Warm-up (based on MAT 2008 Q1B)
Let $\alpha=\ln \pi$. Write each of the following expressions in terms of $\alpha$

$$
\begin{equation*}
\sqrt{2 \ln \left(\pi^{2}\right)}, \quad 2\left(\frac{1}{\ln \pi}\right)^{3}, \quad \frac{1}{4 \ln \sqrt{\pi}} \tag{*}
\end{equation*}
$$

Use the fact that $\pi>e$ to find an inequality for $\alpha$.
Use the facts that $\pi<4$ and $e>2$ to show that $\alpha<2$.
Use these two inequalities for $\alpha$ to decide which of the three expressions in $(*)$ is the largest, and which is the smallest.

## Short question 1 (MAT 2011 Q1H)

The number of positive values $x$ which satisfy the equation

$$
x=8^{\log _{2} x}-9^{\log _{3} x}-4^{\log _{2} x}+\log _{0.5} 0.25
$$

is
(a) 0 ,
(b) 1 ,
(c) 2 ,
(d) 3 ,
(e) 4 .

Short question 2 (MAT 2013 Q1F)
Three positive numbers $a, b, c$, satisfy

$$
\log _{b} a=2, \quad \log _{b}(c-3)=3, \quad \log _{a}(c+5)=2
$$

This information
(a) specifies $a$ uniquely.
(b) is satisfied by exactly two values of $a$
(c) is satisfied by infinitely many values of $a$
(d) is contadictory.

Extension: Unless you're saving it as a timed past paper, try MAT 2019 Q1G.

Long question (Very slightly adapted from MAT 2013 Q2)
(i) Suppose that $k$ is a real number not equal to 1 or -1 . The function $f(t)$ satisfies the identity

$$
f(t)-k f(1-t)=t
$$

for all values of $t$. By replacing $t$ with $1-t$, determine $f(t)$.
(ii) Now consider instead the identity

$$
f(t)-f(1-t)=g(t) .
$$

(a) Show that if $g(t)=t$ then no function $f(t)$ satisfies $(\star)$.
(b) Find a condition that the function $g(t)$ must satisfy in order for there to be a function $f(t)$ which satisfies $(\star)$
(c) Show that $g(t)=t$ does not obey your condition, but that $g(t)=(2 t-1)^{3}$ does.
(d) If $g(t)=(2 t-1)^{3}$, find a function $f(t)$ which satisfies $(\star)$.

Extension: If $g(t)=(2 t-1)^{3}$ and $f(t)$ is a cubic in $t$, find all possible functions $f(t)$.

Bonus problem (not MAT)
I've got three eggs and a long thin eggbox, which has six spaces for eggs in a row.


There are $\binom{6}{3}=20$ ways that the eggs could be put in the box, and I'd like to take photos of all the possibilities. I'm worried about breaking the eggs, so in between photos I will only move one egg, and I will move it exactly one space along in the eggbox. I'd also like to avoid unnecessary moves, so no photos should be repeated.

Can you find a sequence of 20 photos that follows these rules, or prove that it's impossible?
Eggs-tension: What if I had two eggs instead of three? What if I had four eggs?

