Warm-up (not MAT)

The first three terms of an arithmetic series are 1, x, and 4. Find x.

The first three terms of a geometric series are 1, x, and 4. Find x.

Three numbers are in arithmetic progression if they have a common difference. Three numbers are in geometric progression if they have a common ratio. What can you say if three numbers are in arithmetic progression and in geometric progression?

MAT 2010 Q1B

The sum of the first 2n terms of

1, 1, 2,
$$\frac{1}{2}$$
, 4, $\frac{1}{4}$, 8, $\frac{1}{8}$, 16, $\frac{1}{16}$, ...

is

(a)
$$2^{n} + 1 - 2^{1-n}$$
, (b) $2^{n} + 2^{-n}$, (c) $2^{2n} - 2^{3-2n}$, (d) $\frac{2^{n} - 2^{-n}}{3}$.

MAT 2009 Q2

A list of real numbers x_1, x_2, x_3, \ldots is defined by $x_1 = 1, x_2 = 3$ and then for $n \ge 3$ by

$$x_n = 2x_{n-1} - x_{n-2} + 1.$$

So, for example,

$$x_3 = 2x_2 - x_1 + 1 = 2 \times 3 - 1 + 1 = 6.$$

- (i) Find the values of x_4 and x_5 .
- (ii) Find values of real constants A, B, C such that for n = 1, 2, 3,

$$x_n = A + Bn + Cn^2. \tag{(*)}$$

- (iii) Assuming that equation (*) holds true for all $n \ge 1$, find the smallest n such that $x_n \ge 800$.
- (iv) A second list of real numbers y_1, y_2, y_3, \ldots is defined by $y_1 = 1$ and

$$y_n = y_{n-1} + 2n$$

Find, explaining your reasoning, a formula for y_n which holds for $n \ge 2$.

What is the approximate value of x_n/y_n for large values of n?

MAT 2008 Q2

(i) Find a pair of positive integers, x_1 and y_1 , that solve the equation

$$(x_1)^2 - 2(y_1)^2 = 1$$

(ii) Given integers a, b, we define two sequences x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots by setting

$$x_{n+1} = 3x_n + 4y_n, \qquad y_{n+1} = ax_n + by_n, \qquad \text{for } n \ge 1.$$

Find *positive* values for a, b such that

$$(x_{n+1})^2 - 2(y_{n+1})^2 = (x_n)^2 - 2(y_n)^2.$$

- (iii) Find a pair of integers X, Y which satisfy $X^2 2Y^2 = 1$ such that X > Y > 50.
- (iv) Using the values of a and b found in part (ii), what is the approximate value of x_n/y_n as n increases?

Bonus question (not MAT)

I've been watching some best-of-five esports matches. This is a series of five games between two teams, with the first team to win three games being declared the winner of the match. I don't support any of the teams in particular, but I'm interested in the different narrative arcs that you can get out of a best-of-five match. I suppose really it's a first-to-three match, because they stop playing games once one of the teams has won three of the best-of-five.

As a simpler example to show you what I mean, let's think about a best-of-three match between team A and team B. It might be the case that team A wins both the first and second games (and the third game doesn't get played). Alternatively, it might be the case that team B wins both the first and second games, but because I don't support either team in particular, I count that as the same narrative arc. The other narrative arcs are;

- one team wins the first game, the other team draws level in game two, but then the team that won the first game wins the third game
- the "reverse sweep"; one team wins the first game, but then the other team wins two in a row

Find and describe all of the possible narrative arcs for a best-of-five match.

Extension: How many possible narrative arcs are there for a best-of-(2n + 1) match?