MAT 2009 Q1A

The smallest value of

$$
I(a)=\int_{0}^{1}\left(x^{2}-a\right)^{2} \mathrm{~d} x
$$

as a varies, is
(a) $\frac{3}{20}$,
(b) $\frac{4}{45}$,
(c) $\frac{7}{13}$,
(d) 1 .

MAT 2007 Q3

Let

$$
I(c)=\int_{0}^{1}\left((x-c)^{2}+c^{2}\right) \mathrm{d} x
$$

where c is a real number.
(i) Sketch $y=(x-1)^{2}+1$ for the values $-1 \leqslant x \leqslant 3$ and show on your graph the area represented by the integral $I(1)$.
(ii) Without explicitly calculating $I(c)$, explain why $I(c) \geqslant 0$ for any value of c.
(iii) Calculate $I(c)$.
(iv) What is the minimum value of $I(c)$ (as c varies)?
(v) What is the maximum value of $I(\sin \theta)$ as θ varies?

MAT 2007 Q1H

Given a function $f(x)$, you are told that

$$
\begin{array}{r}
\int_{0}^{1} 3 f(x) \mathrm{d} x+\int_{1}^{2} 2 f(x) \mathrm{d} x=7 \\
\int_{0}^{2} f(x) \mathrm{d} x+\int_{1}^{2} f(x) \mathrm{d} x=1
\end{array}
$$

It follows that $\int_{0}^{2} f(x) \mathrm{d} x$ equals
(a) -1 ,
(b) 0,
(c) $\frac{1}{2}$,
(d) 2 .

MAT 2011 Q3

The graphs of $y=x^{3}-x$ and $y=m(x-a)$ are drawn on the axes below. Here $m>0$ and $a \leqslant-1$.

The line $y=m(x-a)$ meets the x-axis at $A=(a, 0)$, touches the cubic $y=x^{3}-x$ at B and intersects again with the cubic at C. The x-coordinates of B and C are respectively b and c.

(i) Use the fact that the line and cubic touch when $x=b$, to show that $m=3 b^{2}-1$.
(ii) Show further that

$$
a=\frac{2 b^{3}}{3 b^{2}-1} .
$$

(iii) If $a=-10^{6}$, what is the approximate value of b ?
(iv) Using the fact that

$$
x^{3}-x-m(x-a)=(x-b)^{2}(x-c)
$$

(which you need not prove), show that $c=-2 b$.
(v) R is the finite region bounded above by the line $y=m(x-a)$ and bounded below by the cubic $y=x^{3}-x$. For what value of a is the area of R largest?
Show that the largest possible area of R is $\frac{27}{4}$.

Bonus question (not MAT)
I've been thinking about applying effects to a sine wave (which might cause your voice to sound like a robot). My idea is to do something to "lower the resolution" of the sine wave.

Let $[x]$ be the integer closest to x, so $[\pi]=3$ and $[-2]=-2$. We'll round numbers midway between integers upwards, so $[-1.5]=-1$ and $[0.5]=1$.

- Sketch $y=[\sin x]$
- Sketch $y=\frac{1}{3}[3 \sin x]$
- Sketch $y=\frac{4}{3}\left[\frac{3}{4} \sin x\right]$

Extension: Send these waves through a speaker. Work out how to do this for waves that aren't sine waves. Does it sound like a robot, or was this just a rubbish idea?

