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I. Early History: Elasticity Theory

The integral of mean curvature squared

1
/ H?dvol, = 7/(&1 + K2)?dvolg (1)
b 4 Js

was first introduced by D.-S. Poisson in 1814 and by S. Germain in
1815 to model elastic membranes. Inspired by Euler’s elastica.
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We can rewrite it (once we neglect the forces) as

AgH +2H(H? — K) = 0. (2)

2/34



I. Early History: Euler-Lagrange equation

Why did Poisson only considered the mean curvature squared?
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I. Early History: Euler-Lagrange equation

Why did Poisson only considered the mean curvature squared? He had
already found (an elementary form of ) Gauss-Bonnet theorem!

un coéfficient constant. Cela tient 4 ce que I'on a identique-

ment
b) j]kdzdf [[8 )Ld.z'dy:o,

lorsque I'on a seulement égard aux termes qui, aprés les in-

tégrations par parties, restent sous le double signe /];et que
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I. Early History: Euler-Lagrange equation

Why did Poisson only considered the mean curvature squared? He had
already found (an elementary form of ) Gauss-Bonnet theorem!

un coéfficient constant. Cela tient & ce que l'on a identique-

ment
T o () e i

lorsque I'on a seulement égard aux termes qui, apres les in-
q CUISE

tégrations par parties, restent sous le double signe /];a que

His PhD student Olinde Rodrigues identified in 1815 the constant:

S'il s’agit d’une portion quelconque de surface développable, Ie rayon
mobile ne décrira qu'une simPle courbe, et l'intégrale sera nulle; ce qui
est dailleurs évident, puisqu'on a alors rz—s*=o. Dans le cas d’'une

surface fermée et convexe dans toute son étendue, tetle qu'un ellipsoide,
on aura

(rt—s*) if dy

—5 = 4 ®;
Gttt ’
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Il. Early History: Classical Results

Theorem (Blaschke-Thomsen, Konformminimalflichen, 1923)
The Willmore energy W is a conformal invariant.

4/34



Il. Early History: Classical Results

Theorem (Blaschke-Thomsen, Konformminimalflichen, 1923)
The Willmore energy W is a conformal invariant.

Consequence : inversions of minimal surfaces (H = 0) are Willmore
surfaces.

4/34



Il. Early History: Classical Results

Theorem (Blaschke-Thomsen, Konformminimalflichen, 1923)

The Willmore energy W is a conformal invariant.

Consequence : inversions of minimal surfaces (H = 0) are Willmore
surfaces.

Theorem (Willmore, 1965)

For g/l immersion ® : ¥ — R" from a closed surface Z_, we have
W(®) > 4x, with equality if and only if ¥ = S? and ®(S?) is a round
sphere.

4/34



Il. Early History: Classical Results

Theorem (Blaschke-Thomsen, Konformminimalflichen, 1923)
The Willmore energy W is a conformal invariant.

Consequence : inversions of minimal surfaces (H = 0) are Willmore
surfaces.

Theorem (Willmore, 1965)

For g/l immersion ® : ¥ — R" from a closed surface Z_, we have
W(®) > 4x, with equality if and only if ¥ = S? and ®(S?) is a round
sphere.

Only scalar conformal invariant of R® (Mondino-Nguyen, Ann. Inst.
Fourier 2018).

4/34



Il. Early History: Classical Results

Theorem (Blaschke-Thomsen, Konformminimalflichen, 1923)

The Willmore energy W is a conformal invariant.

Consequence : inversions of minimal surfaces (H = 0) are Willmore
surfaces.

Theorem (Willmore, 1965)

For g/l immersion ® : ¥ — R" from a closed surface g we have

W (®) > 4, with equality if and only if ¥ = S? and ®(S?) is a round
sphere.

Only scalar conformal invariant of R® (Mondino-Nguyen, Ann. Inst.
Fourier 2018).

It appears in various fields : Hawking mass (1972) in general relativity,
Helfrich energy (1973) to model the elasticity of cellular membranes,
and in the construction of spectacle lens (patent by Katzman-Rubinstein
2001).
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l1l. Analytic Challenges: Euler-Lagrange Equation
The Euler-Lagrange equation
AgH +2H(H? — K,) =0

is a 4th-order non-linear elliptic PDE, and requires H € L3, whilst H € L?
only!
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where ¢ = (H, H® + /) and 7 : £ — 52 is the unit normal.
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is a 4th-order non-linear elliptic PDE, and requires H € L3, whilst H € L?
only!

A weak formulation should exist for ®: ¥ — $%is Willmore if and only if
its conformal Gauss map ¢ : £ — S3! is harmonic

—A% = V4, (3)
where ¢ = (H, H® + /) and 7 : £ — 52 is the unit normal.
Notice that W(®) = / V4|2 dvolg + 27 x(X)
b
1

= Z/):|dr‘7’|z,dvolg+7r)(():)
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If & is Willmore AH = 2 H3 .
Notice that although AH € H™2, the right-hand side is not defined!
Theorem (Riviere, Invent. Math. 2008)

A weak immersion ® : £ — R" is Willmore if and only if
d (+gH =345 ms (dH) ++ (di A H)) = 0. (4)

In R3 with conformal coordinates, the equation becomes
div(zvﬁ—3HVﬁ+F/xv¢ﬁ):0, (5)

where V1 = (—0,,,0,,). It follows from Noether's theorem too.

Metaphysical explanation for the existence of a divergence form: Riviére's
theorem on conformally invariant problems (/nvent. Math. 2006).

6/34



l1l. Analytic Challenges: Loss of Compactness

Theorem (Bernard-Riviere, Ann. of Math. 2014)

Let {®}ken : & — R" be a sequence of Willmore immersions. Assume
that

lim sup W(Py) < oo,

k—o0

and that the conformal class of 5;‘<an stays within a compact subset of
the moduli space. Then, up to a subsequence, we have

k—o0

im W(E) = W(Ea)+ 3 (WT)—4r0). (6)

where &, : ¥ — R" and W, : §2 — R" are branched Willmore 6; € N.
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and that the conformal class of 5’;an stays within a compact subset of
the moduli space. Then, up to a subsequence, we have

im W(E) = W(Ea)+ 3 (WT)—4r0). (6)

k—o0

where &, : ¥ — R" and W, : §2 — R" are branched Willmore 6; € N.

Refinement: Laurain-Riviere (Duke Math. J. 2018) in the case of
degenerating conformal class.

Example of loss of compactness by Nicolas Marque (IMRN, 2021).
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IV. Proof of the Energy Quantization

Using the boundedness of energy, there are finitely many bubbles. Bubble
domain :

/ |Viik|?dx > g9 > 0 for all k € N,
By, (0)

where p, — 0.
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/ |Vﬁk|2dx >e90>0 for all k € N,
B, (0)
where p, — 0.

Neck region: annulus Qy(a) = Bag, \ Ba-1,,(0). By Riviere's
e-regularity, we need only prove that

lim Iimsup/ Viik|2 dx = 0.
a=0 k00 Qk(a)‘ &

This is called the no-neck (energy) property.
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domain :

/ |Vﬁk|2dx >e90>0 for all k € N,
By, (0)

where p, — 0.

Neck region: annulus Qy(a) = Bag, \ Ba-1,,(0). By Riviere's
e-regularity, we need only prove that

lim Iimsup/ Viik|2 dx = 0.
a0 koo JOu(a) | ng
This is called the no-neck (energy) property. It is equivalent to

lim Iimsup/ HZdvol,, = 0. (7)
Qk(a)

a=0 k00
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V. The “No-Neck Energy” Property

The idea of proof is due to Lin-Riviére in the setting of Ginzburg-Landau
vortices (CPAM, 2001) and harmonic maps in manifolds (Duke Math. J.
2002), then extended by Riviére to Yang-Mills functional (CAG, 2002),
biharmonic maps (Laurain-Riviere Adv. Calc. Var. 2013), and the
Willmore energy (Bernard-Riviere, Ann. of Math. 2014).
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<C.

[ Hk"L2=1(Qk(a)) = (8)
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First, one proves a uniform 1?1 estimate:

A
e kaHL2=1(§2 (@) = c. (8)
Then, one shows an L% quantization:
Ak
I|m0||lr<n_)sup He HkHL200 (Q(a)) =0. (9)

Finally, using the L21/1%°° duality (17), we deduce that

He)\kaHLz«w(Qk(a)) =0

a—0

2\ 2 A
1= 1 il
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VI. Conservation Laws

Recall the Willmore equation

div (2 VHi — 3 Hi Vi + Fy x vLﬁk) =0 in B(0,1).  (10)
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VI. Conservation Laws

Recall the Willmore equation
div (2 VHi — 3 Hi Vi + Fy x VLﬁk) =0 i B(0,1).
By the Poincaré lemma, there exists Ly : B(0,1) — R3 such that
V4L = 2VHy — 3 H Vi + Hy x V4.
We have the following conservation laws:

V1id, x VL, =0
VE®, x VL +2VH, - V+d, =0

Therefore, there exists (Sk, R) : B(0,1) — R x R3 such that

VS = Vo, - Ly
Vﬁk = V5k X Zk + 2HkV5k

(10)

(12)
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VI. Conservation Laws
The functions Sx and Ry solve the system

AS, = Viik- V'R
{ k k k (14)

Aﬁ’k = Vﬁ’k X VLﬁk - VS - VLﬁk
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VI. Conservation Laws
The functions Sx and Ry solve the system
AS, = Vit -V Re
2 3 1 1 (14)
ARkIVRkXV ﬁk—VSk-V I_‘ik
Those are Jacobian systems!

Lemma (Wente, 1969)
Let a,b € WH?(Q,R). Let u:Q — R be the solution of

—Au=(Va,V'bh) inQ
u=20 on 0f.

Then, we have Vu € L*}(Q), and
HVU”LM(Q) < () ||V3||L2(Q) HVb||L2(Q)‘

In particular, u € L=(2) by the Sobolev embedding W@V (Q) — C°(Q).
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VI. Weak L? Estimate

We need only prove that VSi, VR € L2.
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- C
e |Lkl(x) < —

x|

12/34



VI. Weak L2 Estimate

We need only prove that VS, VR, € L2. By Riviere's e-regularity, we
have on Q4(1/2)

- C
ML) <
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VI. Weak L2 Estimate

We need only prove that VS, VR, € L2. By Riviere's e-regularity, we
have on Q4(1/2)

- C
L) < 7

In particular, e[, € [2°°(€,(1/2)). By the system

VS = Vb, - Ly
Vﬁk = V‘Bk X Zk + 2HkV<T>k,

we deduce that VS, VR, € L2°°(Q,(1/2)).
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VI. Improved Wente Inequality

Lemma
Let a € WH2(Q,R), b € WH®)(QR). Let u: Q — R be the solution of

—Au=(Va,Vb) inQ
u=20 on 01.

Then, we have Vu € L*(Q), and

HV“HLz(n) < G(Q) Hva“LZ(Q) HVbHLQ’OC(Q) :
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Using versions of those inequalities on annuli, we get successively
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VI. Improved Wente Inequality

Lemma
Let a € WH2(Q,R), b € WH®)(QR). Let u: Q — R be the solution of

—Au=(Va,Vb) inQ
u=0 on 0N.

Then, we have Vu € L*(Q), and

IVulli2@) < G(Q) IVallL2) VD200 (g
Using versions of those inequalities on annuli, we get successively
VS, VR € L*((1/4)) and V Sk, VR € L*1(Q«(1/8)). By the identity

—2e*M F/k = Vﬁk X VL(B;( + VLSk . Vd3k,
we deduce that

<C.

AkH ‘
H L2:1(Q,(1/8)))
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Part 2: Riemannian Theory
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I. The Case of Riemannian Manifolds

Let (M3, h) be a closed Riemannian manifold. If ® : $2 — M3 is a
smooth immersion, we define

W(®) = Winps 1) (D) = /S 2 (H? + K) dvolg,

ﬂhere g= ®*h is the induced metric, H is the mean curvature, and
K = K(®, TS?) is the curvature of the 2-plan spanned by ®.
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I1. Main Result

Theorem (M. & Mondino, 2021)

Let {®}ien : S2 — M3 be a sequence of Willmore immersions, and
assume that

lim sup (W(d_sk) + Area(CBk)) < 00.

k—o0
Then, up to a subsequence, the following energy identity holds
P

lim W(Sy) = W(Dso) + Y W)+ (Wen(X)) — 47 6))

k—o0 ) -
i=1 j=1

where W; and x; are Willmore spheres respectively into M3 or R® and
9j e N.
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Il. Comments and Open Problems

(1) The extra hypothesis is natural by conformal invariance: if
7: 53\ {N} — R3 is the stereographic projection, and

d=rod:S2 RS

/(H2+1)dvolg:/ |H2dvolg.
S2 S2?

In particular, the hypothesis on boundedness of area held in
Bernard-Riviére's theorem.
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d=mod:52 5 R3
/ (H? + 1)dvolg :/ |H2dvolg.
S? 52

In particular, the hypothesis on boundedness of area held in
Bernard-Riviére's theorem.

(2) Application of this theorem to find compactness results.

(3) In R", the space of Willmore tori of energy W < 8r —§ (6 > 0) is
compact (Kuwert-Schitzle Ann. of Math. 2004 for n = 3, Riviere
Invent. Math. n > 3).

(4) Application to the Willmore flow (Kuwert-Schatzle Ann. of Math.
[2001, 2004], Palmurella-Riviere Adv. Math. 2022).
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I1l. Analytic Difficulties

Critical points satisfy the Euler-Lagrange equation
AgH + 2H(H? — Kg) + Ric(, A)H + ((V#R)(81, &), &) = 0. (16)

It requires that H € L3(52) though & € W22(5?).
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I1l. Analytic Difficulties

Critical points satisfy the Euler-Lagrange equation
AgH + 2H(H? — Kg) + Ric(, A)H + ((V#R)(81, &), &) = 0. (16)

It requires that H € L3(52) though ® € W22(52?).

Using Mondino-Riviére's result in Riemannian manifolds (Adv. Math.
2013), the equation (16) becomes (H = H7)

Re (V; (sz/ —3VNH i (vzm E/)))

where e?* = 2|8ZCB|2, € = 825, and 7i: 52 — 52 is the unit normal.
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IV. Lorentz and Orlicz Spaces

Let ¢ : (0,00) — (0, 00) be a concave function such that ¢(0) =0, and
Q2 C R". For all measurable f : 2 — R™, define the norm

Il = [ ¢ Oute

where Ar(t) = 27 (N {x : [F(x)| > t}).
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IV. Lorentz and Orlicz Spaces

Let ¢ : (0,00) — (0, 00) be a concave function such that ¢(0) =0, and
Q2 C R". For all measurable f : 2 — R™, define the norm

Il = [ ¢ Oute
where A¢(£) = 2" (N {x : [F(x)] > t}).

Theorem (Steigerwalt-White, 1971)

The functional || - ||y, is @ norm and (N(¢), || - [ y(,)) is @ Banach space.

Dual Spaces. Define the decreasing rearrangement
fo 1Ry = Ry U{oo} of f by fi(t) =inf Ry N {s: Ar(s) < t}, and

1 t
f :sup—/ f.(s)ds.
1l IS

t>0 ¥
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IV. Lorentz and Orlicz Spaces

Theorem (Steigerwalt-White, 1971)

(1) Assume that (t) = o(t) as t — oo. Then M(yp) is a norm and
(M(p), || - ||M(<P)) is a Banach space.

(2) For all (f,g) € N(¢) x M(p), we have f - g € LY(X, u) and
[ ] < Wil el (")
In particular, we have N(p)* = M(y).

Remark .
If LPY = N(t?) and LP> = M(t'" %), we recover that (LP1)* = LP'>®

forall 1 < p < o0.
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V. Proof of the Main Theorem

(1) Prove that e*« is bounded in LP for some p > 2 independent of k. It
follows from our assumption on the boundedness of area.
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V. Proof of the Main Theorem

(1) Prove that e*« is bounded in LP for some p > 2 independent of k. It
follows from our assumption on the boundedness of area.

(2) Using Bernard-Riviere's approach, get a uniform Harnack inequality
[Ak = dilog |z — Akl (a,a)) < €

where d, — d > —1.
k—o0
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V. Proof of the Main Theorem

(1) Prove that e*« is bounded in LP for some p > 2 independent of k. It
follows from our assumption on the boundedness of area.

(2) Using Bernard-Riviere's approach, get a uniform Harnack inequality

Ak — dilog || — Al ey < €

where d, — d > —1.
k—o0

(3) Construct by convolution a function Uy such that

0,0, = i (vzﬁk —3VNH — i (Vzﬁk A F/k)) - Y., (18)

and satisfying the estimates

Ry
Ue| < <1+Iog ()),
Ud < 1 {2l
I

m (Uy) € WHE®)(B(0, Ry)).
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V. Proof of the Main Theorem

An estimate
lu(z)] < ﬁ (Iog (%) + 1) for all z € B(0, R)
V4 V4

implies that u € M(p) = LIQ(;:;(B(O, R)) (with 8 =1), where forall 0 < g <1

vs(t) =Vt (1 + log”? <R\/§>> .
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V. Proof of the Main Theorem

An estimate
lu(z)] < ﬁ (Iog (%) + 1) for all z € B(0, R)
V4 V4

implies that u € M(p) = LIQ(;:;(B(O, R)) (with 8 =1), where forall 0 < g <1

vs(t) =Vt (1 + log”? (R\/§)> .

By a standard decomposition, one need only consider holomorphic maps.

Lemma
Let u: B(0, R) — C be a holomorphic function and fix some 0 < a < 1 and
0< B <1 Ifuel>%(B(0,R)), then u € W N L>*(B(0,aR)) and

log#

COé B 2
lull21(0,ary + IV UllLi,ar) < (1-+a)? log (1 - \/a) H””Lf;g?w(o,r?))'
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V. Proof of the Main Theorem
By a fixed point argument (cf. Mondino-Riviere), 3ag > 0 and Zk such
h - -
that VI = Y,

- C .
e/\k|Lk| < ?| +’¢k n Qk(ao)

where ¢ € LP(B(0, agRyx)) for some p > 2 independent of k.
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V. Proof of the Main Theorem

By a fixed point argument (cf. Mondino-Riviére), 3ag > 0 and Ly such
that - -
? V.li = Yi

- C .
e/\k|Lk| < ?| +’¢k n Qk(ao)

where ¢ € LP(B(0, agRyx)) for some p > 2 independent of k.

By a generalisation of Riviere's conservation laws (Mondino-Riviere), we
construct Sk, R € WH(2°)(B(0, apRy)) such that

0.5 = (0.8, L) in B(0,00Rk) (19)
Im (S) =0 on 9B(0, agRx),

Vzl_?'k = 825/( AN Zk —2i 8z5k A Hk in B(O, aoRk)
Im (R) =0 on 0B(0, agRy).
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V. Proof of the Main Theorem

Using Calderén-Zygmund estimates, we prove that Im (S ), Im (Ry) are
bounded in W29(B(0, agRy)) for some q > 1.
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V. Proof of the Main Theorem

Using Calderén-Zygmund estimates, we prove that Im (S ), Im (Ry) are
bounded in W29(B(0, agRy)) for some q > 1.

The coupled system
Vzﬁk = (*h (I_‘ik Jvzﬁk) + (625k) *h ﬁk> in B(O7 OéoRk)
0,5, = —I'<sz_ék,*hﬁk> in B(O,aoRk)

, (21)

permits to make Jacobian equations appear for Re (Ry) and Re (Sk), and
using estimates inspired by the Wente inequality, and averaging methods,
one finds that VR, VS, € L271(Qk(a0/2)).
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VI. Averaging Lemma

Lemma (Bernard-Riviére, Annals of Math. 2014)

Let k,me N, u € WH(B(0,1),C), f € L*(B(0,1),C),
Ve Wh>=)(B(0,1),A“C™), w € W2 N L>=(B(0,1), A“R™) such that

Oeu = —i (9.7, W) + ).

Let 0 < r < R < 0o and Q= Br\ B,(0). Assume that Im (V) € W*?(Q) and

IVRe (7)(2)] < %' for all r < |z| < R.

Then, we have

Rid 2 : n
</r %Re(u)p Pdﬂ> §V27F<k>C0||VVT/||L2(Q)
b Wl i VT (7)1 20 + =[]
V2n L (Q) L2(Q) V2r L2(Q)>

where ¢, = %) d#" s the average.

27p Jo8(0,p)
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VIIl. Jacobians and the Wente Inequality

Lemma (Laurain-Riviere, Anal. PDE, 2014)

Let0 < 4r < R< oo, Q=B(0,R)\ B(0,r) > R, a,b: Q — R such that
Vae L?*(Q) and Vb € L3(Q), and u € WHZ>)(Q) be a solution of

Au=Va-V'b  in Q.
Assume that Vu, € L?(Q). Then Vu € 12(Q), and there exists Co < o
1
independent of 0 < 4r < R such that for all (%) ‘<a< %

HVUHL?(BQR\EQ_M < G (”val|L2v°°(Q) ||VbHL2(Q) + HVUPHL2(Q) + HV”HLZOO(Q)) :
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VIIl. Jacobians and the Wente Inequality

From the conservation laws and the system (21), we obtain quasi-Jacobian
systems:

A (Re (ﬁk)) = — % (vm IV Re (ﬁk)) ~ (vm IVt (Re (sk)))

+ él,k
A (Re (Sk)) = (V(*nik), VIRe (Re)) + Gok

for some G and Gy x which are bounded in LI(B(0, agRy)) for all 1 < q < 2.
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VIIl. Jacobians and the Wente Inequality

From the conservation laws and the system (21), we obtain quasi-Jacobian
systems:

A (Re (ﬁk)) = — % (vm IV Re (ﬁk)) ~ (vm IVt (Re (sk)))
+ él,k
A (Re (Sk)) = (V(*nik), VIRe (Re)) + Gok
for some G and Gy x which are bounded in LI(B(0, agRy)) for all 1 < q < 2.

The previous averaging lemma and the improved Wente inequality show that
VSk, VRi € L?(Q%(2a0/3)). Another averaging argument shows that
Sk, R € L™ (Q(2a0/3)).
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VIIl. Jacobians and the Wente Inequality

Lemma (Laurain-Riviere, Anal. PDE, 2014, M.-Riviere 2019)

Let 0 < 16r < R < oo, Q= B(0,R)\ B(0,r) = R, a,b € W12(Q), and
u:Q — R be a solution of

Au=Va-V'b in Q.
Assume that ||ul|y,(pq) < 00. Then there exists a constant C; < oo such

1

r\:z 1
that f //<f) :
at for a R <oz<4

2
||u||L°°(Q) + ||V“HL2,1(B@R\§Q,1,(0)) + HV ”HLI(BF,R\EQ,l,(o))

< G (IVallya(y 1V bllagy + lullm(om) -
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VIII. Final Argument

Finally, we get Sk, ﬁk e W20 W21 and the identity
. . - 1 -
e)‘ka =—Im (szk Lei)\k(%q)k) — Ee)‘klm (Lk>
+ Im (ef’\kﬁgdgk 825k) + Re (<8z5k, Im (Zk>> e’Akﬁ;dsk>

yields the 21 estimate for the mean curvature, which concludes the
proof of the theorem.
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I1l. Weak L? Energy Quantization
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l. Improved Wente Inequality

Lemma (Bernard-Riviere, Ann. Math. 2014)
Let a,b € WH(D) and u be the solution of the Dirichlet problem

—Au=Va-Vib inD
u=20 in OD.

Assume that Va € L>°° and Vb € LP9 for some1 < p < 0o and 1 < g < co.
Then, we have

||Vu||LP=4(]D)) < Gog HV‘?HLZOO(D) ||VbHLp,q(D) .
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l. Improved Wente Inequality
Lemma (Bernard-Riviere, Ann. Math. 2014)
Let a,b € WH'(D) and u be the solution of the Dirichlet problem
~Au=Va-V'b inD
u=0 in OD.

Assume that Va € L>°° and Vb € LP9 for some1 < p < 0o and 1 < g < co.
Then, we have

||Vu||LP=4(]D)) < Gog HV‘?HLZOO(D) ||VbHLp,q(D) .

Theorem (Bernard-Riviere, Ann. Math. 2014)

Under the previous hypothesis, there exists g > 0 with the following
properties. If

sup / B |Vi|>dx < eo,
B> \B/(0)

Pr<r<Ry/2
then

Jlim “T—ilip V7l 2,00 (0 () = O- (22)
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Il. Proof

By Riviere's e-regularity, we get

C
vm(x)gc<][ B |Vﬁk|2dx> < Ve (23)
Bs|x \B|x| (0)

x|
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Il. Proof

By Riviere's e-regularity, we get

C
|Vi(x)| < C <][ |Vﬁk|2dx> < \/5. (23)
Box) \Bx(0)

x|

In particular, we have || V(|20 (g, (1/2)) < Cv/E0.
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Il. Proof

By Riviere's e-regularity, we get

|VA(x)| < C <]l |vm|2dx> < Ve (23)
Box) \Bx(0)

x|

In particular, we have || V|| 2,00 (q,(1/2)) < Cv/0. By contradiction, assume
that |x«||VAk(xk)| > €1 > 0 for some xx € Qi(1/2) such that

||

Pk

R

—r OO
[x«|

k—o0

— and log

k—o0

log
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By Riviere's e-regularity, we get

C
|VA(x)| < C <]l |vm|2dx> < Ve (23)
Box) \Bx(0) x|

In particular, we have || V|| 2,00 (q,(1/2)) < Cv/0. By contradiction, assume
that |x«||VAk(xk)| > €1 > 0 for some xx € Qi(1/2) such that

||

Pk

R
2l s
||

k—o0

— and log

k—o0

log

Then, by the previous analysis, we deduce that

<C. (28

|2
L2 (24(1/2))

Vs VR
L2~°°(Qk(1/2)) + || kHL2’1(Qk(1/2)) + k
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Il. Proof

By Riviere's e-regularity, we get

C
|VA(x)| < C <]l |vm|2dx> < Ve (23)
Box) \Bx(0) x|

In particular, we have || V|| 2,00 (q,(1/2)) < Cv/0. By contradiction, assume
that |x«||VAk(xk)| > €1 > 0 for some xx € Qi(1/2) such that

||

Pk

R
2l s
||

k—o0

— and log

k—o0

log

Then, by the previous analysis, we deduce that

oL <c ()

L2:1(Q,(1/2))

Vs VR
L2~°°(Qk(1/2)) + || kHL2’1(Qk(1/2)) + k

Consider the following map:
Wi(y) = e b (6, (xly) — Bi(xe)).
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By Riviere's e-regularity, we get

C
|VA(x)| < C <]l |vm|2dx> < Ve (23)
Box) \Bx(0) x|

In particular, we have || V|| 2,00 (q,(1/2)) < Cv/0. By contradiction, assume
that |x«||VAk(xk)| > €1 > 0 for some xx € Qi(1/2) such that

||
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2l s
||

k—o0

— and log

k—o0

log

Then, by the previous analysis, we deduce that

oL <c ()

L2:1(Q,(1/2))

Vs VR
L2~°°(Qk(1/2)) + || kHL2’1(Qk(1/2)) + k

Consider the following map:
Uy (y) = e Mbo)—log Ixd (5k(|xk\y) - 5k(xk)>.Then, we have

M Li(y) = P L(xly), Se(y) = Sullxily) and Re(y) = Re(|xuly)-
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Il. Proof

By Riviere's e-regularity, we get

C
|VA(x)| < C <]l |vm|2dx> < Ve (23)
Box) \Bx(0) x|

In particular, we have || V|| 2,00 (q,(1/2)) < Cv/0. By contradiction, assume
that |x«||VAk(xk)| > €1 > 0 for some xx € Qi(1/2) such that

||

Pk

R
2l s
||

k—o0

— and log

k—o0

log

Then, by the previous analysis, we deduce that

|2

<C. (28

Vs Hvﬁ’ ‘
y 't IV Skl a0/ + ||V R L21(2(1/2))

L2:90(Q,(1/2

Consider the following map:
Uy (y) = e Mbo)—log Ixd (5k(|xk\y) - 5k(xk)>.Then, we have

M Li(y) = e“(‘xk'Y)Zk(|Xk|~YL Sk(y) = Sk(xcly) and Ri(y) = Re(lxly).
Therefore, (24) holds for e’ Ly, Sy, and Ry.
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Il. Proof

We obtain by Riviere's compactness result and (23) a Willmore immersion
V., : C — R? such that

2
/ |Viiso|?dx > L > 0, (25)
B,\B1(0) ¢

and

ASoo = Vites - V5 Roo
ARoo = VRoo X Voo — VSuo - V5 Fiso
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Proof

We obtain by Riviere's compactness result and (23) a Willmore immersion
V., : C — R? such that

/ Vi > S >0, (25)
8,\B1(0) C
and

ASw = Viiso - V' Roo

ARoo = VRoo X Voo — VSuo - V5 Fiso

Therefore, the previous Wente inequality shows that

< CIVAslizny (HngHLz,l(@ +[vA-

L2’1(C)> '

L2,1(c)>

[¥3-

HVR’OO
L2, 1 L2’1(C)

VR

< v (|75

1.2, l(C) H
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Proof

We obtain by Riviere's compactness result and (23) a Willmore immersion
V., : C — R? such that

/ Vi > S >0, (25)
8,\B1(0) C
and

ASw = Viiso - V' Roo

ARoo = VRoo X Voo — VSuo - V5 Fiso

Therefore, the previous Wente inequality shows that

[¥3-

HVR’OO

< CIVAslizny (HngHLz,l(@ +[vA-

L2’1(C)> '

For €9 > 0 small enough, we get S = 0 and ﬁm = 0, which implies that

L2,1(c)>

2, 1
L= L2.1(C)

< Cy/ey <Hv oo‘ VRo

1.2, l(C) H

—

He = —%efﬁw (vfeoo x ViU, + VS, - V\Tloo> =0.
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Il. Proof

Using Hélein’s moving frame methods, one constructs a moving frame
(&,8&) : C — S? x S? such that
Moo = €1 X &,

26
/ (Ve + |V&/?) dx < C/ |V s |2dx < 0. (26)
C C
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Proof

Using Hélein’s moving frame methods, one constructs a moving frame
(&,8&) : C — S? x S? such that

N = €1 X €3,

26
/ (Ve + |V&/?) dx < C/ |V s |2dx < 0. (26)
C C
The Liouville equation gives
DK, =-Vte Ve (27)

and
/ |Viiso|? = —2/ Kg. dvolg = 2/ div (V+&, - &) dx =0,
C C C

a contradiction by (25).
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