Warm-up (not MAT)
The first three terms of an arithmetic series are $1, x$, and 4 . Find x.

The first three terms of a geometric series are $1, x$, and 4 . Find x.

Three numbers are in arithmetic progression if they have a common difference. Three numbers are in geometric progression if they have a common ratio. What can you say if three numbers are in arithmetic progression and in geometric progression?

MAT 2010 Q1B

The sum of the first $2 n$ terms of

$$
1, \quad 1, \quad 2, \quad \frac{1}{2}, \quad 4, \quad \frac{1}{4}, \quad 8, \quad \frac{1}{8}, \quad 16, \quad \frac{1}{16}, \ldots
$$

is
(a) $2^{n}+1-2^{1-n}$,
(b) $2^{n}+2^{-n}$,
(c) $2^{2 n}-2^{3-2 n}$,
(d) $\frac{2^{n}-2^{-n}}{3}$.

MAT 2009 Q2

A list of real numbers $x_{1}, x_{2}, x_{3}, \ldots$ is defined by $x_{1}=1, x_{2}=3$ and then for $n \geqslant 3$ by

$$
x_{n}=2 x_{n-1}-x_{n-2}+1 .
$$

So, for example,

$$
x_{3}=2 x_{2}-x_{1}+1=2 \times 3-1+1=6 .
$$

(i) Find the values of x_{4} and x_{5}.
(ii) Find values of real constants A, B, C such that for $n=1,2,3$,

$$
\begin{equation*}
x_{n}=A+B n+C n^{2} . \tag{*}
\end{equation*}
$$

(iii) Assuming that equation $(*)$ holds true for all $n \geqslant 1$, find the smallest n such that $x_{n} \geqslant 800$.
(iv) A second list of real numbers $y_{1}, y_{2}, y_{3}, \ldots$ is defined by $y_{1}=1$ and

$$
y_{n}=y_{n-1}+2 n
$$

Find, explaining your reasoning, a formula for y_{n} which holds for $n \geqslant 2$.

What is the approximate value of x_{n} / y_{n} for large values of n ?

MAT 2008 Q2

(i) Find a pair of positive integers, x_{1} and y_{1}, that solve the equation

$$
\left(x_{1}\right)^{2}-2\left(y_{1}\right)^{2}=1
$$

(ii) Given integers a, b, we define two sequences $x_{1}, x_{2}, x_{3}, \ldots$ and $y_{1}, y_{2}, y_{3}, \ldots$ by setting

$$
x_{n+1}=3 x_{n}+4 y_{n}, \quad y_{n+1}=a x_{n}+b y_{n}, \quad \text { for } n \geqslant 1 .
$$

Find positive values for a, b such that

$$
\left(x_{n+1}\right)^{2}-2\left(y_{n+1}\right)^{2}=\left(x_{n}\right)^{2}-2\left(y_{n}\right)^{2} .
$$

(iii) Find a pair of integers X, Y which satisfy $X^{2}-2 Y^{2}=1$ such that $X>Y>50$.
(iv) Using the values of a and b found in part (ii), what is the approximate value of x_{n} / y_{n} as n increases?

Bonus question (not MAT)

I've been watching some best-of-five esports matches. This is a series of five games between two teams, with the first team to win three games being declared the winner of the match. I don't support any of the teams in particular, but I'm interested in the different narrative arcs that you can get out of a best-of-five match. I suppose really it's a first-to-three match, because they stop playing games once one of the teams has won three of the best-of-five.

As a simpler example to show you what I mean, let's think about a best-of-three match between team A and team B. It might be the case that team A wins both the first and second games (and the third game doesn't get played). Alternatively, it might be the case that team B wins both the first and second games, but because I don't support either team in particular, I count that as the same narrative arc. The other narrative arcs are;

- one team wins the first game, the other team draws level in game two, but then the team that won the first game wins the third game
- the "reverse sweep"; one team wins the first game, but then the other team wins two in a row

Find and describe all of the possible narrative arcs for a best-of-five match.
Extension: How many possible narrative arcs are there for a best-of- $(2 n+1)$ match?

