# Old and new in compensated compactness 

Bogdan Raiță

Scuola Normale Superiore di Pisa

18 July 2022

## A word on my work

- Linear PDE in $\mathrm{L}^{1}$ : Estimates despite failure of Calderón-Zygmund for $L u=f \in \mathrm{~L}^{1}$ (half of my work);


## A word on my work

- Linear PDE in $\mathrm{L}^{1}$ : Estimates despite failure of Calderón-Zygmund for $L u=f \in \mathrm{~L}^{1}$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);


## A word on my work

- Linear PDE in $\mathrm{L}^{1}$ : Estimates despite failure of Calderón-Zygmund for $L u=f \in \mathrm{~L}^{1}$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);
- Dipped toes in image processing;


## A word on my work

- Linear PDE in $\mathrm{L}^{1}$ : Estimates despite failure of Calderón-Zygmund for $L u=f \in \mathrm{~L}^{1}$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);
- Dipped toes in image processing;
- New hobby: commutative algebra (for general linear PDE).


## A word on my work

- Linear PDE in $\mathrm{L}^{1}$ : Estimates despite failure of Calderón-Zygmund for $L u=f \in \mathrm{~L}^{1}$ (half of my work);
- Weak convergence effects of linear PDE constrained sequences (today, the other half);
- Dipped toes in image processing;
- New hobby: commutative algebra (for general linear PDE).

Today: Weak convergence effects.
Joint with André Guerra, Jan Kristensen, Matthew Schrecker.

## The basic question

When do we have

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

$F \in C$ is a nonlinearity of $p$-growth, $|F| \leqslant c\left(1+|\cdot|^{p}\right)$.

## The basic question

When do we have

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

$F \in C$ is a nonlinearity of $p$-growth, $|F| \leqslant c\left(1+|\cdot|^{p}\right)$.
NB: if $v_{j} \rightarrow v$ in $\mathrm{L}^{p}$, then $F\left(v_{j}\right) \rightarrow F(v)$ in $\mathrm{L}^{1}$ (so always!)

## The basic question

When do we have

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

$F \in C$ is a nonlinearity of $p$-growth, $|F| \leqslant c\left(1+|\cdot|^{p}\right)$.
NB: if $v_{j} \rightarrow v$ in $\mathrm{L}^{p}$, then $F\left(v_{j}\right) \rightarrow F(v)$ in $\mathrm{L}^{1}$ (so always!)
Weierstrass: for weak convergence, only if $F$ is affine (so never!)

## The basic question

When do we have

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

$F \in C$ is a nonlinearity of $p$-growth, $|F| \leqslant c\left(1+|\cdot|^{p}\right)$.
NB: if $v_{j} \rightarrow v$ in $\mathrm{L}^{p}$, then $F\left(v_{j}\right) \rightarrow F(v)$ in $\mathrm{L}^{1}$ (so always!)
Weierstrass: for weak convergence, only if $F$ is affine (so never!)
Ball, JL Lions, Morrey, Murat, Reshetnyak, Tartar: Assume $v_{j}$ have linear differential structure.

## The basic question

When do we have

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

$F \in C$ is a nonlinearity of $p$-growth, $|F| \leqslant c\left(1+|\cdot|^{p}\right)$.
NB: if $v_{j} \rightarrow v$ in $\mathrm{L}^{p}$, then $F\left(v_{j}\right) \rightarrow F(v)$ in $\mathrm{L}^{1}$ (so always!)
Weierstrass: for weak convergence, only if $F$ is affine (so never!)
Ball, JL Lions, Morrey, Murat, Reshetnyak, Tartar: Assume $v_{j}$ have linear differential structure. Find the restrictions on the nonlinearity $F$.

## Two examples

Ball/Morrey/Reshetnyak:

$$
D u_{j} \rightharpoonup D u \text { in } \mathrm{L}^{n}\left(\mathbb{R}^{n}\right) \Longrightarrow \operatorname{det} D u_{j} \stackrel{*}{\rightharpoonup} \operatorname{det} D u \text { in } \mathcal{M}\left(\mathbb{R}^{n}\right) .
$$

## Two examples

Ball/Morrey/Reshetnyak:

$$
D u_{j} \rightharpoonup D u \text { in } \mathrm{L}^{n}\left(\mathbb{R}^{n}\right) \Longrightarrow \operatorname{det} D u_{j} \stackrel{*}{\rightharpoonup} \operatorname{det} D u \text { in } \mathcal{M}\left(\mathbb{R}^{n}\right) .
$$

JL Lions-Murat-Tartar:
$\left.\begin{array}{ll}D u_{j} \rightharpoonup D u & \text { in } \mathrm{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \\ v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \\ \operatorname{div} v_{j}=0 & \end{array}\right\} \Longrightarrow v_{j} \cdot D u_{j} \stackrel{*}{\rightharpoonup} v \cdot D u$ in $\mathcal{M}\left(\mathbb{R}^{n}\right) . ~ . . ~ . ~ . ~$
This is (a variant of) the div-curl lemma.

## Two examples

Ball/Morrey/Reshetnyak:

$$
D u_{j} \rightharpoonup D u \text { in } \mathrm{L}^{n}\left(\mathbb{R}^{n}\right) \Longrightarrow \operatorname{det} D u_{j} \stackrel{*}{\rightharpoonup} \operatorname{det} D u \text { in } \mathcal{M}\left(\mathbb{R}^{n}\right)
$$

JL Lions-Murat-Tartar:
$\left.\begin{array}{ll}D u_{j} \rightharpoonup D u & \text { in } \mathrm{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \\ v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \\ \operatorname{div} v_{j}=0 & \end{array}\right\} \Longrightarrow v_{j} \cdot D u_{j} \stackrel{*}{\rightharpoonup} v \cdot D u$ in $\mathcal{M}\left(\mathbb{R}^{n}\right) . ~ . . . . ~ . ~ . ~$
This is (a variant of) the div-curl lemma.
Extraordinarily far-reaching: these come up in elasticity, fluids, electromagnetism, hyperbolic conservation laws, geometric analysis (harmonic maps between manifolds).

## Murat's framework

For which nonlinearities $F$ do we have

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{p} \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, q}
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

where $\mathcal{A}$ is an $\ell$-homogeneous linear differential operator

$$
\mathcal{A}=\sum_{|\alpha|=\ell} A_{\alpha} \partial^{\alpha}
$$

where $A_{\alpha}$ are matrices (vectorial set up).

## Murat's framework

For which nonlinearities $F$ do we have

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{p} \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, q}
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime} ?
$$

where $\mathcal{A}$ is an $\ell$-homogeneous linear differential operator

$$
\mathcal{A}=\sum_{|\alpha|=\ell} A_{\alpha} \partial^{\alpha}
$$

where $A_{\alpha}$ are matrices (vectorial set up).
We refer to such occurrences of weak sequential continuity as instances of compensated compactness. Could also include lower semi-continuity.

Very rough answer: for $\mathcal{A}$-quasiaffine (polynomials) $F$, i.e.,

$$
\begin{equation*}
F\left(f_{[0,1]^{n}} v(x) \mathrm{d} x\right)=f_{[0,1]^{n}} F(v(x)) \mathrm{d} x \tag{A-q}
\end{equation*}
$$

for all $[0,1]^{n}$-periodic fields $v$ with $\mathcal{A} v=0$ (for terminology, compare with Dacorogna '81-'82, Fonseca-Müller '99).

Very rough answer: for $\mathcal{A}$-quasiaffine (polynomials) $F$, i.e.,

$$
\begin{equation*}
F\left(f_{[0,1]^{n}} v(x) \mathrm{d} x\right)=f_{[0,1]^{n}} F(v(x)) \mathrm{d} x \tag{A-q}
\end{equation*}
$$

for all $[0,1]^{n}$-periodic fields $v$ with $\mathcal{A} v=0$ (for terminology, compare with Dacorogna '81-'82, Fonseca-Müller '99).

Necessity: test with $v_{j}(x):=v(j x)$.

Very rough answer: for $\mathcal{A}$-quasiaffine (polynomials) $F$, i.e.,

$$
\begin{equation*}
F\left(f_{[0,1]^{n}} v(x) \mathrm{d} x\right)=f_{[0,1]^{n}} F(v(x)) \mathrm{d} x \tag{A-q}
\end{equation*}
$$

for all $[0,1]^{n}$-periodic fields $v$ with $\mathcal{A} v=0$ (for terminology, compare with Dacorogna '81-'82, Fonseca-Müller '99).

Necessity: test with $v_{j}(x):=v(j x)$.
Not difficult to see that $F$ is necessarily a polynomial.

Very rough answer: for $\mathcal{A}$-quasiaffine (polynomials) $F$, i.e.,

$$
\begin{equation*}
F\left(f_{[0,1]^{n}} v(x) \mathrm{d} x\right)=f_{[0,1]^{n}} F(v(x)) \mathrm{d} x \tag{A-q}
\end{equation*}
$$

for all $[0,1]^{n}$-periodic fields $v$ with $\mathcal{A} v=0$ (for terminology, compare with Dacorogna '81-'82, Fonseca-Müller '99).

Necessity: test with $v_{j}(x):=v(j x)$.
Not difficult to see that $F$ is necessarily a polynomial. WLOG $F$ is homogeneous of degree $s \geq 2$ in the remainder.

Very rough answer: for $\mathcal{A}$-quasiaffine (polynomials) $F$, i.e.,

$$
\begin{equation*}
F\left(f_{[0,1]^{n}} v(x) \mathrm{d} x\right)=f_{[0,1]^{n}} F(v(x)) \mathrm{d} x \tag{A-q}
\end{equation*}
$$

for all $[0,1]^{n}$-periodic fields $v$ with $\mathcal{A} v=0$ (for terminology, compare with Dacorogna '81-'82, Fonseca-Müller '99).

Necessity: test with $v_{j}(x):=v(j x)$.
Not difficult to see that $F$ is necessarily a polynomial. WLOG $F$ is homogeneous of degree $s \geq 2$ in the remainder.
$s=q=p=2$ : answer is rigurous (Murat-Tartar '70s).

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;
2. $\mathcal{A}=\operatorname{div}$ on $\mathbb{R}^{n \times n}$. If $n \geq 3$, then $F \equiv 0$;

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;
2. $\mathcal{A}=\operatorname{div}$ on $\mathbb{R}^{n \times n}$. If $n \geq 3$, then $F \equiv 0$;
3. $\mathcal{A}(v, \tilde{v})=(\operatorname{div} v, \operatorname{curl} \tilde{v})$ and $F(v, \tilde{v})=v \cdot \tilde{v}$;

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;
2. $\mathcal{A}=\operatorname{div}$ on $\mathbb{R}^{n \times n}$. If $n \geq 3$, then $F \equiv 0$;
3. $\mathcal{A}(v, \tilde{v})=(\operatorname{div} v, \operatorname{curl} \tilde{v})$ and $F(v, \tilde{v})=v \cdot \tilde{v}$;
4. Saint-Venant compatibility operator, when $\mathcal{A} v=0$ implies $v=\mathcal{E} u:=\frac{1}{2}\left(D u+D u^{T}\right)$ for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then $F \equiv 0 ;$

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;
2. $\mathcal{A}=\operatorname{div}$ on $\mathbb{R}^{n \times n}$. If $n \geq 3$, then $F \equiv 0$;
3. $\mathcal{A}(v, \tilde{v})=(\operatorname{div} v, \operatorname{curl} \tilde{v})$ and $F(v, \tilde{v})=v \cdot \tilde{v}$;
4. Saint-Venant compatibility operator, when $\mathcal{A} v=0$ implies $v=\mathcal{E} u:=\frac{1}{2}\left(D u+D u^{T}\right)$ for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then $F \equiv 0 ;$
5. exterior (co)differentials: $\mathcal{A}=\mathrm{d}$ or $\mathcal{A}=\mathrm{d}^{*}$.

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;
2. $\mathcal{A}=\operatorname{div}$ on $\mathbb{R}^{n \times n}$. If $n \geq 3$, then $F \equiv 0$;
3. $\mathcal{A}(v, \tilde{v})=(\operatorname{div} v, \operatorname{curl} \tilde{v})$ and $F(v, \tilde{v})=v \cdot \tilde{v}$;
4. Saint-Venant compatibility operator, when $\mathcal{A} v=0$ implies $v=\mathcal{E} u:=\frac{1}{2}\left(D u+D u^{T}\right)$ for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then $F \equiv 0 ;$
5. exterior (co)differentials: $\mathcal{A}=\mathrm{d}$ or $\mathcal{A}=\mathrm{d}^{*}$.

All these examples have constant rank, i.e.,
$\operatorname{rank} \mathcal{A}(\xi)$ is independent of $\xi \in \mathbb{R}^{n} \backslash\{0\}$,
where $\mathcal{A}(\xi)=\sum_{|\alpha|=\ell} \xi^{\alpha} A_{\alpha}$ is the characteristic polynomial of $\mathcal{A}$.

## Examples

1. $\mathcal{A}=$ curl, when $\mathcal{A} v=0 \Longrightarrow v=D u$. Then $F$ can be any Jacobian subdeterminant;
2. $\mathcal{A}=\operatorname{div}$ on $\mathbb{R}^{n \times n}$. If $n \geq 3$, then $F \equiv 0$;
3. $\mathcal{A}(v, \tilde{v})=(\operatorname{div} v, \operatorname{curl} \tilde{v})$ and $F(v, \tilde{v})=v \cdot \tilde{v}$;
4. Saint-Venant compatibility operator, when $\mathcal{A} v=0$ implies $v=\mathcal{E} u:=\frac{1}{2}\left(D u+D u^{T}\right)$ for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Then $F \equiv 0 ;$
5. exterior (co)differentials: $\mathcal{A}=\mathrm{d}$ or $\mathcal{A}=\mathrm{d}^{*}$.

All these examples have constant rank, i.e.,
$\operatorname{rank} \mathcal{A}(\xi)$ is independent of $\xi \in \mathbb{R}^{n} \backslash\{0\}$,
where $\mathcal{A}(\xi)=\sum_{|\alpha|=\ell} \xi^{\alpha} A_{\alpha}$ is the characteristic polynomial of $\mathcal{A}$.
In what follows, $\mathcal{A}$ has constant rank.

## Results

Set-up: Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded, $\mathcal{A}$ have constant rank, $F \mathcal{A}$-quasiaffine, $s$-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, s}(\Omega)
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}(\Omega)
$$

## Results

Set-up: Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded, $\mathcal{A}$ have constant rank, $F \mathcal{A}$-quasiaffine, $s$-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, s}(\Omega)
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}(\Omega) .
$$

This is known to hold if:

- $q=s+c$ (Murat '81);


## Results

Set-up: Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded, $\mathcal{A}$ have constant rank, $F \mathcal{A}$-quasiaffine, $s$-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, s}(\Omega)
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}(\Omega) .
$$

This is known to hold if:

- $q=s+c$ (Murat '81);
- $q=s+\varepsilon$ for any $\varepsilon>0$ (Fonseca-Müller '99);


## Results

Set-up: Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded, $\mathcal{A}$ have constant rank, $F \mathcal{A}$-quasiaffine, $s$-homogeneous, $s \geq 2$, and $q \geq s$. We examine:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, s}(\Omega)
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}(\Omega)
$$

This is known to hold if:

- $q=s+c$ (Murat '81);
- $q=s+\varepsilon$ for any $\varepsilon>0$ (Fonseca-Müller '99);
- $q=s$ (Guerra-R. '19).

Main difference: For us, $\left\{F\left(v_{j}\right)\right\}_{j}$ is not uniformly integrable.

## Potentials for constant rank operators

## Theorem (R. '18)

$\mathcal{A}$ has constant rank if and only if there exist a homogeneous $\mathcal{B}$ such that

$$
\operatorname{ker} \mathcal{A}(\xi)=\operatorname{im} \mathcal{B}(\xi) \quad \text { for all } \xi \neq 0
$$

## Potentials for constant rank operators

## Theorem (R. '18)

$\mathcal{A}$ has constant rank if and only if there exist a homogeneous $\mathcal{B}$ such that

$$
\operatorname{ker} \mathcal{A}(\xi)=\operatorname{im} \mathcal{B}(\xi) \quad \text { for all } \xi \neq 0
$$

Reduce studying $F\left(v_{j}\right)$ with $\left(\mathcal{A} v_{j}\right)$ strongly compact to simply $v_{j}=\mathcal{B} u_{j}$.

## Potentials for constant rank operators

## Theorem (R. '18)

$\mathcal{A}$ has constant rank if and only if there exist a homogeneous $\mathcal{B}$ such that

$$
\operatorname{ker} \mathcal{A}(\xi)=\operatorname{im} \mathcal{B}(\xi) \quad \text { for all } \xi \neq 0
$$

Reduce studying $F\left(v_{j}\right)$ with $\left(\mathcal{A} v_{j}\right)$ strongly compact to simply $v_{j}=\mathcal{B} u_{j}$.

The structure brought by $\mathcal{B}$ is instrumental in all our proofs (the locality!).

## Potentials for constant rank operators

## Theorem (R. '18)

$\mathcal{A}$ has constant rank if and only if there exist a homogeneous $\mathcal{B}$ such that

$$
\operatorname{ker} \mathcal{A}(\xi)=\operatorname{im} \mathcal{B}(\xi) \quad \text { for all } \xi \neq 0
$$

Reduce studying $F\left(v_{j}\right)$ with $\left(\mathcal{A} v_{j}\right)$ strongly compact to simply $v_{j}=\mathcal{B} u_{j}$.

The structure brought by $\mathcal{B}$ is instrumental in all our proofs (the locality!).
$\mathcal{B}$ is explicitly computable by linear algebra techniques only. Also purely commutative algebra proof (Härkönen-Nicklasson-R. '21).

## What about weak continuity?

Look at lower semi-continuity:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, p}(\Omega)
\end{array}\right\} \Longrightarrow \liminf _{j} \int_{\Omega} \phi F\left(v_{j}\right) \geq \int_{\Omega} \phi F(v)
$$

Here $q \geq p, \phi \in \mathscr{D}(\Omega), \phi \geq 0,|F| \leqslant c\left(1+|\cdot|{ }^{p}\right)$.

## What about weak continuity?

Look at lower semi-continuity:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, p}(\Omega)
\end{array}\right\} \Longrightarrow \liminf _{j} \int_{\Omega} \phi F\left(v_{j}\right) \geq \int_{\Omega} \phi F(v)
$$

Here $q \geq p, \phi \in \mathscr{D}(\Omega), \phi \geq 0,|F| \leqslant c\left(1+|\cdot|{ }^{p}\right)$.
Theorem (Fonseca-Müller '99)
The implication holds for $q>p$ if and only if $F$ is
$\mathcal{A}$-quasiconvex (i.e., " $\leqslant$ " in ( $\mathcal{A}-q)$ ).

## What about weak continuity?

Look at lower semi-continuity:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, p}(\Omega)
\end{array}\right\} \Longrightarrow \liminf _{j} \int_{\Omega} \phi F\left(v_{j}\right) \geq \int_{\Omega} \phi F(v) .
$$

Here $q \geq p, \phi \in \mathscr{D}(\Omega), \phi \geq 0,|F| \leqslant c\left(1+|\cdot|{ }^{p}\right)$.
Theorem (Fonseca-Müller '99)
The implication holds for $q>p$ if and only if $F$ is
$\mathcal{A}$-quasiconvex (i.e., " $\leqslant$ " in ( $\mathcal{A}-q$ )).
The concentration of $\left\{F\left(v_{j}\right)\right\}_{j}$ is ruled out a priori.

## What about weak continuity?

Look at lower semi-continuity:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, p}(\Omega)
\end{array}\right\} \Longrightarrow \underset{j}{\liminf _{j} \int_{\Omega} \phi F\left(v_{j}\right) \geq \int_{\Omega} \phi F(v) . . . . . ~ . ~}
$$

Here $q \geq p, \phi \in \mathscr{D}(\Omega), \phi \geq 0,|F| \leqslant c\left(1+|\cdot|{ }^{p}\right)$.
Theorem (Fonseca-Müller '99)
The implication holds for $q>p$ if and only if $F$ is
$\mathcal{A}$-quasiconvex (i.e., " $\leqslant$ " in ( $\mathcal{A}-q)$ ).
The concentration of $\left\{F\left(v_{j}\right)\right\}_{j}$ is ruled out a priori. Also:
Theorem (Guerra-R. '19)
The implication holds for $q=p$ if and only if $F$ is
$\mathcal{A}$-quasiconvex.

## What about weak continuity?

Look at lower semi-continuity:

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{q}(\Omega) \\
\mathcal{A} v_{j} \rightarrow \mathcal{A} v & \text { in } \mathrm{W}^{-\ell, p}(\Omega)
\end{array}\right\} \Longrightarrow \underset{j}{\liminf _{j} \int_{\Omega} \phi F\left(v_{j}\right) \geq \int_{\Omega} \phi F(v) . . . . . ~ . ~}
$$

Here $q \geq p, \phi \in \mathscr{D}(\Omega), \phi \geq 0,|F| \leqslant c\left(1+|\cdot|{ }^{p}\right)$.
Theorem (Fonseca-Müller '99)
The implication holds for $q>p$ if and only if $F$ is
$\mathcal{A}$-quasiconvex (i.e., " $\leqslant$ " in ( $\mathcal{A}-q)$ ).
The concentration of $\left\{F\left(v_{j}\right)\right\}_{j}$ is ruled out a priori. Also:
Theorem (Guerra-R. '19)
The implication holds for $q=p$ if and only if $F$ is
$\mathcal{A}$-quasiconvex.
Bonus: Computation of all $\mathcal{A}$-quasiaffine functions is reduced to linear algebraic systems (uses Ball-Currie-Olver '81).

## Surprising Hardy space regularity

Elasticity setting: Müller '91:

$$
D u \in \mathrm{~L}_{\mathrm{loc}}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathrm{~L} \log \mathrm{~L}_{\mathrm{loc}}\left(\mathbb{R}^{n}\right)
$$

provided that $\operatorname{det} D u \geq 0$.

## Surprising Hardy space regularity

Elasticity setting: Müller '91:

$$
D u \in \mathrm{~L}_{\mathrm{loc}}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathrm{~L} \log \mathrm{~L}_{\mathrm{loc}}\left(\mathbb{R}^{n}\right)
$$

provided that $\operatorname{det} D u \geq 0$.
Further developed in Coifman-PL Lions-Meyer-Semmes '93:

$$
D u \in \mathrm{~L}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathscr{H}^{1}\left(\mathbb{R}^{n}\right)
$$

## Surprising Hardy space regularity

Elasticity setting: Müller '91:

$$
D u \in \mathrm{~L}_{\mathrm{loc}}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathrm{~L} \log \mathrm{~L}_{\mathrm{loc}}\left(\mathbb{R}^{n}\right)
$$

provided that $\operatorname{det} D u \geq 0$.
Further developed in Coifman-PL Lions-Meyer-Semmes '93:

$$
D u \in \mathrm{~L}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathscr{H}^{1}\left(\mathbb{R}^{n}\right)
$$

Other examples are given, particularly div-curl quantities.

## Surprising Hardy space regularity

Elasticity setting: Müller '91:

$$
D u \in \mathrm{~L}_{\mathrm{loc}}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathrm{~L} \log \mathrm{~L}_{\mathrm{loc}}\left(\mathbb{R}^{n}\right)
$$

provided that $\operatorname{det} D u \geq 0$.
Further developed in Coifman-PL Lions-Meyer-Semmes '93:

$$
D u \in \mathrm{~L}^{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right) \Longrightarrow \operatorname{det} D u \in \mathscr{H}^{1}\left(\mathbb{R}^{n}\right)
$$

Other examples are given, particularly div-curl quantities.
CLMS ask whether "nonlinear weakly continuous quantities" and "nonlinear quantities that belong to $\mathscr{H}^{1}$ " coincide.

## Weak continuity vs. Hardy space regularity

Comparing to the CLMS interpretation, here we say $F$ is a: (WC) weakly continuous quantity iff

$$
\left.\begin{array}{lr}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{s}\left(\mathbb{R}^{n}\right) \\
\mathcal{A} v_{j}=0
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) ;
$$

## Weak continuity vs. Hardy space regularity

Comparing to the CLMS interpretation, here we say $F$ is a:
(WC) weakly continuous quantity iff

$$
\left.\begin{array}{lr}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{s}\left(\mathbb{R}^{n}\right) \\
\mathcal{A} v_{j}=0 &
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right) ;
$$

(HQ) quantity that belongs to $\mathscr{H}^{1}$ iff

$$
\left.\begin{array}{l}
v \in \mathrm{~L}^{s}\left(\mathbb{R}^{n}\right) \\
\mathcal{A} v=0
\end{array}\right\} \Longrightarrow F(v) \in \mathscr{H}^{1}\left(\mathbb{R}^{n}\right)
$$

Both imply that $F$ is a homogeneous polynomial.

## Weak continuity vs. Hardy space regularity

Comparing to the CLMS interpretation, here we say $F$ is a:
(WC) weakly continuous quantity iff

$$
\left.\begin{array}{ll}
v_{j} \rightharpoonup v & \text { in } \mathrm{L}^{s}\left(\mathbb{R}^{n}\right) \\
\mathcal{A} v_{j}=0 &
\end{array}\right\} \Longrightarrow F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v) \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

(HQ) quantity that belongs to $\mathscr{H}^{1}$ iff

$$
\left.\begin{array}{l}
v \in \mathrm{~L}^{s}\left(\mathbb{R}^{n}\right) \\
\mathcal{A} v=0
\end{array}\right\} \Longrightarrow F(v) \in \mathscr{H}^{1}\left(\mathbb{R}^{n}\right)
$$

Both imply that $F$ is a homogeneous polynomial.
Theorem (Guerra-R. '19)
If $F$ is an s-homogeneous polynomial then (WC) $\Longleftrightarrow(\mathrm{HQ})$.

## Weak continuity vs. Hardy space regularity

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:

## Weak continuity vs. Hardy space regularity

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:
Theorem (Guerra-R.-Schrecker '20)
Let $F$ be an $s$-homogeneous $\mathcal{A}$-quasiaffine polynomial, $s \geq 2$; $q \geq s, r \geq 1$. Let

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}_{\mathrm{loc}}^{q}, \quad \mathcal{A} v_{j} \rightarrow \mathcal{A} v \text { in } \mathrm{W}_{\text {loc }}^{-\ell, r} .
$$

1. If $r \geq s$, we have $F\left(v_{j}\right) \xrightarrow{*} F(v)$ in $\mathcal{M}_{\mathrm{loc}}$;
2. If $q>s$, we have $F\left(v_{j}\right) \rightharpoonup F(v)$ in $\mathrm{L}_{\text {loc }}^{1}$;
3. If $q>s$ or $r>s$, we have $F\left(v_{j}\right) \xrightarrow{*} F(v)$ in $\mathscr{H}_{\text {loc }}^{1}$.

## Weak continuity vs. Hardy space regularity

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:
Theorem (Guerra-R.-Schrecker '20)
Let $F$ be an $s$-homogeneous $\mathcal{A}$-quasiaffine polynomial, $s \geq 2$; $q \geq s, r \geq 1$. Let

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}_{\mathrm{loc}}^{q}, \quad \mathcal{A} v_{j} \rightarrow \mathcal{A} v \text { in } \mathrm{W}_{\mathrm{loc}}^{-\ell, r} .
$$

1. If $r \geq s$, we have $F\left(v_{j}\right) \xrightarrow{*} F(v)$ in $\mathcal{M}_{\mathrm{loc}}$;
2. If $q>s$, we have $F\left(v_{j}\right) \rightharpoonup F(v)$ in $\mathrm{L}_{\text {loc }}^{1}$;
3. If $q>s$ or $r>s$, we have $F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v)$ in $\mathscr{H}_{\text {loc }}^{1}$.

Finer scales: Zygmund or Orlicz spaces. Results are sharp.

## Weak continuity vs. Hardy space regularity

Clearly (WC) vs. (HQ) depends on the space for the functions and compensating condition. Finer analysis:
Theorem (Guerra-R.-Schrecker '20)
Let $F$ be an $s$-homogeneous $\mathcal{A}$-quasiaffine polynomial, $s \geq 2$; $q \geq s, r \geq 1$. Let

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}_{\mathrm{loc}}^{q}, \quad \mathcal{A} v_{j} \rightarrow \mathcal{A} v \text { in } \mathrm{W}_{\mathrm{loc}}^{-\ell, r} .
$$

1. If $r \geq s$, we have $F\left(v_{j}\right) \xrightarrow{*} F(v)$ in $\mathcal{M}_{\text {loc }}$;
2. If $q>s$, we have $F\left(v_{j}\right) \rightharpoonup F(v)$ in $\mathrm{L}_{\text {loc }}^{1}$;
3. If $q>s$ or $r>s$, we have $F\left(v_{j}\right) \stackrel{*}{\rightharpoonup} F(v)$ in $\mathscr{H}_{\text {loc }}^{1}$.

Finer scales: Zygmund or Orlicz spaces. Results are sharp.
For $q<s$ : distributional quantities, $\mathscr{H}^{p}$ bounds, $p=q / s<1$.

## Below the differentiability parameter

Below the integrability parameter:
CLMS: $u \in \mathrm{~W}^{1, q}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \Longrightarrow \operatorname{det} D u \in \mathscr{H}^{q / n}\left(\mathbb{R}^{n}\right)$.

## Below the differentiability parameter

Below the integrability parameter:
CLMS: $u \in \mathrm{~W}^{1, q}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \Longrightarrow \operatorname{det} D u \in \mathscr{H}^{q / n}\left(\mathbb{R}^{n}\right)$.
Below the differentiability parameter:
Theorem (Guerra-R.-Schrecker '20)
Let $\alpha \in(0,1)$. Then

$$
\|\operatorname{det} D u\|_{\left(\mathrm{C}^{0, \alpha}\right)^{*}} \leqslant c\|u\|_{\mathrm{W}^{1-\frac{\alpha}{n}, n}}^{n} \quad \text { for } u \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)
$$

Here $\alpha=1$ due to Brezis-Nguyen '11; disjoint methods.

## Below the differentiability parameter

Below the integrability parameter:
CLMS: $u \in \mathrm{~W}^{1, q}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \Longrightarrow \operatorname{det} D u \in \mathscr{H}^{q / n}\left(\mathbb{R}^{n}\right)$.
Below the differentiability parameter:
Theorem (Guerra-R.-Schrecker '20)
Let $\alpha \in(0,1)$. Then

$$
\|\operatorname{det} D u\|_{\left(\mathrm{C}^{0, \alpha}\right)^{*}} \leqslant c\|u\|_{\mathrm{W}^{1-\frac{\alpha}{n}, n}}^{n} \quad \text { for } u \in \mathrm{C}_{c}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)
$$

Here $\alpha=1$ due to Brezis-Nguyen '11; disjoint methods. Refinement of the weak convergence of Jacobians.

## Oscillation and concentration

Vitali's Convergence Theorem: $v_{j} \rightarrow v$ in $\mathrm{L}^{p} \Longleftrightarrow$ both

1. $v_{j} \rightarrow v$ in measure (no oscillation);
2. $\left(v_{j}\right)$ is $p$-uniformly integrable (no $\mathrm{L}^{p}$-concentration).

## Oscillation and concentration

Vitali's Convergence Theorem:
$v_{j} \rightarrow v$ in $\mathrm{L}^{p} \Longleftrightarrow$ both

1. $v_{j} \rightarrow v$ in measure (no oscillation);
2. $\left(v_{j}\right)$ is $p$-uniformly integrable (no $\mathrm{L}^{p}$-concentration).

Examples of $v_{j} \rightharpoonup 0$ in $\mathrm{L}^{p}$ when exactly one of these fails:

1. $v_{j}(x)=\sin (j x)$ (oscillation);
2. $v_{j}(x)=j^{1 / p} \mathbf{1}_{(0,1 / j)}$ (L ${ }^{p}$-concentration).

## Decomposition lemma for $\mathcal{A}$-free sequences

Origins: Kristensen '94, Fonseca-Müller-Pedregal '98,
Fonseca-Müller '99.
Lemma (R. '19, Guerra-R.--Kristensen '20)
Let $1<p<\infty$ and

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p}, \quad \mathcal{A} v_{j} \rightarrow \mathcal{A} v \text { in } \mathrm{W}^{-\ell, p}
$$

Then there exist $u_{j}, \tilde{u}_{j} \in \mathrm{C}_{c}^{\infty}$ such that $\mathcal{B} u_{j}, \mathcal{B} \tilde{u}_{j} \rightharpoonup 0$ in $\mathrm{L}^{p}$ s.t.

$$
\begin{aligned}
& v_{j}=v+\mathcal{B} u_{j}+\mathcal{B} \tilde{u}_{j} \\
& \mathcal{B} u_{j} \text { is p-uniformly integrable } \\
& \mathcal{B} \tilde{u}_{j} \rightarrow 0 \text { in measure. }
\end{aligned}
$$

## Decomposition lemma for $\mathcal{A}$-free sequences

Origins: Kristensen '94, Fonseca-Müller-Pedregal '98,
Fonseca-Müller '99.
Lemma (R. '19, Guerra-R.-Kristensen '20)
Let $1<p<\infty$ and

$$
v_{j} \rightharpoonup v \text { in } \mathrm{L}^{p}, \quad \mathcal{A} v_{j} \rightarrow \mathcal{A} v \text { in } \mathrm{W}^{-\ell, p}
$$

Then there exist $u_{j}, \tilde{u}_{j} \in \mathrm{C}_{c}^{\infty}$ such that $\mathcal{B} u_{j}, \mathcal{B} \tilde{u}_{j} \rightharpoonup 0$ in $\mathrm{L}^{p}$ s.t.

$$
\begin{aligned}
& v_{j}=v+\mathcal{B} u_{j}+\mathcal{B} \tilde{u}_{j} \\
& \mathcal{B} u_{j} \text { is p-uniformly integrable } \\
& \mathcal{B} \tilde{u}_{j} \rightarrow 0 \text { in measure. }
\end{aligned}
$$

For $1<p<\infty$ both oscillation and concentration effects of $\mathcal{A}$-free sequences have $\mathcal{A}$-free structure!

## A word on another concentration phenomenon

For $p=1$, look at $v_{j} \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A} v \rightarrow \mathcal{A} v$ in $\mathrm{W}^{-1,2}$.
No decomposition lemma.

## A word on another concentration phenomenon

For $p=1$, look at $v_{j} \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A} v \rightarrow \mathcal{A} v$ in $\mathrm{W}^{-1,2}$.
No decomposition lemma.
Oscillation and concentration effects can be described by generalized Young measures (weakly-* limits of $v_{j}$ acting on nonlinearities).

## A word on another concentration phenomenon

For $p=1$, look at $v_{j} \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A} v \rightarrow \mathcal{A} v$ in $\mathrm{W}^{-1,2}$.
No decomposition lemma.
Oscillation and concentration effects can be described by generalized Young measures (weakly-* limits of $v_{j}$ acting on nonlinearities).

- Alberti '91, Kristensen '99:

The oscillation effects of $v_{j}$ are arbitrary.

## A word on another concentration phenomenon

For $p=1$, look at $v_{j} \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}, \mathcal{A} v \rightarrow \mathcal{A} v$ in $\mathrm{W}^{-1,2}$.
No decomposition lemma.
Oscillation and concentration effects can be described by generalized Young measures (weakly-* limits of $v_{j}$ acting on nonlinearities).

- Alberti '91, Kristensen '99:

The oscillation effects of $v_{j}$ are arbitrary.

- Kristensen-R. '21:

The concentration effects of $v_{j}$ have $\mathcal{A}$-free structure.

# Thank you for the attention and the invitation! 

