MAT 2010 Q1A

The values of k for which the line $y=k x$ intersects the parabola $y=(x-1)^{2}$ are precisely
(a) $k \leqslant 0$,
(b) $k \geqslant-4$,
(c) $k \geqslant 0$ or $k \leqslant-4$,
(d) $-4 \leqslant k \leqslant 0$.

MAT 2014 Q2

Let a and b be real numbers. Consider the cubic equation

$$
\begin{equation*}
x^{3}+2 b x^{2}-a^{2} x-b^{2}=0 \tag{*}
\end{equation*}
$$

(i) Show that if $x=1$ is a solution of $(*)$ then

$$
1-\sqrt{2} \leqslant b \leqslant 1+\sqrt{2}
$$

(ii) Show that there is no value of b for which $x=1$ is a repeated root of $(*)$.

Given that $x=1$ is a solution, find the value of b for which $(*)$ has a repeated root.
For this value of b, does the cubic

$$
y=x^{3}+2 b x^{2}-a x^{2}-b^{2}
$$

have a maximum or a minimum at its repeated root?

MAT 2015 Q1F

Let n be a positive integer. Then $x^{2}+1$ is a factor of

$$
\left(3+x s^{4}\right)^{n}-\left(x^{2}+3\right)^{n}\left(x^{2}-1\right)^{n}
$$

for
(a) all n,
(b) even n,
(c) odd n,
(d) $n \geqslant 3$
(e) no values of n.

