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Introduction



Fluid mixing

Mixing can be thought of as a cascading process in which information
travels to smaller and smaller spatial scales.
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Figure 1: No diffusion (Doering et al.)

Understanding this fundamental process
sheds light on:

e Relaxation towards stationary states
and coherent structures

e |Vleta-stable behavior in

J
(
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ocean/atmospheric models
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i~ e The derivation of turbulence scaling
laws (Kolmogorov, Batchelor)



Diffusive mixing

The high and low concentrations of a scalar
in a disc when stirred by a random flow.

In fluid mechanic slang: “Mixing sends

stuff to small scales, until dissipation
kicks in and kills everything”

e Creation of filaments

e At the beginning: stirring is dominant

At the end: diffusion is dominant

Figure 2: From J. Vanneste
(Edinburgh)



Fluid mechanics



The Navier-Stokes and Euler equations

In a 2d domain, consider
U+ (U-V)U+VP=rvAU,
V-U=0.

e U= (U, U,) is the velocity field of the fluid

e P is the scalar pressure
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The Navier-Stokes and Euler equations

In a 2d domain, consider

U+ (U-V)U+VP=rvAU,
V-U=0.
e U= (U, U,) is the velocity field of the fluid

e P is the scalar pressure
e >0 is the inverse Reynolds number
e v =0: Inviscid fluid — Euler equations
e v > 0: Viscous fluid — Navier-Stokes equations

In vorticity formulation Q = V+ . U = —0y Uy + 0x Ua:

9,0+ U-VQ = vAQ,
U=V'iv, AV=Q.



Stationary flows

For a given equilibrium Ug, write U = Ug + u

Ow~+Ug-Vwu+u-VQe =vAw — u-Vw,
u=vVty, AyY=w.

Typical one: shear flows Ug = (u(y),0)

Yy
L M=Rx[0.1 e Couette: u(y)=y,on T xR
e Poiseuille: u(y) =y% on T xR
e Kolmogorov: u(y) = siny, on T?
0
T

0w + u(y)oww — U (y)0xt) = vAw + N



Asymptotic stability



Linearized stability

If u(y)=y:
Orw + yoyw = + vo,w
The solution is explicit: T x R > (x,y) — (k,n) € Z xR

t
C/(\J(k,"], t) :@in(k,j]—ﬁ— kt) exp(—l// ( +(77+k7)2)dT)
0

If v =0, info goes to high frequencies (when k # 0).
Inviscid damping:

lon(2) = (w2 + (Dl wa(D)2 S (8) 7 ™ e



Linearized stability

If u(y)=y:
Orw + yoyw = + vo,w
The solution is explicit: T x R > (x,y) — (k,n) € Z xR

t
C/(\J(k,"], t) :@in(k,j]—ﬁ— kt) exp(—l// ( +(77+k7)2)dT)
0

If v =0, info goes to high frequencies (when k # 0).
Inviscid damping:

lun(£) = (un) o + () u(B)l2 S (87 ™ ||
If v > 0, then we have enhanced dissipation:

. . L
w(t) = (w(t)xllz < lw™ = (W™ x || 1267 2E.



Nonlinear asymptotic stability

What happens at the nonlinear level?

For small perturbations, u(t,x,y) — (u>(y),0) as t — o
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e Bedrossian, Masmoudi '13: if the perturbation is small in Gevrey-2—,
then inviscid damping holds.

e Deng, Masmoudi '18: Gevrey-2 is optimal.



Nonlinear asymptotic stability

What happens at the nonlinear level?

For small perturbations, u(t,x,y) — (u>(y),0) as t — o

For v = 0: |w™||x < & implies inviscid damping?

e Bedrossian, Masmoudi '13: if the perturbation is small in Gevrey-2—,
then inviscid damping holds.

e Deng, Masmoudi '18: Gevrey-2 is optimal.
For v > 0: ||w™||x < v7 implies enhanced dissipation?

e Bedrossian, Masmoudi, Vicol '14: v = 0 if X is Gevrey-2—.
e Masmoudi, Zhao '19: v =1/3 if X = H®, s > 40.



Energy methods




Vector field method

Consider
Orw + u(y)oxw =0 & Orwy + iku(y)wi = 0.
The vector field J; = 9, + tu’(y)0x commutes with the equation. Hence
el = o lliz = 18y
If [u'| > & >0, then

t”vax/(/}k”%Z = _t<axwk7axwk>L2 = < qu)kv tU aX("Jk>

= —(0x¥x, — thk>L2 +< Ox¥x, Oywi) 12
Ss IIVaxwklle(llwklle + HerkHLz)-
Inviscid mixing for monotone shears

tIVolle Ss lwlle + [Jwlle Ss llw™ i + 10y |,z



Hypocoercivity

For v > 0, the equations look like
Oww + L,w =0, L, = B+VvA*A,

where B = —B*, and A= A*. To fix ideas (in L?):

GOALS

e Prove enhanced dissipation |[w(t)|2 < e ¢||w™|| 2, with A, > v.

e Prove quantitative hypoellipticity

Key observation: the commutator C; := [A, B] = v’y is nonzero, but
[Gi,B]=0.



Energy identities

1 d
el +vldpwliz =o,
1 d
2 Lyl + iyl + (00100, Byohr =0,
a(u'&(w, Oyw) 2 + |0/ 0xw|)22 = —20(8,yw, U' Dxyw) 12 — V{Byyw, U Bhw) 2

For appropriately chosen «, (3, the functional

& = 5 [llwelifz + alldywillz2 + 28 (Oxew; Oy 2]

l\)\n—-

is coercive and satisfies (if [v/| > ¢ > 0)

d . 12
SO e PP Ro <0 = w(®)lle S lwffle e KB
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General passive scalars

General passive scalar driven by shears: /0, may be degenerate

o v=0: V| < (t>7%, where n is the order of vanishing of v/
(Bedrossian, CZ '15). Key observation:

Wk(t) _ e—iku(y)tw/i(n

n

; _2_
o v >0 [lwk(t)|l2 < ||lwir||ze==0¥ " K"t (Bedrossian, CZ '15) Key
observation: for any o € [0, 1], there holds

-
"7 |lwillfa S ollOywillZe + ' (v)wl

VN

o iz + 8y 12)
(CZ '19) Key observation: combine vector field & hypocoercivity:

e monotone shears: v > 0: ||[V¢| 2 < ¢

d
a(d)k[wk] + 50¢k[-/twk]) + €0V1/3‘k|2/3(¢k[wk] + 50<Dk[thk]) <0
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Euler/Navier-Stokes

e Enhanced dissipation for Navier-Stokes near shear flows
o Poiseuille (u(y) = y2): [lw(t)]li2 S [lwfllze~=0"" 4% (cz,

Elgindi, Widmayer '19), with nonlinear stability threshold V4

Improved to 2/3 (Del Zotto '21). Key observation:
1 2
Ok = 5 [llwllze + avtl|VulZ2 + 4801 (ydwr, ywi) 2
+w llydwnlllz + 2902V ],
e Kolmogorov (u(y) = siny): same as above (Wei, Zhang, Zhao '19).

e Inviscid damping in 2d Euler?

e Many linear results: monotone flows and symmetric flows with
simple critical points (Zillinger, Wei/Zhang/Zhao, Jia ...)

e Nonlinear results: monotone shears (lonescu/Jia, Masmoudi/Zhao
21)

e Open question: inviscid damping by vector field in 2d Euler?

12



Models from kinetic theory




Equilibria in kinetic theory

e Vlasov-Poisson near an equilibrium G = G(v) on T¢ x RY:
Wf+v-Vif+E-V,G=N, Vx:-E=p,
[Mouhot/Villani '09]

e Vlasov-Poisson-Fokker-Planck (weak collisions) near p(v) = e~!

Oif +v-Vuf +E- V= v(Af +V, - (V) + N,

v|?

[Bedrossian '17]
e Vlasov-Poisson-Landau on T3 x R3

Of +v -V +E-Vyu=vLF+ N,

[Chaturvedi/Luk/Nguyen '21]
e Boltzmann (weak collisions) on T3 x R3 or R3 x R3

O:f +v -V f =vlL+uN,
[Bedrossian/CZ /Dolce '22]

13



Taylor dispersion: Take
Of + v - Vif =v(A,f+V, - (vf))
on R x ). Then [CZ/Gallay '21] we have [|fi(t)]2 < e+t [|£i(0)] 2

V3 k|23, vlk|7t <1
Avk = €0
k2 /v, vkt > 1

Key features in Boltzmann:

e No echoes

e The linearized operator L has kernel {\/&, v\/1t, |v[*\/I}

e (Lf,f) controls || (v)w2 f13,s, a weighted fractional derivative of
order s € (0,1), away from the kernel. Can treat both hard
(v +2s > 0) and soft (v + 2s < 0) potentials.

14



Vector field & hypocoercivity

For linear passive scalar with fractional diffusion

Oif + v - Vif = —v(=A,)°f

e The natural vector field is J =V, + tV,, which commutes with
diffusion!

e The natural hypocoercivity functional is
1
® =2 (1% + ai VAP + bu s (Vo f, V)]

Then || fk(t)

12 S e H[fi(0)]] 12 where

voE |k|TE, kTl < 1
v,k = €0

k[?/v, vlk|7t > 1

15



The case of Boltzmann

For Boltzmann (soft potential), enhanced dissipation regime:

cpM,k:% 3 CB(‘

[BI<N

2
<V>M+7/2vvﬁkaL2

2
<V>M JBkaLQ + au k ‘

+2b, 4Re <<V>M+’Y/2 SV )i, (WMH2 w7, g8 fk> >

For Boltzmann (soft potential), Taylor dispersion regime:

1
Efnie = 5 (17l + mallin) (1 = P)JPFel? + 282 Eacr )

Conclusion: enhanced dissipation, Taylor dispersion and “Landau
damping” for macroscopic quantities. True at the nonlinear level for

small perturbations of size in = in Sobolev.
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Other models

e Active suspensions near isotropic equilibria
[CZ /Dietert/Gerard-Varet '22], x € T3, p € S§?

3 /
o)+ p-Vyhp — ﬁp @p: E(u) =vApy,

fou+qu=VX-oz/ ¢(t,x,p)p @ pdp,
SZ

Vi -u=0.

e Active Brownian particles near homogeneous equilibria, p € S*,
x € T? [Bruna/Burger/Esposito/Schulz '21]

O + (1 = ¢)p -V, f — %p -Vxp = vOggf.
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THANK YOU
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