Warm-up (not MAT)
Recall that $a^{2}-b^{2}=(a-b)(a+b)$.
Factorise $a^{3}-b^{3}$.
Factorise $a^{4}-b^{4}$.
If $p(x)=x^{n}-1$, explain why $(x-1)$ divides $p(x)$ without remainder.
If $p(x)=x^{n}+1$, when does $(x+1)$ divide $p(x)$ without remainder?

2015 Q2

(i) Expand and simplify

$$
(a-b)\left(a^{n}+a^{n-1} b+a^{n-2} b^{2}+\cdots+a b^{n-1}+b^{n}\right)
$$

(ii) The prime number 3 has the property that it is one less than a square number. Are there any other prime numbers with this property? Justify your answer.
(iii) Find all the prime numbers that are one more than a cube number. Justify your answer.
(iv) Is $3^{2015}-2^{2015}$ a prime number? Explain your reasoning carefully.
(v) Is there a positive integer k for which $k^{3}+2 k^{2}+2 k+1$ is a cube number? Explain your reasoning carefully.

2011 Q2

Suppose that x satisfies the equation

$$
x^{3}=2 x+1
$$

(i) Show that

$$
x^{4}=x+2 x^{2} \quad \text { and } \quad x^{5}=2+4 x+x^{2} .
$$

(ii) For every integer $k \geqslant 0$, we can uniquely write

$$
x^{k}=A_{k}+B_{k} x+C_{k} x^{2}
$$

where A_{k}, B_{k}, C_{k} are integers. So, in part (i), it was shown that

$$
A_{4}=0, B_{4}=1, C_{4}=2 \quad \text { and } \quad A_{5}=2, B_{5}=4, C_{5}=1
$$

Show that

$$
A_{k+1}=C_{k}, \quad B_{k+1}=A_{k}+2 C_{k}, \quad C_{k+1}=B_{k}
$$

(iii) Let

$$
D_{k}=A_{k}+C_{k}-B_{k} .
$$

Show that $D_{k+1}=-D_{k}$ and hence that

$$
A_{k}+C_{k}=B_{k}+(-1)^{k}
$$

(iv) Let $F_{k}=A_{k+1}+C_{k+1}$. Show that

$$
F_{k}+F_{k+1}=F_{k+2}
$$

Extension: Try MAT 2017 Q2

2015 Q5

The following functions are defined for all integers a, b and c :

$$
\begin{aligned}
p(x) & =x+1 \\
m(x) & =x-1 \\
s(x, y, z) & = \begin{cases}y & \text { if } x \leqslant 0 \\
z & \text { if } x>0 .\end{cases}
\end{aligned}
$$

(i) Show that the value of

$$
s(s(p(0), m(0), m(m(0))), s(p(0), m(0), p(p(0))), s(m(0), p(0), m(p(0))))
$$

is 2 .

Let f be a function defined, for all integers a and b, as follows:

$$
f(a, b)=s(b, p(a), p(f(a, m(b))))
$$

(ii) What is the value of $f(5,2)$?
(iii) Give a simple formula for the value of $f(a, b)$ for all integers a and all positive integers b, and explain why this formula holds.
(iv) Define a function $g(a, b)$ in a similar way to f, using only the functions p, m and s, so that the value of $g(a, b)$ is equal to the sum of a and b for all integers a and all integers $b \leqslant 0$.

Explain briefly why your function gives the correct value for all such values of a and b.

Bonus question (not MAT)

This is a game involving three players $\left(P_{1}, P_{2}\right.$, and $\left.P_{3}\right)$ and three cakes. Initially each player has one cake.

Taking it in turns, starting with the first player P_{1}, each player chooses someone and redistributes their cake among the players. For example, I might choose someone else to give all of their cake to me. Or I might be nice and choose someone to split their cake in the ratio 70:20:10, giving the big piece to me, giving the middle-sized piece to the other player as a sort of bribe, and letting my victim keep 10% of their cake for themselves (or any other ratio). Here's another example of how the game might progress;

- Each player starts with one cake.
- P_{1} decides (greedily) that P_{3} should give their entire cake to P_{1}.
- P_{1} now has two cakes, P_{2} has one cake, and P_{3} has no cake.
- P_{2} sees that P_{1} has the most cake, but is worried that P_{3} will steal all their cake. They choose P_{1} and take half a cake for themselves, but let P_{1} keep the remaining $1 \frac{1}{2}$ cakes.
- P_{1} now has $1 \frac{1}{2}$ cakes, P_{2} has $\frac{1}{2}$ a cake, and P_{3} has no cake.
- Finally, P_{3} takes revenge on P_{1} by choosing them and redistributing all their cake to P_{3}.
- At the end of the game, P_{1} has no cake, P_{2} has $\frac{1}{2}$ a cake, and P_{3} has $1 \frac{1}{2}$ cakes.

Each player is aware of the rules and would like to end the game with as much cake as possible. What should they do?

Extension: (very hard) What if there are more than 3 players?

