Old and new in compensated compactness

Bogdan Raiță

Scuola Normale Superiore di Pisa

18 July 2022

► Linear PDE in L¹: Estimates despite failure of Calderón–Zygmund for $Lu = f \in L^1$ (half of my work);

- ► Linear PDE in L¹: Estimates despite failure of Calderón–Zygmund for $Lu = f \in L^1$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);

- ► Linear PDE in L¹: Estimates despite failure of Calderón–Zygmund for $Lu = f \in L^1$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);
- Dipped toes in image processing;

- ► Linear PDE in L¹: Estimates despite failure of Calderón–Zygmund for $Lu = f \in L^1$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);
- Dipped toes in image processing;
- ▶ New hobby: commutative algebra (for general linear PDE).

- ► Linear PDE in L¹: Estimates despite failure of Calderón–Zygmund for $Lu = f \in L^1$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);
- Dipped toes in image processing;
- ▶ New hobby: commutative algebra (for general linear PDE).

Today: Weak convergence effects.

Joint with André Guerra, Jan Kristensen, Matthew Schrecker.

When do we have

$$v_j \rightarrow v \text{ in } \mathbf{L}^p \implies F(v_j) \stackrel{*}{\rightarrow} F(v) \text{ in } \mathscr{D}'?$$

 $F \in C$ is a nonlinearity of *p*-growth, $|F| \leq c(1 + |\cdot|^p)$.

When do we have

$$v_j \rightharpoonup v \text{ in } \mathbf{L}^p \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'?$$

 $F \in C$ is a nonlinearity of *p*-growth, $|F| \leq c(1 + |\cdot|^p)$.

NB: if $v_j \to v$ in L^p , then $F(v_j) \to F(v)$ in L^1 (so always!)

When do we have

$$v_j \rightharpoonup v \text{ in } \mathbf{L}^p \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'?$$

 $F \in C$ is a nonlinearity of *p*-growth, $|F| \leq c(1 + |\cdot|^p)$.

NB: if $v_j \to v$ in L^p , then $F(v_j) \to F(v)$ in L^1 (so always!)

Weierstrass: for weak convergence, only if F is affine (so never!)

When do we have

$$v_j \rightharpoonup v \text{ in } \mathbf{L}^p \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'?$$

 $F \in C$ is a nonlinearity of *p*-growth, $|F| \leq c(1 + |\cdot|^p)$.

NB: if $v_j \to v$ in L^p , then $F(v_j) \to F(v)$ in L^1 (so always!)

Weierstrass: for weak convergence, only if F is affine (so never!)

Ball, JL Lions, Morrey, Murat, Reshetnyak, Tartar: Assume v_i have linear differential structure.

When do we have

$$v_j \rightarrow v \text{ in } \mathbf{L}^p \implies F(v_j) \stackrel{*}{\rightarrow} F(v) \text{ in } \mathscr{D}'?$$

 $F \in C$ is a nonlinearity of *p*-growth, $|F| \leq c(1 + |\cdot|^p)$.

NB: if $v_j \to v$ in L^p , then $F(v_j) \to F(v)$ in L^1 (so always!)

Weierstrass: for weak convergence, only if F is affine (so never!)

Ball, JL Lions, Morrey, Murat, Reshetnyak, Tartar: Assume v_j have linear differential structure. Find the restrictions on the nonlinearity F.

Two examples

Ball/Morrey/Reshetnyak:

$$Du_j \rightarrow Du$$
 in $L^n(\mathbb{R}^n) \implies \det Du_j \stackrel{*}{\rightharpoonup} \det Du$ in $\mathcal{M}(\mathbb{R}^n)$.

Two examples

Ball/Morrey/Reshetnyak:

 $Du_j \rightarrow Du$ in $L^n(\mathbb{R}^n) \implies \det Du_j \stackrel{*}{\rightarrow} \det Du$ in $\mathcal{M}(\mathbb{R}^n)$.

JL Lions–Murat–Tartar:

 $\begin{array}{ll} Du_{j} \rightharpoonup Du & \text{in } \mathrm{L}^{2}(\mathbb{R}^{n}, \mathbb{R}^{n}) \\ v_{j} \rightharpoonup v & \text{in } \mathrm{L}^{2}(\mathbb{R}^{n}, \mathbb{R}^{n}) \\ \mathrm{div} \, v_{j} = 0 \end{array} \right\} \implies v_{j} \cdot Du_{j} \stackrel{*}{\rightharpoonup} v \cdot Du \text{ in } \mathcal{M}(\mathbb{R}^{n}).$

This is (a variant of) the div-curl lemma.

Two examples

Ball/Morrey/Reshetnyak:

 $Du_j \rightarrow Du$ in $L^n(\mathbb{R}^n) \implies \det Du_j \stackrel{*}{\rightharpoonup} \det Du$ in $\mathcal{M}(\mathbb{R}^n)$.

JL Lions–Murat–Tartar:

$$\begin{aligned} & Du_j \rightharpoonup Du \quad \text{in } \mathcal{L}^2(\mathbb{R}^n, \mathbb{R}^n) \\ & v_j \rightharpoonup v \qquad \text{in } \mathcal{L}^2(\mathbb{R}^n, \mathbb{R}^n) \\ & \text{div } v_j = 0 \end{aligned} \right\} \implies v_j \cdot Du_j \stackrel{*}{\rightharpoonup} v \cdot Du \text{ in } \mathcal{M}(\mathbb{R}^n). \end{aligned}$$

This is (a variant of) the div-curl lemma.

Extraordinarily far-reaching: these come up in elasticity, fluids, electromagnetism, hyperbolic conservation laws, geometric analysis (harmonic maps between manifolds).

Murat's framework

For which nonlinearities F do we have

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathbf{L}^p \\ \mathcal{A}v_j \rightarrow \mathcal{A}v & \text{in } \mathbf{W}^{-\ell,q} \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'?$$

where ${\mathcal A}$ is an $\ell\text{-homogeneous}$ linear differential operator

$$\mathcal{A} = \sum_{|\alpha| = \ell} A_{\alpha} \partial^{\alpha},$$

where A_{α} are matrices (vectorial set up).

Murat's framework

For which nonlinearities F do we have

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathbf{L}^p \\ \mathcal{A}v_j \rightarrow \mathcal{A}v & \text{in } \mathbf{W}^{-\ell,q} \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'?$$

where ${\mathcal A}$ is an $\ell\text{-homogeneous}$ linear differential operator

$$\mathcal{A} = \sum_{|\alpha| = \ell} A_{\alpha} \partial^{\alpha},$$

where A_{α} are matrices (vectorial set up).

We refer to such occurrences of weak sequential continuity as instances of *compensated compactness*. Could also include lower semi-continuity.

$$F\left(\int_{[0,1]^n} v(x) \,\mathrm{d}x\right) = \int_{[0,1]^n} F(v(x)) \,\mathrm{d}x \qquad (\mathcal{A}\text{-}q)$$

for all $[0, 1]^n$ -periodic fields v with $|\mathcal{A}v = 0|$ (for terminology, compare with Dacorogna '81-'82, Fonseca–Müller '99).

$$F\left(\int_{[0,1]^n} v(x) \,\mathrm{d}x\right) = \int_{[0,1]^n} F(v(x)) \,\mathrm{d}x \qquad (\mathcal{A}\text{-}q)$$

for all $[0, 1]^n$ -periodic fields v with $|\mathcal{A}v = 0|$ (for terminology, compare with Dacorogna '81-'82, Fonseca–Müller '99).

Necessity: test with $v_j(x) \coloneqq v(jx)$.

$$F\left(\int_{[0,1]^n} v(x) \,\mathrm{d}x\right) = \int_{[0,1]^n} F(v(x)) \,\mathrm{d}x \qquad (\mathcal{A}\text{-}q)$$

for all $[0, 1]^n$ -periodic fields v with $|\mathcal{A}v = 0|$ (for terminology, compare with Dacorogna '81-'82, Fonseca–Müller '99).

Necessity: test with $v_j(x) \coloneqq v(jx)$.

Not difficult to see that F is necessarily a polynomial.

$$F\left(\int_{[0,1]^n} v(x) \,\mathrm{d}x\right) = \int_{[0,1]^n} F(v(x)) \,\mathrm{d}x \qquad (\mathcal{A}\text{-}q)$$

for all $[0, 1]^n$ -periodic fields v with $|\mathcal{A}v = 0|$ (for terminology, compare with Dacorogna '81-'82, Fonseca–Müller '99).

Necessity: test with $v_j(x) \coloneqq v(jx)$.

Not difficult to see that F is necessarily a polynomial. WLOG F is homogeneous of degree $s \ge 2$ in the remainder.

$$F\left(\int_{[0,1]^n} v(x) \,\mathrm{d}x\right) = \int_{[0,1]^n} F(v(x)) \,\mathrm{d}x \qquad (\mathcal{A}\text{-}q)$$

for all $[0, 1]^n$ -periodic fields v with $|\mathcal{A}v = 0|$ (for terminology, compare with Dacorogna '81-'82, Fonseca–Müller '99).

Necessity: test with $v_j(x) \coloneqq v(jx)$.

Not difficult to see that F is necessarily a polynomial. WLOG F is homogeneous of degree $s \ge 2$ in the remainder.

s = q = p = 2: answer is rigurous (Murat–Tartar '70s).

1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;

- 1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;
- 2. $\mathcal{A} = \text{div} \text{ on } \mathbb{R}^{n \times n}$. If $n \ge 3$, then $F \equiv 0$;

- 1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;
- 2. $\mathcal{A} = \text{div} \text{ on } \mathbb{R}^{n \times n}$. If $n \ge 3$, then $F \equiv 0$;
- 3. $\mathcal{A}(v, \tilde{v}) = (\operatorname{div} v, \operatorname{curl} \tilde{v}) \text{ and } F(v, \tilde{v}) = v \cdot \tilde{v};$

- 1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;
- 2. $\mathcal{A} = \text{div} \text{ on } \mathbb{R}^{n \times n}$. If $n \ge 3$, then $F \equiv 0$;
- 3. $\mathcal{A}(v, \tilde{v}) = (\operatorname{div} v, \operatorname{curl} \tilde{v}) \text{ and } F(v, \tilde{v}) = v \cdot \tilde{v};$
- 4. Saint-Venant compatibility operator, when $\mathcal{A}v = 0$ implies $v = \mathcal{E}u \coloneqq \frac{1}{2}(Du + Du^T)$ for $u \colon \mathbb{R}^n \to \mathbb{R}^n$. Then $F \equiv 0$;

- 1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;
- 2. $\mathcal{A} = \text{div} \text{ on } \mathbb{R}^{n \times n}$. If $n \ge 3$, then $F \equiv 0$;
- 3. $\mathcal{A}(v, \tilde{v}) = (\operatorname{div} v, \operatorname{curl} \tilde{v}) \text{ and } F(v, \tilde{v}) = v \cdot \tilde{v};$
- 4. Saint-Venant compatibility operator, when $\mathcal{A}v = 0$ implies $v = \mathcal{E}u \coloneqq \frac{1}{2}(Du + Du^T)$ for $u \colon \mathbb{R}^n \to \mathbb{R}^n$. Then $F \equiv 0$;
- 5. exterior (co)differentials: $\mathcal{A} = d$ or $\mathcal{A} = d^*$.

1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;

2. $\mathcal{A} = \text{div} \text{ on } \mathbb{R}^{n \times n}$. If $n \ge 3$, then $F \equiv 0$;

3. $\mathcal{A}(v, \tilde{v}) = (\operatorname{div} v, \operatorname{curl} \tilde{v}) \text{ and } F(v, \tilde{v}) = v \cdot \tilde{v};$

- 4. Saint–Venant compatibility operator, when $\mathcal{A}v = 0$ implies $v = \mathcal{E}u \coloneqq \frac{1}{2}(Du + Du^T)$ for $u \colon \mathbb{R}^n \to \mathbb{R}^n$. Then $F \equiv 0$;
- 5. exterior (co)differentials: $\mathcal{A} = d$ or $\mathcal{A} = d^*$.

All these examples have constant rank, i.e.,

rank $\mathcal{A}(\xi)$ is independent of $\xi \in \mathbb{R}^n \setminus \{0\}$,

where $\mathcal{A}(\xi) = \sum_{|\alpha|=\ell} \xi^{\alpha} A_{\alpha}$ is the characteristic polynomial of \mathcal{A} .

1. $\mathcal{A} = \text{curl}$, when $\mathcal{A}v = 0 \implies v = Du$. Then F can be any Jacobian subdeterminant;

2. $\mathcal{A} = \text{div} \text{ on } \mathbb{R}^{n \times n}$. If $n \ge 3$, then $F \equiv 0$;

3. $\mathcal{A}(v, \tilde{v}) = (\operatorname{div} v, \operatorname{curl} \tilde{v}) \text{ and } F(v, \tilde{v}) = v \cdot \tilde{v};$

- 4. Saint–Venant compatibility operator, when $\mathcal{A}v = 0$ implies $v = \mathcal{E}u \coloneqq \frac{1}{2}(Du + Du^T)$ for $u \colon \mathbb{R}^n \to \mathbb{R}^n$. Then $F \equiv 0$;
- 5. exterior (co)differentials: $\mathcal{A} = d$ or $\mathcal{A} = d^*$.

All these examples have constant rank, i.e.,

rank $\mathcal{A}(\xi)$ is independent of $\xi \in \mathbb{R}^n \setminus \{0\}$,

where $\mathcal{A}(\xi) = \sum_{|\alpha|=\ell} \xi^{\alpha} A_{\alpha}$ is the characteristic polynomial of \mathcal{A} .

In what follows, \mathcal{A} has constant rank.

Set-up: Let $\Omega \subset \mathbb{R}^n$ be open and bounded, \mathcal{A} have constant rank, $F \mathcal{A}$ -quasiaffine, s-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,s}(\Omega) \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\Omega).$$

Set-up: Let $\Omega \subset \mathbb{R}^n$ be open and bounded, \mathcal{A} have constant rank, $F \mathcal{A}$ -quasiaffine, s-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,s}(\Omega) \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\Omega).$$

This is known to hold if:

▶ q = s + c (Murat '81);

Set-up: Let $\Omega \subset \mathbb{R}^n$ be open and bounded, \mathcal{A} have constant rank, $F \mathcal{A}$ -quasiaffine, s-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,s}(\Omega) \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\Omega).$$

This is known to hold if:

Set-up: Let $\Omega \subset \mathbb{R}^n$ be open and bounded, \mathcal{A} have constant rank, $F \mathcal{A}$ -quasiaffine, s-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,s}(\Omega) \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\Omega).$$

This is known to hold if:

Main difference: For us, $\{F(v_j)\}_j$ is not uniformly integrable.

Theorem (R. '18)

 ${\mathcal A}$ has constant rank if and only if there exist a homogeneous ${\mathcal B}$ such that

 $\ker \mathcal{A}(\xi) = \operatorname{im} \mathcal{B}(\xi) \quad \text{for all } \xi \neq 0.$

Theorem (R. '18)

 ${\mathcal A}$ has constant rank if and only if there exist a homogeneous ${\mathcal B}$ such that

$$\ker \mathcal{A}(\xi) = \operatorname{im} \mathcal{B}(\xi) \quad \text{for all } \xi \neq 0.$$

Reduce studying $F(v_j)$ with (Av_j) strongly compact to simply $v_j = Bu_j$.

Theorem (R. '18)

 ${\mathcal A}$ has constant rank if and only if there exist a homogeneous ${\mathcal B}$ such that

$$\ker \mathcal{A}(\xi) = \operatorname{im} \mathcal{B}(\xi) \quad \text{for all } \xi \neq 0.$$

Reduce studying $F(v_j)$ with (Av_j) strongly compact to simply $v_j = Bu_j$.

The structure brought by \mathcal{B} is instrumental in all our proofs (the locality!).

Theorem (R. '18)

 ${\mathcal A}$ has constant rank if and only if there exist a homogeneous ${\mathcal B}$ such that

 $\ker \mathcal{A}(\xi) = \operatorname{im} \mathcal{B}(\xi) \quad \text{for all } \xi \neq 0.$

Reduce studying $F(v_j)$ with (Av_j) strongly compact to simply $v_j = Bu_j$.

The structure brought by \mathcal{B} is instrumental in all our proofs (the locality!).

 \mathcal{B} is explicitly computable by linear algebra techniques only. Also purely commutative algebra proof (Härkönen–Nicklasson–R. '21).

Look at lower semi-continuity:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,p}(\Omega) \end{cases} \implies \liminf_j \int_{\Omega} \phi F(v_j) \ge \int_{\Omega} \phi F(v).$$

Here $q \ge p, \phi \in \mathscr{D}(\Omega), \phi \ge 0, |F| \leqslant c(1+|\cdot|^p).$

Look at lower semi-continuity:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,p}(\Omega) \end{cases} \implies \liminf_j \int_{\Omega} \phi F(v_j) \ge \int_{\Omega} \phi F(v).$$

Here $q \ge p, \phi \in \mathscr{D}(\Omega), \phi \ge 0, |F| \leqslant c(1+|\cdot|^p).$

Theorem (Fonseca-Müller '99)

The implication holds for q > p if and only if F is \mathcal{A} -quasiconvex (i.e., " \leq " in (\mathcal{A} -q)).

Look at lower semi-continuity:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,p}(\Omega) \end{cases} \implies \liminf_j \int_{\Omega} \phi F(v_j) \ge \int_{\Omega} \phi F(v).$$

Here $q \ge p, \phi \in \mathscr{D}(\Omega), \phi \ge 0, |F| \leqslant c(1+|\cdot|^p).$

Theorem (Fonseca-Müller '99)

The implication holds for q > p if and only if F is \mathcal{A} -quasiconvex (i.e., " \leq " in (\mathcal{A} -q)).

The concentration of $\{F(v_j)\}_j$ is ruled out a priori.

Look at lower semi-continuity:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,p}(\Omega) \end{cases} \implies \liminf_j \int_{\Omega} \phi F(v_j) \ge \int_{\Omega} \phi F(v).$$

Here $q \ge p, \phi \in \mathscr{D}(\Omega), \phi \ge 0, |F| \leqslant c(1+|\cdot|^p).$

Theorem (Fonseca-Müller '99)

The implication holds for q > p if and only if F is \mathcal{A} -quasiconvex (i.e., " \leq " in (\mathcal{A} -q)).

The concentration of $\{F(v_j)\}_j$ is ruled out a priori. Also:

Theorem (Guerra-R. '19)

The implication holds for q = p if and only if F is A-quasiconvex.

Look at lower semi-continuity:

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathrm{L}^q(\Omega) \\ \mathcal{A}v_j \to \mathcal{A}v & \text{in } \mathrm{W}^{-\ell,p}(\Omega) \end{cases} \implies \liminf_j \int_{\Omega} \phi F(v_j) \ge \int_{\Omega} \phi F(v).$$

Here $q \ge p, \phi \in \mathscr{D}(\Omega), \phi \ge 0, |F| \leqslant c(1+|\cdot|^p).$

Theorem (Fonseca-Müller '99)

The implication holds for q > p if and only if F is \mathcal{A} -quasiconvex (i.e., " \leq " in (\mathcal{A} -q)).

The concentration of $\{F(v_j)\}_j$ is ruled out a priori. Also:

Theorem (Guerra-R. '19)

The implication holds for q = p if and only if F is A-quasiconvex.

Bonus: Computation of all \mathcal{A} -quasiaffine functions is reduced to linear algebraic systems (uses Ball–Currie–Olver '81).

Elasticity setting: Müller '91:

 $Du \in \mathcal{L}^n_{\mathrm{loc}}(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathcal{L}\log\mathcal{L}_{\mathrm{loc}}(\mathbb{R}^n),$

provided that $\det Du \ge 0$.

Elasticity setting: Müller '91:

 $Du \in \mathcal{L}^n_{\mathrm{loc}}(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathcal{L}\log\mathcal{L}_{\mathrm{loc}}(\mathbb{R}^n),$

provided that $\det Du \ge 0$.

Further developed in Coifman–PL Lions–Meyer–Semmes '93: $Du \in L^n(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathscr{H}^1(\mathbb{R}^n).$

Elasticity setting: Müller '91:

 $Du \in \mathcal{L}^n_{\mathrm{loc}}(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathcal{L}\log\mathcal{L}_{\mathrm{loc}}(\mathbb{R}^n),$

provided that $\det Du \ge 0$.

Further developed in Coifman–PL Lions–Meyer–Semmes '93: $Du \in L^n(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathscr{H}^1(\mathbb{R}^n).$

Other examples are given, particularly div-curl quantities.

Elasticity setting: Müller '91:

 $Du \in \mathcal{L}^n_{\mathrm{loc}}(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathcal{L}\log\mathcal{L}_{\mathrm{loc}}(\mathbb{R}^n),$

provided that $\det Du \ge 0$.

Further developed in Coifman–PL Lions–Meyer–Semmes '93:

$$Du \in \mathcal{L}^n(\mathbb{R}^n, \mathbb{R}^{n \times n}) \implies \det Du \in \mathscr{H}^1(\mathbb{R}^n).$$

Other examples are given, particularly div-curl quantities.

CLMS ask whether "nonlinear weakly continuous quantities" and "nonlinear quantities that belong to \mathscr{H}^{1} " coincide.

Comparing to the CLMS interpretation, here we say F is a: (WC) weakly continuous quantity iff

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathcal{L}^s(\mathbb{R}^n) \\ \mathcal{A}v_j = 0 \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\mathbb{R}^n);$$

Comparing to the CLMS interpretation, here we say F is a: (WC) weakly continuous quantity iff

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathbf{L}^s(\mathbb{R}^n) \\ \mathcal{A}v_j = 0 \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\mathbb{R}^n);$$

(HQ) quantity that belongs to \mathscr{H}^1 iff

$$\left. \begin{array}{l} v \in \mathcal{L}^{s}(\mathbb{R}^{n}) \\ \mathcal{A}v = 0 \end{array} \right\} \implies F(v) \in \mathscr{H}^{1}(\mathbb{R}^{n}).$$

Both imply that F is a homogeneous polynomial.

Comparing to the CLMS interpretation, here we say F is a: (WC) weakly continuous quantity iff

$$\begin{cases} v_j \rightharpoonup v & \text{in } \mathbf{L}^s(\mathbb{R}^n) \\ \mathcal{A}v_j = 0 \end{cases} \implies F(v_j) \stackrel{*}{\rightharpoonup} F(v) \text{ in } \mathscr{D}'(\mathbb{R}^n);$$

(HQ) quantity that belongs to \mathscr{H}^1 iff

$$\begin{cases} v \in \mathcal{L}^{s}(\mathbb{R}^{n}) \\ \mathcal{A}v = 0 \end{cases} \implies F(v) \in \mathscr{H}^{1}(\mathbb{R}^{n}).$$

Both imply that F is a homogeneous polynomial.

Theorem (Guerra–R. '19)

If F is an s-homogeneous polynomial then $(WC) \iff (HQ)$.

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:

Theorem (Guerra-R.-Schrecker '20)

Let F be an s-homogeneous A-quasiaffine polynomial, $s \ge 2$; $q \ge s, r \ge 1$. Let

$$v_j \rightharpoonup v \text{ in } \mathcal{L}^q_{\mathrm{loc}}, \quad \mathcal{A}v_j \rightarrow \mathcal{A}v \text{ in } \mathcal{W}^{-\ell,r}_{\mathrm{loc}}.$$

1. If
$$r \ge s$$
, we have $F(v_j) \stackrel{*}{\rightharpoonup} F(v)$ in \mathcal{M}_{loc} ;
2. If $q > s$, we have $F(v_j) \rightharpoonup F(v)$ in L^1_{loc} ;
3. If $q > s$ or $r > s$, we have $F(v_j) \stackrel{*}{\rightharpoonup} F(v)$ in $\mathscr{H}^1_{\text{loc}}$.

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:

Theorem (Guerra-R.-Schrecker '20)

Let F be an s-homogeneous A-quasiaffine polynomial, $s \ge 2$; $q \ge s, r \ge 1$. Let

$$v_j \rightharpoonup v \text{ in } \mathcal{L}^q_{\mathrm{loc}}, \quad \mathcal{A}v_j \rightarrow \mathcal{A}v \text{ in } \mathcal{W}^{-\ell,r}_{\mathrm{loc}}.$$

1. If
$$r \ge s$$
, we have $F(v_j) \stackrel{*}{\rightharpoonup} F(v)$ in \mathcal{M}_{loc} ;
2. If $q > s$, we have $F(v_j) \stackrel{}{\rightharpoonup} F(v)$ in L^1_{loc} ;
3. If $q > s$ or $r > s$, we have $F(v_j) \stackrel{*}{\rightharpoonup} F(v)$ in \mathscr{H}^1_{loc} .

Finer scales: Zygmund or Orlicz spaces. Results are sharp.

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:

Theorem (Guerra-R.-Schrecker '20)

Let F be an s-homogeneous A-quasiaffine polynomial, $s \ge 2$; $q \ge s, r \ge 1$. Let

$$v_j \rightharpoonup v \text{ in } \mathcal{L}^q_{\mathrm{loc}}, \quad \mathcal{A}v_j \rightarrow \mathcal{A}v \text{ in } \mathcal{W}^{-\ell,r}_{\mathrm{loc}}.$$

1. If
$$r \ge s$$
, we have $F(v_j) \stackrel{*}{\rightharpoonup} F(v)$ in \mathcal{M}_{loc} ;
2. If $q > s$, we have $F(v_j) \stackrel{}{\rightharpoonup} F(v)$ in L^1_{loc} ;
3. If $q > s$ or $r > s$, we have $F(v_j) \stackrel{*}{\rightharpoonup} F(v)$ in \mathscr{H}^1_{loc} .

Finer scales: Zygmund or Orlicz spaces. Results are sharp.

For q < s: distributional quantities, \mathscr{H}^p bounds, p = q/s < 1.

Below the differentiability parameter

Below the integrability parameter: CLMS: $u \in W^{1,q}(\mathbb{R}^n, \mathbb{R}^n) \implies \det Du \in \mathscr{H}^{q/n}(\mathbb{R}^n).$

Below the differentiability parameter

Below the integrability parameter: CLMS: $u \in W^{1,q}(\mathbb{R}^n, \mathbb{R}^n) \implies \det Du \in \mathscr{H}^{q/n}(\mathbb{R}^n).$

Below the differentiability parameter: Theorem (Guerra–R.–Schrecker '20) Let $\alpha \in (0,1)$. Then $\|\det Du\|_{(C^{0,\alpha})^*} \leq c \|u\|_{W^{1-\frac{\alpha}{n},n}}^n$ for $u \in C_c^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

Here $\alpha = 1$ due to Brezis–Nguyen '11; disjoint methods.

Below the differentiability parameter

Below the integrability parameter: CLMS: $u \in W^{1,q}(\mathbb{R}^n, \mathbb{R}^n) \implies \det Du \in \mathscr{H}^{q/n}(\mathbb{R}^n).$

Below the differentiability parameter: Theorem (Guerra–R.–Schrecker '20) Let $\alpha \in (0,1)$. Then $\|\det Du\|_{(C^{0,\alpha})^*} \leq c \|u\|_{W^{1-\frac{\alpha}{n},n}}^n$ for $u \in C_c^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$.

Here $\alpha = 1$ due to Brezis–Nguyen '11; disjoint methods. Refinement of the weak convergence of Jacobians.

Oscillation and concentration

Vitali's Convergence Theorem:

 $v_j \to v \text{ in } \mathbf{L}^p \iff \text{both}$

1. $v_j \rightarrow v$ in measure (no oscillation);

2. (v_j) is *p*-uniformly integrable (no L^{*p*}-concentration).

Oscillation and concentration

Vitali's Convergence Theorem:

 $v_j \to v \text{ in } \mathbf{L}^p \iff \text{both}$

- 1. $v_j \rightarrow v$ in measure (no oscillation);
- 2. (v_j) is *p*-uniformly integrable (no L^{*p*}-concentration).

Examples of $v_j \rightharpoonup 0$ in \mathcal{L}^p when exactly one of these fails:

1.
$$v_j(x) = \sin(jx)$$
 (oscillation);
2. $v_j(x) = j^{1/p} \mathbf{1}_{(0,1/j)}$ (L^p-concentration).

Decomposition lemma for \mathcal{A} -free sequences

Origins: Kristensen '94, Fonseca–Müller–Pedregal '98, Fonseca–Müller '99.

Lemma (R. '19, Guerra-R.-Kristensen '20)

Let 1 and

$$v_j \rightharpoonup v \text{ in } \mathbf{L}^p, \quad \mathcal{A}v_j \to \mathcal{A}v \text{ in } \mathbf{W}^{-\ell,p}.$$

Then there exist $u_j, \tilde{u}_j \in C_c^{\infty}$ such that $\mathcal{B}u_j, \mathcal{B}\tilde{u}_j \to 0$ in L^p s.t.

$$v_j = v + \mathcal{B}u_j + \mathcal{B}\tilde{u}_j$$

 $\mathcal{B}u_j \text{ is } p\text{-uniformly integrable}$
 $\mathcal{B}\tilde{u}_j \to 0 \text{ in measure.}$

Decomposition lemma for \mathcal{A} -free sequences

Origins: Kristensen '94, Fonseca–Müller–Pedregal '98, Fonseca–Müller '99.

Lemma (R. '19, Guerra-R.-Kristensen '20)

Let 1 and

$$v_j \rightharpoonup v \text{ in } \mathbf{L}^p, \quad \mathcal{A}v_j \to \mathcal{A}v \text{ in } \mathbf{W}^{-\ell,p}.$$

Then there exist $u_j, \tilde{u}_j \in C_c^{\infty}$ such that $\mathcal{B}u_j, \mathcal{B}\tilde{u}_j \rightharpoonup 0$ in L^p s.t.

$$v_j = v + \mathcal{B}u_j + \mathcal{B}\tilde{u}_j$$

 $\mathcal{B}u_j \text{ is } p\text{-uniformly integrable}$
 $\mathcal{B}\tilde{u}_j \to 0 \text{ in measure.}$

For $1 both oscillation and concentration effects of <math>\mathcal{A}$ -free sequences have \mathcal{A} -free structure!

For
$$p = 1$$
, look at $v_j \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \, \mathcal{A}v \to \mathcal{A}v$ in $W^{-1,2}$.

No decomposition lemma.

For
$$p = 1$$
, look at $v_j \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A}v \to \mathcal{A}v$ in $W^{-1,2}$.

No decomposition lemma.

Oscillation and concentration effects can be described by generalized Young measures (weakly-* limits of v_j acting on nonlinearities).

For
$$p = 1$$
, look at $v_j \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A}v \to \mathcal{A}v$ in $W^{-1,2}$.

No decomposition lemma.

Oscillation and concentration effects can be described by generalized Young measures (weakly-* limits of v_j acting on nonlinearities).

Alberti '91, Kristensen '99:
 The oscillation effects of v_j are arbitrary.

For
$$p = 1$$
, look at $v_j \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A}v \to \mathcal{A}v$ in $W^{-1,2}$.

No decomposition lemma.

Oscillation and concentration effects can be described by generalized Young measures (weakly-* limits of v_j acting on nonlinearities).

Alberti '91, Kristensen '99:
 The oscillation effects of v_j are arbitrary.

▶ Kristensen–R. '21: The concentration effects of v_j have \mathcal{A} -free structure.

Thank you for the attention and the invitation!