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A word on my work

▶ Linear PDE in L1: Estimates despite failure of
Calderón–Zygmund for Lu = f ∈ L1 (half of my work);

▶ Weak convergence effects of linear PDE constrained
sequences (today, the other half);

▶ Dipped toes in image processing;

▶ New hobby: commutative algebra (for general linear PDE).

Today: Weak convergence effects.
Joint with André Guerra, Jan Kristensen, Matthew Schrecker.
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Joint with André Guerra, Jan Kristensen, Matthew Schrecker.



A word on my work

▶ Linear PDE in L1: Estimates despite failure of
Calderón–Zygmund for Lu = f ∈ L1 (half of my work);

▶ Weak convergence effects of linear PDE constrained
sequences (today, the other half);

▶ Dipped toes in image processing;

▶ New hobby: commutative algebra (for general linear PDE).

Today: Weak convergence effects.
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The basic question

When do we have

vj ⇀ v in Lp =⇒ F (vj)
∗
⇀ F (v) in D ′?

F ∈ C is a nonlinearity of p-growth, |F | ⩽ c(1 + | • |p).

NB: if vj → v in Lp, then F (vj) → F (v) in L1 (so always!)

Weierstrass: for weak convergence, only if F is affine (so never!)

Ball, JL Lions, Morrey, Murat, Reshetnyak, Tartar:
Assume vj have linear differential structure.
Find the restrictions on the nonlinearity F .
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Two examples

Ball/Morrey/Reshetnyak:

Duj ⇀ Du in Ln(Rn) =⇒ detDuj
∗
⇀ detDu in M(Rn).

JL Lions–Murat–Tartar:

Duj ⇀ Du in L2(Rn,Rn)

vj ⇀ v in L2(Rn,Rn)

div vj = 0

 =⇒ vj ·Duj
∗
⇀ v ·Du in M(Rn).

This is (a variant of) the div-curl lemma.

Extraordinarily far-reaching: these come up in elasticity, fluids,
electromagnetism, hyperbolic conservation laws, geometric
analysis (harmonic maps between manifolds).
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Murat’s framework

For which nonlinearities F do we have

vj ⇀ v in Lp

Avj → Av in W−ℓ,q

}
=⇒ F (vj)

∗
⇀ F (v) in D ′?

where A is an ℓ-homogeneous linear differential operator

A =
∑
|α|=ℓ

Aα∂
α,

where Aα are matrices (vectorial set up).

We refer to such occurrences of weak sequential continuity as
instances of compensated compactness. Could also include lower
semi-continuity.
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Very rough answer: for A-quasiaffine (polynomials) F , i.e.,

F

( 
[0,1]n

v(x) dx

)
=

 
[0,1]n

F (v(x)) dx (A-q)

for all [0, 1]n-periodic fields v with Av = 0 (for terminology,
compare with Dacorogna ’81-’82, Fonseca–Müller ’99).

Necessity: test with vj(x) := v(jx).

Not difficult to see that F is necessarily a polynomial.
WLOG F is homogeneous of degree s ≥ 2 in the remainder.

s = q = p = 2: answer is rigurous (Murat–Tartar ’70s).



Very rough answer: for A-quasiaffine (polynomials) F , i.e.,

F

( 
[0,1]n

v(x) dx

)
=

 
[0,1]n

F (v(x)) dx (A-q)

for all [0, 1]n-periodic fields v with Av = 0 (for terminology,
compare with Dacorogna ’81-’82, Fonseca–Müller ’99).

Necessity: test with vj(x) := v(jx).

Not difficult to see that F is necessarily a polynomial.
WLOG F is homogeneous of degree s ≥ 2 in the remainder.

s = q = p = 2: answer is rigurous (Murat–Tartar ’70s).



Very rough answer: for A-quasiaffine (polynomials) F , i.e.,

F

( 
[0,1]n

v(x) dx

)
=

 
[0,1]n

F (v(x)) dx (A-q)

for all [0, 1]n-periodic fields v with Av = 0 (for terminology,
compare with Dacorogna ’81-’82, Fonseca–Müller ’99).

Necessity: test with vj(x) := v(jx).

Not difficult to see that F is necessarily a polynomial.

WLOG F is homogeneous of degree s ≥ 2 in the remainder.

s = q = p = 2: answer is rigurous (Murat–Tartar ’70s).



Very rough answer: for A-quasiaffine (polynomials) F , i.e.,

F

( 
[0,1]n

v(x) dx

)
=

 
[0,1]n

F (v(x)) dx (A-q)

for all [0, 1]n-periodic fields v with Av = 0 (for terminology,
compare with Dacorogna ’81-’82, Fonseca–Müller ’99).

Necessity: test with vj(x) := v(jx).

Not difficult to see that F is necessarily a polynomial.
WLOG F is homogeneous of degree s ≥ 2 in the remainder.

s = q = p = 2: answer is rigurous (Murat–Tartar ’70s).



Very rough answer: for A-quasiaffine (polynomials) F , i.e.,

F

( 
[0,1]n

v(x) dx

)
=

 
[0,1]n

F (v(x)) dx (A-q)

for all [0, 1]n-periodic fields v with Av = 0 (for terminology,
compare with Dacorogna ’81-’82, Fonseca–Müller ’99).

Necessity: test with vj(x) := v(jx).

Not difficult to see that F is necessarily a polynomial.
WLOG F is homogeneous of degree s ≥ 2 in the remainder.

s = q = p = 2: answer is rigurous (Murat–Tartar ’70s).



Examples

1. A = curl , when Av = 0 =⇒ v = Du. Then F can be any
Jacobian subdeterminant;

2. A = div on Rn×n. If n ≥ 3, then F ≡ 0;

3. A(v, ṽ) = (div v, curl ṽ) and F (v, ṽ) = v · ṽ;
4. Saint–Venant compatibility operator, when Av = 0 implies

v = Eu := 1
2(Du+DuT ) for u : Rn → Rn. Then F ≡ 0;

5. exterior (co)differentials: A = d or A = d∗.

All these examples have constant rank, i.e.,

rankA(ξ) is independent of ξ ∈ Rn \ {0},

where A(ξ) =
∑

|α|=ℓ ξ
αAα is the characteristic polynomial of A.

In what follows, A has constant rank.
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Results

Set-up: Let Ω ⊂ Rn be open and bounded, A have constant
rank, F A-quasiaffine, s-homogeneous, s ≥ 2, and q ≥ s.
We examine:

vj ⇀ v in Lq(Ω)

Avj → Av in W−ℓ,s(Ω)

}
=⇒ F (vj)

∗
⇀ F (v) in D ′(Ω).

This is known to hold if:

▶ q = s+ c (Murat ’81);

▶ q = s+ ε for any ε > 0 (Fonseca–Müller ’99);

▶ q = s (Guerra–R. ’19).

Main difference: For us, {F (vj)}j is not uniformly integrable.
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Potentials for constant rank operators

Theorem (R. ’18)

A has constant rank if and only if there exist a homogeneous B
such that

kerA(ξ) = imB(ξ) for all ξ ̸= 0.

Reduce studying F (vj) with (Avj) strongly compact to simply
vj = Buj .

The structure brought by B is instrumental in all our proofs
(the locality!).

B is explicitly computable by linear algebra techniques only.
Also purely commutative algebra proof
(Härkönen–Nicklasson–R. ’21).
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What about weak continuity?
Look at lower semi-continuity:

vj ⇀ v in Lq(Ω)

Avj → Av in W−ℓ,p(Ω)

}
=⇒ lim inf

j

ˆ
Ω
ϕF (vj) ≥

ˆ
Ω
ϕF (v).

Here q ≥ p, ϕ ∈ D(Ω), ϕ ≥ 0, |F | ⩽ c(1 + | · |p).

Theorem (Fonseca–Müller ’99)

The implication holds for q > p if and only if F is
A-quasiconvex (i.e., “⩽” in (A-q)).

The concentration of {F (vj)}j is ruled out a priori. Also:

Theorem (Guerra–R. ’19)

The implication holds for q = p if and only if F is
A-quasiconvex.

Bonus: Computation of all A–quasiaffine functions is reduced to
linear algebraic systems (uses Ball–Currie–Olver ’81).
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Surprising Hardy space regularity

Elasticity setting: Müller ’91:

Du ∈ Ln
loc(Rn,Rn×n) =⇒ detDu ∈ L log Lloc(Rn),

provided that detDu ≥ 0.

Further developed in Coifman–PL Lions–Meyer–Semmes ’93:

Du ∈ Ln(Rn,Rn×n) =⇒ detDu ∈ H 1(Rn).

Other examples are given, particularly div-curl quantities.

CLMS ask whether “nonlinear weakly continuous quantities”
and “nonlinear quantities that belong to H 1” coincide.
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CLMS ask whether “nonlinear weakly continuous quantities”
and “nonlinear quantities that belong to H 1” coincide.
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Weak continuity vs. Hardy space regularity

Comparing to the CLMS interpretation, here we say F is a:

(WC) weakly continuous quantity iff

vj ⇀ v in Ls(Rn)

Avj = 0

}
=⇒ F (vj)

∗
⇀ F (v) in D ′(Rn);

(HQ) quantity that belongs to H 1 iff

v ∈ Ls(Rn)

Av = 0

}
=⇒ F (v) ∈ H 1(Rn).

Both imply that F is a homogeneous polynomial.

Theorem (Guerra–R. ’19)

If F is an s-homogeneous polynomial then (WC) ⇐⇒ (HQ).
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Weak continuity vs. Hardy space regularity

Clearly (WC) vs. (HQ) depends on the space for the functions
and compensating condition. Finer analysis:

Theorem (Guerra–R.–Schrecker ’20)

Let F be an s-homogeneous A-quasiaffine polynomial, s ≥ 2;
q ≥ s, r ≥ 1. Let

vj ⇀ v in Lq
loc, Avj → Av in W−ℓ,r

loc .

1. If r ≥ s, we have F (vj)
∗
⇀ F (v) in Mloc;

2. If q > s, we have F (vj) ⇀ F (v) in L1
loc;

3. If q > s or r > s, we have F (vj)
∗
⇀ F (v) in H 1

loc.

Finer scales: Zygmund or Orlicz spaces. Results are sharp.

For q < s: distributional quantities, H p bounds, p = q/s < 1.
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Below the differentiability parameter

Below the integrability parameter:
CLMS: u ∈ W1,q(Rn,Rn) =⇒ detDu ∈ H q/n(Rn).

Below the differentiability parameter:

Theorem (Guerra–R.–Schrecker ’20)

Let α ∈ (0, 1). Then

∥detDu∥(C0,α)∗ ⩽ c∥u∥n
W1−α

n ,n for u ∈ C∞
c (Rn,Rn).

Here α = 1 due to Brezis–Nguyen ’11; disjoint methods.
Refinement of the weak convergence of Jacobians.
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Oscillation and concentration

Vitali’s Convergence Theorem:
vj → v in Lp ⇐⇒ both

1. vj → v in measure (no oscillation);

2. (vj) is p-uniformly integrable (no Lp-concentration).

Examples of vj ⇀ 0 in Lp when exactly one of these fails:

1. vj(x) = sin(jx) (oscillation);

2. vj(x) = j1/p1(0,1/j) (L
p-concentration).
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Decomposition lemma for A-free sequences

Origins: Kristensen ’94, Fonseca–Müller–Pedregal ’98,
Fonseca–Müller ’99.

Lemma (R. ’19, Guerra–R.–Kristensen ’20)

Let 1 < p < ∞ and

vj ⇀ v in Lp, Avj → Av in W−ℓ,p.

Then there exist uj , ũj ∈ C∞
c such that Buj , Bũj ⇀ 0 in Lp s.t.

vj = v + Buj + Bũj
Buj is p-uniformly integrable

Bũj → 0 in measure.

For 1 < p < ∞ both oscillation and concentration effects of
A-free sequences have A-free structure!
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A word on another concentration phenomenon

For p = 1, look at vj
∗
⇀ v in M, Av → Av in W−1,2.

No decomposition lemma.

Oscillation and concentration effects can be described by
generalized Young measures (weakly-* limits of vj acting on
nonlinearities).

▶ Alberti ’91, Kristensen ’99:
The oscillation effects of vj are arbitrary.

▶ Kristensen–R. ’21:
The concentration effects of vj have A-free structure.



A word on another concentration phenomenon

For p = 1, look at vj
∗
⇀ v in M, Av → Av in W−1,2.

No decomposition lemma.
Oscillation and concentration effects can be described by
generalized Young measures (weakly-* limits of vj acting on
nonlinearities).

▶ Alberti ’91, Kristensen ’99:
The oscillation effects of vj are arbitrary.

▶ Kristensen–R. ’21:
The concentration effects of vj have A-free structure.



A word on another concentration phenomenon

For p = 1, look at vj
∗
⇀ v in M, Av → Av in W−1,2.

No decomposition lemma.
Oscillation and concentration effects can be described by
generalized Young measures (weakly-* limits of vj acting on
nonlinearities).

▶ Alberti ’91, Kristensen ’99:
The oscillation effects of vj are arbitrary.

▶ Kristensen–R. ’21:
The concentration effects of vj have A-free structure.



A word on another concentration phenomenon

For p = 1, look at vj
∗
⇀ v in M, Av → Av in W−1,2.

No decomposition lemma.
Oscillation and concentration effects can be described by
generalized Young measures (weakly-* limits of vj acting on
nonlinearities).

▶ Alberti ’91, Kristensen ’99:
The oscillation effects of vj are arbitrary.

▶ Kristensen–R. ’21:
The concentration effects of vj have A-free structure.



Thank you for the attention
and the invitation!


