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General Relativity

General relativity is a geometric theory of gravitation whose main object of
study are the Lorentzian manifolds (M1+3, g, f) satisfying the Einstein
field equations

Ricµ⌫ �
1

2
Rgµ⌫ = 8⇡Tµ⌫ , (1)

where Tµ⌫ is the energy momentum tensor of matter. Naturally, we are
interested in the Einstein vacuum equations

Rµ⌫ = 0. (2)
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The stability problem in general relativity

The dynamic nature of the EVE become apparent when the system is
formulated as a Cauchy problem.

Theorem (Choquet-Bruhat)

The Einstein vacuum equations are well-posed in Sobolev regularity.

Question: Is Minkowski/Schwarzschild/Kerr stable as a solution of the
EVE?

Conjecture: The subextremal family of Kerr black holes is asymptotically
stable as a solution of the EVE.
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Collisionless many-particle systems in GR

We introduce a distribution function f : P ! [0,1) defined in the
manifold

P :=
n
(x, p) 2 TM : gx(p, p) = 0, where p is future-directed

o
. (3)

The distribution function is only supported on null vectors. We call P the
mass-shell.

We introduce the massless Vlasov equation by

p↵@x↵f � p↵p��i

↵�
@pif = 0. (4)

We define the stress energy momentum tensor for massless Vlasov by

Tµ⌫(x) :=

Z

Px

fpµp⌫ dvolPx . (5)
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The Einstein equations under spherical symmetry

Let (M3+1, g) be a spherically symmetric spacetime in double null
coordinates given by

g = �2⌦2(du⌦ dv + dv ⌦ du) + r2(u, v)d�S2 , (6)

where ⌦ and r are non-negative functions. We introduce the spherically
symmetric Einstein–massless Vlasov system by

8
>>>><

>>>>:

@u@vr = �⌦2

4r � @ur@vr

r
+ 4⇡rTuv,

@u@v log⌦ = ⌦2

4r2 + @ur@vr

r2
� 8⇡Tuv,

@u(⌦�2@ur) = �4⇡rTuu⌦�2,

@v(⌦�2@vr) = �4⇡rTvv⌦�2,

(7)

where Tuu, Tuv and Tvv are components of the energy momentum tensor.
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Literature review

1 Stability of Minkowski for the spherically symmetric Einstein–massless
Vlasov system (Dafermos).

2 Stability of Minkowski for the full Einstein–massless Vlasov system
(Taylor, Bigorgne-Fajman-Joudioux-Smulevici-Thaller).

3 Integrated energy decay for the massless Vlasov equation in slowly
rotating Kerr (Andersson-Blue-Joudioux).

4 Superpolynomial decay for the massless Vlasov equation in
Schwarzschild (Bigorgne).
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Asymptotic stability of Schwarzschild

Theorem (VR)

The exterior of the Schwarzschild family is asymptotically stable as a
solution of the spherically symmetric Einstein–massless Vlasov system.
More precisely, for every initial data su�ciently close to Schwarzschild, the
resulting solution asymptotes exponentially to another member of the
Schwarzschild family.
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The main result: linear version

Theorem (Decay of the stress energy momentum tensor)

Let f0 be a compactly supported initial data for the massless Vlasov equation in
Schwarzschild. There exists a positive constant R > 2M such that the solution f
of the massless Vlasov equation in Schwarzschild satisfies

Tvv  C1

r6 exp(C2u)
, Tuv  C1

r4 exp(C2u)
, Tuu  C1

r2 exp(C2u)
, (8)

for all (u, v) 2 {r � R}, where C1 and C2 are two positive constants depending
on f0, M and R.
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The geodesic flow in Schwarzschild I

The geodesic equations for the null momentum coordinates are given by

8
><

>:

dp
u

ds
= 2M

r2
(pu)2 � l

2

2r3 ,
dp

v

ds
= �2M

r2
(pv)2 + l

2

2r3 ,
dl

ds
= 0,

(10)

where l2 := r4�ABpApB is a conserved quantity along the flow, the
so-called angular momentum. We obtain another conserved quantity along
the flow given by the energy E := (1� 2M

r
)(pu + pv) since Schwarzschild

is stationary.
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The geodesic flow in Schwarzschild II

The geodesic equation for the radial coordinate is given by
8
<

:
ṙ = pr,

ṗr =
l2

r4
(r � 3M),

(11)

which admits a fixed point corresponding to the unique sphere where null
geodesics can orbit, the so-called photon sphere. Linearizing around the
fixed point, we obtain the system

8
<

:
ṙ = pr,

ṗr =
l2

81M4
(r � 3M),

(12)

which admits an hyperbolic fixed point.
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Decay of the energy momentum tensor

Let us consider a fixed component of the stress energy momentum tensor
of matter given by

Tuv(u, v) =
⇡

2r2

Z

R+

Z

R+
(⌦2pu)(⌦2pv)f

dpv

pv
ldl. (13)

The decay estimates for Tuv come from several features of the geodesic
flow in Schwarzschild:

1 The red-shift

2 Future trapped geodesics

3 Decay towards null infinity
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Derivatives of the energy momentum tensor I

To estimate radial derivatives of the energy momentum tensor like

@rTuv =
⇡

2r2

Z

R+

Z

R+
(⌦2pu)(⌦2pv)@rf

dpv

pv
ldl + Err,

we require bounds for @rf . For this purpose we estimate Jacobi fields in
the mass-shell.

Let V 2 TP be an arbitrary vector field on the mass-shell. By the Vlasov
equation, we have

V (f)(xs, ps) = J(f)(x0, p0), (14)

where J := d��s|(xs,ps)(V ) is a Jacobi field in the mass shell along the
corresponding null geodesic �.
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Jacobi fields along the photon sphere

Let � be a trapped null geodesic contained in the photon sphere. We set a
parallel vector field PG along � by

PG :=
@rp
3
� s

3
p
3M

�̇. (15)

An explicit computation shows that the radial component of a Jacobi field
J = J0�̇ + JGPG satisfies the linear ode

d2JG

ds2
=

l2

81M4
JG.

A similar computation in the mass-shell in terms of the Sasaki metric
shows the same ode for the radial components of a Jacobi field

Ĵ = J0Hor(x,p)(p) + JGHor(x,p)(PG) + J̇G
(x,p)Ver(PG).
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Derivatives of the energy momentum tensor II

Let us investigate the value on the photon sphere of the term in the radial
derivative @rTuv

⇡

2r2

Z

R+

Z

R+
(⌦2pu)(⌦2pv)V f

dpv

pv
ldl

�����
r=3m

. (16)

By the previous computation, Jacobi fields along trapped null geodesics
grow or shrink exponentially fast.

Nonetheless, the set of Jacobi fields shrinking exponentially fast are
concentrated in a small region of Px!
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The nonlinear di�culties I

The result follows via a boostrap argument including exponential decay for
Tµ⌫ and @rTµ⌫ in the bootstrap assumptions.

Let us focus in the null geodesic flow around r = 3m. The geodesic
equation for the area-radius is given by

8
<

:
ṙ = pr,

ṗr =
l2

r4
(r � 3m)� 4⇡r

⇣
Tuu(pu)2 � 2Tuvpupv + Tvv(pv)2

⌘
,

(17)

where m(u, v) is the so-called Hawking mass. Although T is not Killing
anymore, we can still work with the energy of a geodesic �

E(s) := �g(T, �̇) = �@urp
u(s) + @vrp

v(s). (18)
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The nonlinear di�culties II

Let � be a future-trapped null geodesic. There exists a unit spacelike
vector field G such that the vector field

PG := G� sE

l
�̇

is asymptotically parallel.

Moreover, the component JG of some Jacobi
fields J written using a suitable double null frame satisfies

d2JG

ds2
=

l2

81m4
JG + Err.

A similar ode is satisfied by the G-components of the corresponding Jacobi
fields in the mass-shell. Estimates for the components of the Jacobi fields
in spacetime can be recovered integrating the Jacobi equation.
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Asymptotic stability of Schwarzschild

Theorem (VR)

The exterior of the Schwarzschild family is asymptotically stable as a
solution of the spherically symmetric Einstein–massless Vlasov system.
More precisely, for every initial data su�ciently close to Schwarzschild, the
resulting solution asymptotes exponentially to another member of the
Schwarzschild family.

Thank you for your attention!
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