\vec{R}_k)$ are bounded in $W^{2,q}(B(0, \alpha_0 R_k))$ for some q > 1.

Using Calderón-Zygmund estimates, we prove that $\operatorname{Im}(S_k), \operatorname{Im}(\vec{R}_k)$ are bounded in $W^{2,q}(B(0, \alpha_0 R_k))$ for some q > 1.

The coupled system

$$\begin{cases} \nabla_{z}\vec{R}_{k} = i\left(\star_{h}\left(\vec{n}_{k} \sqcup \nabla_{z}\vec{R}_{k}\right) + \left(\partial_{z}S_{k}\right)\star_{h}\vec{n}_{k}\right) & \text{ in } B(0,\alpha_{0}R_{k})\\ \partial_{z}S_{k} = -i\langle\nabla_{z}\vec{R}_{k},\star_{h}\vec{n}_{k}\rangle & \text{ in } B(0,\alpha_{0}R_{k}) \end{cases},$$
(21)

permits to make Jacobian equations appear for $\operatorname{Re}(\vec{R}_k)$ and $\operatorname{Re}(S_k)$, and using estimates inspired by the Wente inequality, and averaging methods, one finds that $\nabla \vec{R}_k, \nabla S_k \in L^{2,1}(\Omega_k(\alpha_0/2))$.

VI. Averaging Lemma

Lemma (Bernard-Rivière, Annals of Math. 2014) Let $k, m \in \mathbb{N}$, $u \in W^{1,1}(B(0,1), \mathbb{C})$, $f \in L^2(B(0,1), \mathbb{C})$, $\vec{v} \in W^{1,(2,\infty)}(B(0,1), \Lambda^k \mathbb{C}^m)$, $\vec{w} \in W^{1,2} \cap L^{\infty}(B(0,1), \Lambda^k \mathbb{R}^m)$ such that

 $\partial_z u = -i \left(\langle \partial_z \vec{v}, \vec{w} \rangle + f \right).$

Let $0 < r < R < \infty$ and $\Omega = B_R \setminus \overline{B}_r(0)$. Assume that $\mathrm{Im}\,(\vec{v}) \in W^{1,2}(\Omega)$ and

$$|
abla \operatorname{Re}(ec{v})(z)| \leq rac{C_0}{|z|} \qquad ext{for all } r \leq |z| \leq R.$$

Then, we have

$$egin{aligned} &\left(\int_r^R \left|rac{d}{d
ho} ext{Re}\,(u)_
ho
ight|^2
ho\,d
ho
ight)^rac{1}{2} \leq \sqrt{2\pi} inom{n}{k} C_0 \left\|
abla ec w
ight\|_{L^2(\Omega)} \ &+rac{1}{\sqrt{2\pi}} \left\|ec w
ight\|_{L^\infty(\Omega)} \left\|
abla ext{Im}\,(ec v)
ight\|_{L^2(\Omega)} + rac{1}{\sqrt{2\pi}} \left\|f
ight\|_{L^2(\Omega)}, \end{aligned}$$

where
$$arphi_
ho=rac{1}{2\pi
ho}\int_{\partial B(0,
ho)}arphi\,d\mathscr{H}^1$$
 is the average.

VII. Jacobians and the Wente Inequality

Lemma (Laurain-Rivière, Anal. PDE, 2014) Let $0 < 4r < R < \infty$, $\Omega = B(0, R) \setminus \overline{B}(0, r) \rightarrow \mathbb{R}$, $a, b : \Omega \rightarrow \mathbb{R}$ such that $\nabla a \in L^{2,\infty}(\Omega)$ and $\nabla b \in L^{2}(\Omega)$, and $u \in W^{1,(2,\infty)}(\Omega)$ be a solution of

$$\Delta u = \nabla a \cdot \nabla^{\perp} b \qquad \text{in } \Omega.$$

Assume that $\nabla u_{\rho} \in L^{2}(\Omega)$. Then $\nabla u \in L^{2}(\Omega)$, and there exists $C_{0} < \infty$ independent of 0 < 4r < R such that for all $\left(\frac{r}{R}\right)^{\frac{1}{2}} < \alpha < \frac{1}{2}$

$$\left\|\nabla u\right\|_{\mathrm{L}^{2}(B_{\alpha R}\setminus\overline{B}_{\alpha^{-1}r})} \leq C_{0}\left(\left\|\nabla a\right\|_{\mathrm{L}^{2,\infty}(\Omega)}\left\|\nabla b\right\|_{\mathrm{L}^{2}(\Omega)}+\left\|\nabla u_{\rho}\right\|_{\mathrm{L}^{2}(\Omega)}+\left\|\nabla u\right\|_{\mathrm{L}^{2,\infty}(\Omega)}\right).$$
VII. Jacobians and the Wente Inequality

From the conservation laws and the system (21), we obtain quasi-Jacobian systems:

$$\begin{cases} \Delta \left(\operatorname{Re}\left(\vec{R}_{k}\right) \right) = -\star_{h} \left(\nabla \vec{n}_{k} \, \lrcorner \, \nabla^{\bot} \operatorname{Re}\left(\vec{R}_{k}\right) \right) - \star_{h} \left(\nabla \vec{n}_{k} \, \lrcorner \, \nabla^{\bot} (\operatorname{Re}\left(S_{k}\right)) \right) \\ + \vec{G}_{1,k} \\ \Delta \left(\operatorname{Re}\left(S_{k}\right) \right) = \langle \nabla(\star_{h} \vec{n}_{k}), \nabla^{\bot} \operatorname{Re}\left(\vec{R}_{k}\right) \rangle + G_{2,k} \end{cases}$$

for some $\vec{G}_{1,k}$ and $G_{2,k}$ which are bounded in $L^q(B(0, \alpha_0 R_k))$ for all $1 \le q < 2$.

VII. Jacobians and the Wente Inequality

From the conservation laws and the system (21), we obtain quasi-Jacobian systems:

$$\begin{cases} \Delta \left(\operatorname{Re}\left(\vec{R}_{k}\right) \right) = -\star_{h} \left(\nabla \vec{n}_{k} \, \lrcorner \, \nabla^{\bot} \operatorname{Re}\left(\vec{R}_{k}\right) \right) - \star_{h} \left(\nabla \vec{n}_{k} \, \lrcorner \, \nabla^{\bot} (\operatorname{Re}\left(S_{k}\right)) \right) \\ + \vec{G}_{1,k} \\ \Delta \left(\operatorname{Re}\left(S_{k}\right) \right) = \langle \nabla(\star_{h} \vec{n}_{k}), \nabla^{\bot} \operatorname{Re}\left(\vec{R}_{k}\right) \rangle + G_{2,k} \end{cases}$$

for some $\vec{G}_{1,k}$ and $G_{2,k}$ which are bounded in $L^q(B(0, \alpha_0 R_k))$ for all $1 \le q < 2$.

The previous averaging lemma and the improved Wente inequality show that $\nabla S_k, \nabla \vec{R}_k \in L^2(\Omega_k(2\alpha_0/3))$. Another averaging argument shows that $S_k, \vec{R}_k \in L^{\infty}(\Omega_k(2\alpha_0/3))$.

VII. Jacobians and the Wente Inequality

Lemma (Laurain-Rivière, Anal. PDE, 2014, M.-Rivière 2019) Let $0 < 16r < R < \infty$, $\Omega = B(0, R) \setminus \overline{B}(0, r) \rightarrow \mathbb{R}$, $a, b \in W^{1,2}(\Omega)$, and $u : \Omega \rightarrow \mathbb{R}$ be a solution of

$$\Delta u = \nabla a \cdot \nabla^{\perp} b \quad in \ \Omega.$$

Assume that $\|u\|_{L^{\infty}(\partial\Omega)} < \infty$. Then there exists a constant $C_1 < \infty$ such that for all $\left(\frac{r}{R}\right)^{\frac{1}{2}} < \alpha < \frac{1}{4}$,

$$\begin{aligned} \|u\|_{\mathrm{L}^{\infty}(\Omega)} + \|\nabla u\|_{\mathrm{L}^{2,1}(B_{\alpha R} \setminus \overline{B}_{\alpha^{-1}r}(0))} + \|\nabla^{2} u\|_{\mathrm{L}^{1}(B_{\alpha R} \setminus \overline{B}_{\alpha^{-1}r}(0))} \\ & \leq C_{1} \left(\|\nabla a\|_{\mathrm{L}^{2}(\Omega)} \|\nabla b\|_{\mathrm{L}^{2}(\Omega)} + \|u\|_{\mathrm{L}^{\infty}(\partial\Omega)} \right). \end{aligned}$$

VIII. Final Argument

Finally, we get $S_k, \vec{R}_k \in W^{2,1} \cap W^{1,(2,1)}$, and the identity

$$\begin{split} e^{\lambda_{k}} \vec{H}_{k} &= -\mathrm{Im} \left(\nabla_{z} \vec{R}_{k} \sqcup e^{-\lambda_{k}} \partial_{\overline{z}} \vec{\Phi}_{k} \right) - \frac{1}{2} e^{\lambda_{k}} \mathrm{Im} \left(\vec{L}_{k} \right) \\ &+ \mathrm{Im} \left(e^{-\lambda_{k}} \partial_{\overline{z}} \vec{\Phi}_{k} \partial_{z} S_{k} \right) + \mathrm{Re} \left(\left\langle \partial_{z} \vec{\Phi}_{k}, \mathrm{Im} \left(\vec{L}_{k} \right) \right\rangle e^{-\lambda_{k}} \partial_{\overline{z}} \vec{\Phi}_{k} \right) \end{split}$$

yields the $L^{2,1}$ estimate for the mean curvature, which concludes the proof of the theorem.

III. Weak L² Energy Quantization

I. Improved Wente Inequality

Lemma (Bernard-Rivière, Ann. Math. 2014) Let $a, b \in W^{1,1}(\mathbb{D})$ and u be the solution of the Dirichlet problem

$$\begin{cases} -\Delta u = \nabla a \cdot \nabla^{\perp} b & \text{ in } \mathbb{D} \\ u = 0 & \text{ in } \partial \mathbb{D}. \end{cases}$$

Assume that $\nabla a \in L^{2,\infty}$ and $\nabla b \in L^{p,q}$ for some $1 and <math>1 \le q \le \infty$. Then, we have

$$\left\|\nabla u\right\|_{\mathrm{L}^{p,q}(\mathbb{D})} \leq C_{p,q} \left\|\nabla a\right\|_{\mathrm{L}^{2,\infty}(\mathbb{D})} \left\|\nabla b\right\|_{\mathrm{L}^{p,q}(\mathbb{D})}.$$

I. Improved Wente Inequality

Lemma (Bernard-Rivière, Ann. Math. 2014) Let $a, b \in W^{1,1}(\mathbb{D})$ and u be the solution of the Dirichlet problem

$$\begin{cases} -\Delta u = \nabla a \cdot \nabla^{\perp} b & \text{ in } \mathbb{D} \\ u = 0 & \text{ in } \partial \mathbb{D}. \end{cases}$$

Assume that $\nabla a \in L^{2,\infty}$ and $\nabla b \in L^{p,q}$ for some $1 and <math>1 \le q \le \infty$. Then, we have

$$\left\|\nabla u\right\|_{\mathrm{L}^{p,q}(\mathbb{D})} \leq C_{p,q} \left\|\nabla a\right\|_{\mathrm{L}^{2,\infty}(\mathbb{D})} \left\|\nabla b\right\|_{\mathrm{L}^{p,q}(\mathbb{D})}.$$

Theorem (Bernard-Rivière, Ann. Math. 2014)

Under the previous hypothesis, there exists $\varepsilon_0>0$ with the following properties. If

$$\sup_{\rho_k < r < R_k/2} \int_{B_{2r} \setminus \overline{B}_r(0)} |\nabla \vec{n}_k|^2 dx \leq \varepsilon_0,$$

then

$$\lim_{\alpha \to 0} \limsup_{k \to \infty} \|\nabla \vec{n}_k\|_{\mathrm{L}^{2,\infty}(\Omega_k(\alpha))} = 0.$$
(22)

By Rivière's ε -regularity, we get

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

By Rivière's ε -regularity, we get

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

In particular, we have $\|\nabla \vec{n}_k\|_{\mathrm{L}^{2,\infty}(\Omega_k(1/2))} \leq C\sqrt{\varepsilon_0}.$

By Rivière's $\varepsilon\text{-regularity, we get}$

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

In particular, we have $\|\nabla \vec{n}_k\|_{L^{2,\infty}(\Omega_k(1/2))} \leq C\sqrt{\varepsilon_0}$. By contradiction, assume that $|x_k||\nabla \vec{n}_k(x_k)| \geq \varepsilon_1 > 0$ for some $x_k \in \Omega_k(1/2)$ such that

$$\log \left| \frac{|x_k|}{\rho_k} \right| \underset{k \to \infty}{\longrightarrow} \quad \text{and} \ \log \left| \frac{R_k}{|x_k|} \right| \underset{k \to \infty}{\longrightarrow} \infty.$$

By Rivière's $\varepsilon\text{-regularity, we get}$

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

In particular, we have $\|\nabla \vec{n}_k\|_{L^{2,\infty}(\Omega_k(1/2))} \leq C\sqrt{\varepsilon_0}$. By contradiction, assume that $|x_k||\nabla \vec{n}_k(x_k)| \geq \varepsilon_1 > 0$ for some $x_k \in \Omega_k(1/2)$ such that

$$\log \left| \frac{|x_k|}{\rho_k} \right| \underset{k \to \infty}{\longrightarrow} \quad \text{and} \ \log \left| \frac{R_k}{|x_k|} \right| \underset{k \to \infty}{\longrightarrow} \infty.$$

Then, by the previous analysis, we deduce that

$$\left\| e^{\lambda_k} \vec{L}_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(1/2))} + \left\| \nabla S_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} + \left\| \nabla \vec{R}_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} \le C.$$
(24)

By Rivière's $\varepsilon\text{-regularity, we get}$

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

In particular, we have $\|\nabla \vec{n}_k\|_{L^{2,\infty}(\Omega_k(1/2))} \leq C\sqrt{\varepsilon_0}$. By contradiction, assume that $|x_k||\nabla \vec{n}_k(x_k)| \geq \varepsilon_1 > 0$ for some $x_k \in \Omega_k(1/2)$ such that

$$\log \left| \frac{|x_k|}{\rho_k} \right| \underset{k \to \infty}{\longrightarrow} \quad \text{and} \ \log \left| \frac{R_k}{|x_k|} \right| \underset{k \to \infty}{\longrightarrow} \infty.$$

Then, by the previous analysis, we deduce that

$$\left\| e^{\lambda_k} \vec{L}_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(1/2))} + \left\| \nabla S_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} + \left\| \nabla \vec{R}_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} \le C.$$
(24)

Consider the following map: $\vec{\Psi}_k(y) = e^{-\lambda_k(x_k) - \log |x_k|} \left(\vec{\Phi}_k(|x_k|y) - \vec{\Phi}_k(x_k) \right).$

By Rivière's $\varepsilon\text{-regularity, we get}$

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

In particular, we have $\|\nabla \vec{n}_k\|_{L^{2,\infty}(\Omega_k(1/2))} \leq C\sqrt{\varepsilon_0}$. By contradiction, assume that $|x_k||\nabla \vec{n}_k(x_k)| \geq \varepsilon_1 > 0$ for some $x_k \in \Omega_k(1/2)$ such that

$$\log \left| \frac{|x_k|}{\rho_k} \right| \underset{k \to \infty}{\longrightarrow} \quad \text{and} \ \log \left| \frac{R_k}{|x_k|} \right| \underset{k \to \infty}{\longrightarrow} \infty.$$

Then, by the previous analysis, we deduce that

$$\left\| e^{\lambda_k} \vec{L}_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(1/2))} + \left\| \nabla S_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} + \left\| \nabla \vec{R}_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} \le C.$$
(24)

Consider the following map:

$$\vec{\Psi}_k(y) = e^{-\lambda_k(x_k) - \log |x_k|} \left(\vec{\Phi}_k(|x_k|y) - \vec{\Phi}_k(x_k) \right)$$
. Then, we have
 $e^{\tilde{\lambda}_k} \tilde{\vec{L}}_k(y) = e^{\lambda_k(|x_k|y)} \vec{L}_k(|x_k|y)$, $\tilde{S}_k(y) = S_k(|x_k|y)$ and $\tilde{\vec{R}}_k(y) = \vec{R}_k(|x_k|y)$.

By Rivière's $\varepsilon\text{-regularity, we get}$

$$|\nabla \vec{n}_k(x)| \le C\left(\int_{B_{2|x|} \setminus \overline{B}_{|x|}(0)} |\nabla \vec{n}_k|^2 dx\right) \le \frac{C\sqrt{\varepsilon_0}}{|x|}.$$
 (23)

In particular, we have $\|\nabla \vec{n}_k\|_{L^{2,\infty}(\Omega_k(1/2))} \leq C\sqrt{\varepsilon_0}$. By contradiction, assume that $|x_k||\nabla \vec{n}_k(x_k)| \geq \varepsilon_1 > 0$ for some $x_k \in \Omega_k(1/2)$ such that

$$\log \left| \frac{|x_k|}{\rho_k} \right| \underset{k \to \infty}{\longrightarrow} \quad \text{and} \ \log \left| \frac{R_k}{|x_k|} \right| \underset{k \to \infty}{\longrightarrow} \infty.$$

Then, by the previous analysis, we deduce that

$$\left\| e^{\lambda_k} \vec{L}_k \right\|_{\mathrm{L}^{2,\infty}(\Omega_k(1/2))} + \left\| \nabla S_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} + \left\| \nabla \vec{R}_k \right\|_{\mathrm{L}^{2,1}(\Omega_k(1/2))} \le C.$$
(24)

Consider the following map:

$$\vec{\Psi}_k(y) = e^{-\lambda_k(x_k) - \log |x_k|} \left(\vec{\Phi}_k(|x_k|y) - \vec{\Phi}_k(x_k) \right)$$
. Then, we have
 $e^{\widetilde{\lambda}_k} \widetilde{\vec{L}}_k(y) = e^{\lambda_k(|x_k|y)} \vec{L}_k(|x_k|y)$, $\widetilde{S}_k(y) = S_k(|x_k|y)$ and $\widetilde{\vec{R}}_k(y) = \vec{R}_k(|x_k|y)$.
Therefore, (24) holds for $e^{\widetilde{\lambda}_k} \widetilde{\vec{L}}_k, \widetilde{S}_k$, and $\widetilde{\vec{R}}_k$.

We obtain by Rivière's compactness result and (23) a Willmore immersion $\vec{\Psi}_\infty:\mathbb{C}\to\mathbb{R}^3$ such that

$$\int_{B_2 \setminus \overline{B}_1(0)} |\nabla \vec{n}_{\infty}|^2 dx \ge \frac{\varepsilon_1^2}{C} > 0,$$
(25)

and

$$\begin{cases} \Delta \widetilde{S}_{\infty} = \nabla \vec{n}_{\infty} \cdot \nabla^{\perp} \widetilde{\vec{R}}_{\infty} \\ \Delta \widetilde{\vec{R}}_{\infty} = \nabla \widetilde{\vec{R}}_{\infty} \times \nabla^{\perp} \vec{n}_{\infty} - \nabla S_{\infty} \cdot \nabla^{\perp} \vec{n}_{\infty} \end{cases}$$

We obtain by Rivière's compactness result and (23) a Willmore immersion $\vec{\Psi}_\infty:\mathbb{C}\to\mathbb{R}^3$ such that

$$\int_{B_2 \setminus \overline{B}_1(0)} |\nabla \vec{n}_{\infty}|^2 dx \ge \frac{\varepsilon_1^2}{C} > 0,$$
(25)

and

$$\begin{cases} \Delta \widetilde{S}_{\infty} = \nabla \vec{n}_{\infty} \cdot \nabla^{\perp} \widetilde{\vec{R}}_{\infty} \\ \Delta \widetilde{\vec{R}}_{\infty} = \nabla \widetilde{\vec{R}}_{\infty} \times \nabla^{\perp} \vec{n}_{\infty} - \nabla S_{\infty} \cdot \nabla^{\perp} \vec{n}_{\infty} \end{cases}$$

Therefore, the previous Wente inequality shows that

$$\begin{split} \left\|\nabla\widetilde{S}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} + \left\|\nabla\widetilde{\vec{R}}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} &\leq C \left\|\nabla\vec{n}_{\infty}\right\|_{\mathrm{L}^{2,\infty}(\mathbb{C})} \left(\left\|\nabla\widetilde{S}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} + \left\|\nabla\widetilde{\vec{R}}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})}\right) \\ &\leq C\sqrt{\varepsilon_{0}} \left(\left\|\nabla\widetilde{S}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} + \left\|\nabla\widetilde{\vec{R}}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})}\right). \end{split}$$

We obtain by Rivière's compactness result and (23) a Willmore immersion $\vec{\Psi}_\infty:\mathbb{C}\to\mathbb{R}^3$ such that

$$\int_{B_2 \setminus \overline{B}_1(0)} |\nabla \vec{n}_{\infty}|^2 dx \ge \frac{\varepsilon_1^2}{C} > 0,$$
(25)

and

$$\begin{cases} \Delta \widetilde{S}_{\infty} = \nabla \vec{n}_{\infty} \cdot \nabla^{\perp} \widetilde{\vec{R}}_{\infty} \\ \Delta \widetilde{\vec{R}}_{\infty} = \nabla \widetilde{\vec{R}}_{\infty} \times \nabla^{\perp} \vec{n}_{\infty} - \nabla S_{\infty} \cdot \nabla^{\perp} \vec{n}_{\infty} \end{cases}$$

Therefore, the previous Wente inequality shows that

$$\begin{split} \left\|\nabla\widetilde{S}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} + \left\|\nabla\widetilde{\vec{R}}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} &\leq C \left\|\nabla\vec{n}_{\infty}\right\|_{\mathrm{L}^{2,\infty}(\mathbb{C})} \left(\left\|\nabla\widetilde{S}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} + \left\|\nabla\widetilde{\vec{R}}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})}\right) \\ &\leq C\sqrt{\varepsilon_{0}} \left(\left\|\nabla\widetilde{S}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})} + \left\|\nabla\widetilde{\vec{R}}_{\infty}\right\|_{\mathrm{L}^{2,1}(\mathbb{C})}\right). \end{split}$$

For $\varepsilon_0 > 0$ small enough, we get $\vec{S}_{\infty} = 0$ and $\vec{R}_{\infty} = 0$, which implies that $\vec{H}_{\infty} = -\frac{1}{2}e^{-2\widetilde{\lambda}_{\infty}}\left(\nabla \widetilde{\vec{R}}_{\infty} \times \nabla^{\perp} \vec{\Psi}_{\infty} + \nabla^{\perp} \widetilde{S}_{\infty} \cdot \nabla \vec{\Psi}_{\infty}\right) = 0.$

Using Hélein's moving frame methods, one constructs a moving frame $(\vec{e}_1, \vec{e}_2): \mathbb{C} \to S^2 \times S^2$ such that

$$\begin{cases} \vec{n}_{\infty} = \vec{e}_1 \times \vec{e}_2, \\ \int_{\mathbb{C}} \left(|\nabla \vec{e}_1|^2 + |\nabla \vec{e}_2|^2 \right) dx \le C \int_{\mathbb{C}} |\nabla \vec{n}_{\infty}|^2 dx < \infty. \end{cases}$$
(26)

Using Hélein's moving frame methods, one constructs a moving frame $(\vec{e}_1, \vec{e}_2) : \mathbb{C} \to S^2 \times S^2$ such that

$$\begin{cases} \vec{n}_{\infty} = \vec{e}_{1} \times \vec{e}_{2}, \\ \int_{\mathbb{C}} \left(|\nabla \vec{e}_{1}|^{2} + |\nabla \vec{e}_{2}|^{2} \right) dx \leq C \int_{\mathbb{C}} |\nabla \vec{n}_{\infty}|^{2} dx < \infty. \end{cases}$$
(26)

The Liouville equation gives

$$e^{2\widetilde{\lambda}_{\infty}}\mathcal{K}_{g_{\infty}} = -\nabla^{\perp}\vec{e}_{1}\cdot\nabla\vec{e}_{2}$$
(27)

and

$$\int_{\mathbb{C}} |\nabla \vec{n}_{\infty}|^2 = -2 \int_{\mathbb{C}} K_{g_{\infty}} d \operatorname{vol}_{g_{\infty}} = 2 \int_{\mathbb{C}} \operatorname{div} \left(\nabla^{\perp} \vec{e}_1 \cdot \vec{e}_2 \right) dx = 0,$$

a contradiction by (25).