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A word on my work

» Linear PDE in L': Estimates despite failure of
Calderén-Zygmund for Lu = f € L' (half of my work);

» Weak convergence effects of linear PDE constrained
sequences (today, the other half);

» Dipped toes in image processing;

» New hobby: commutative algebra (for general linear PDE).

Today: Weak convergence effects.
Joint with André Guerra, Jan Kristensen, Matthew Schrecker.
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The basic question

When do we have
v; = vin P = F(vj) > F(v)in 27

F € C is a nonlinearity of p-growth, |F| < ¢(1 +

P).
NB: if v; — v in L?, then F(v;) — F(v) in L' (so always!)
Weierstrass: for weak convergence, only if F' is affine (so never!)
Ball, JL Lions, Morrey, Murat, Reshetnyak, Tartar:

Assume v; have linear differential structure.
Find the restrictions on the nonlinearity F'.
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Ball/Morrey /Reshetnyak:
Du; — Du in L"(R") = det Du; — det Du in M(R™).

JL Lions—Murat—Tartar:

Duj — Du  in L*(R",R")

vj =V in L2(R",R") 3 = wv; - Du; = v- Du in M(R").
div vy = 0

This is (a variant of) the div-curl lemma.

Extraordinarily far-reaching: these come up in elasticity, fluids,

electromagnetism, hyperbolic conservation laws, geometric
analysis (harmonic maps between manifolds).
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For which nonlinearities ' do we have

vj — v in LP

Av; =+ Av in W&q} = F(vj) = F(v) in 2'?
J

where A is an (-homogeneous linear differential operator
A=) 4,0
laf=¢
where A, are matrices (vectorial set up).
We refer to such occurrences of weak sequential continuity as

instances of compensated compactness. Could also include lower
semi-continuity.
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Very rough answer: for A-quasiaffine (polynomials) F, i.e.,

F <]{071]n 'U(-’L') dl‘) = ]{071]n F(U(l’))dx (A—q)

for all [0, 1]™-periodic fields v with (for terminology,

compare with Dacorogna ’81-'82, Fonseca—Miiller ’99).
Necessity: test with v;(z) == v(jz).

Not difficult to see that F' is necessarily a polynomial.
WLOG F' is homogeneous of degree s > 2 in the remainder.

s =q = p = 2: answer is rigurous (Murat—Tartar ’70s).
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3. A(v,v) = (divw, curl9) and F(v,0) = v - 7;

4. Saint—Venant compatibility operator, when Av = 0 implies
v =Eu = 1(Du+ Du") for u: R* — R™. Then F = 0;

5. exterior (co)differentials: A= d or A = d*.

All these examples have constant rank, i.e.,
rank A(§) is independent of £ € R™ \ {0},

where A(§) = Z|a\:£ £* A, is the characteristic polynomial of A.

In what follows, A has constant rank.
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Results

Set-up: Let Q C R™ be open and bounded, A have constant
rank, F' A-quasiaffine, s-homogeneous, s > 2, and ¢ > s.
We examine:

v = in LI(Q)

Av; = Av  in W—&S(Q)} = F(v;) > F(v) in '(Q).

This is known to hold if:
» g =s-+c (Murat '81);
» ¢ =s+e¢e for any € > 0 (Fonseca—Miiller '99);
» ¢ = s (Guerra-R. '19).

Main difference: For us, {F(v;)}; is not uniformly integrable.
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Potentials for constant rank operators

Theorem (R. ’18)

A has constant rank if and only if there exist a homogeneous B
such that
ker A(¢) = imB(¢) for all £ # 0.

Reduce studying F'(v;) with (Av;) strongly compact to simply
v; = Bu;.

The structure brought by B is instrumental in all our proofs
(the locality!).

B is explicitly computable by linear algebra techniques only.
Also purely commutative algebra proof
(Harkonen—Nicklasson-R. '21).
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What about weak continuity?

Look at lower semi-continuity:

v = in LI(9) o |
Av; = Av  in W—f,p(Q)} I llnlj»lnf/§2¢F(vJ) > /ngF(v).

Here ¢ >p, ¢ € 2(Q), ¢ >0, |F| < c(1+]| - P).

Theorem (Fonseca-Miiller '99)

The implication holds for g > p if and only if F' s
A-quasiconvez (i.e., “<” in (A-q)).

The concentration of {F(v;)}; is ruled out a priori. Also:

Theorem (Guerra-R. '19)

The implication holds for g = p if and only if F' is
A-quasiconvex.

Bonus: Computation of all A—quasiaffine functions is reduced to
linear algebraic systems (uses Ball-Currie-Olver ’81).
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Elasticity setting: Miiller '91:
Du € L (R",R™") = det Du € Llog Li,c(R"),
provided that det Du > 0.
Further developed in Coifman—PL Lions—-Meyer—Semmes '93:
Du € L"(R",R™") = det Du € #(R").
Other examples are given, particularly div-curl quantities.

CLMS ask whether “nonlinear weakly continuous quantities”
and “nonlinear quantities that belong to ##'” coincide.
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Weak continuity vs. Hardy space regularity

Comparing to the CLMS interpretation, here we say F is a:
(WC) weakly continuous quantity iff

v; = v in L*(R") . o,

= F(v;) = F(v) in 2'(R"™);

o (1) = F(v) in 7'(R")

(HQ) quantity that belongs to 1 iff

v € L3(R")

o= 0 } — F(v) € (R").

Both imply that F'is a homogeneous polynomial.

Theorem (Guerra-R. ’19)
If F is an s-homogeneous polynomial then (WC) <= (HQ).
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Clearly (WC) vs. (HQ) depends on the space for the functions
and compensating condition. Finer analysis:

Theorem (Guerra—R.—Schrecker ’20)

Let F be an s-homogeneous A-quasiaffine polynomial, s > 2;
q>s,r>1. Let

Av; — Av in Wb,

) T4
v; ~wvin L loc

loc?
1. If r > s, we have F(v;) = F(v) in Migc;
2. If ¢ > s, we have F(v;) = F(v) in L]

loc?

3. If ¢> s orr > s, we have F(v;) = F(v) in /4!

“loc*

Finer scales: Zygmund or Orlicz spaces. Results are sharp.

For ¢ < s: distributional quantities, 7 bounds, p = ¢/s < 1.
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Below the differentiability parameter

Below the integrability parameter:
CLMS: u € WH(R? R") = det Du € 9/ (R").
Below the differentiability parameter:

Theorem (Guerra—R.—Schrecker '20)
Let o € (0,1). Then

| det Dul[(co,a)x < CHUszl_%,n for uw € C°(R",R").

Here o = 1 due to Brezis—Nguyen ’11; disjoint methods.
Refinement of the weak convergence of Jacobians.
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Oscillation and concentration

Vitali’s Convergence Theorem:
v; — v in LP <= both

1. v; — v in measure (no oscillation);

2. (vj) is p-uniformly integrable (no LP-concentration).

Examples of v; — 0 in L? when exactly one of these fails:
1. vj(x) = sin(jz) (oscillation);

2. vj(z) = jl/pl(g@/j) (LP-concentration).
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Decomposition lemma for A-free sequences

Origins: Kristensen '94, Fonseca—Miiller—Pedregal "98,
Fonseca—Miiller "99.
Lemma (R. '19, Guerra-R.-Kristensen '20)

Let 1 < p < oo and
v =vin LP,  Av; — Av in Wép,
Then there exist uj, u; € CF such that Buj, Bu; — 0 in LP s.t.

(0 =U+BUj+Bij
Buj is p-uniformly integrable

Buj — 0 in measure.

For 1 < p < oo both oscillation and concentration effects of
A-free sequences have A-free structure!
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A word on another concentration phenomenon

For p =1, look at v, X vin M, Av = Av in W2,

No decomposition lemma.

Oscillation and concentration effects can be described by
generalized Young measures (weakly-* limits of v; acting on
nonlinearities).

» Alberti 91, Kristensen ’99:
The oscillation effects of v; are arbitrary.

» Kristensen—R. '21:
The concentration effects of v; have A-free structure.



Thank you for the attention
and the invitation!



