Warm-up (based on MAT 2014 Q1G)

Expand $(1 + x + x^2)^2$.

What is the coefficient of x^2 in the expansion of $(1 + x + x^2)^3$? Now let n be a positive integer.

- What is the coefficient of x^2 in the expansion of $(1 + x + x^2)^n$?
- What is the coefficient of x^3y^5 in the expansion of $(1+x+y)^n$?
- What is the coefficient of x^3y^5 in the expansion of $(1+xy+y^2)^n$?

MAT 2008 Q1A

The function

$$y = 2x^3 - 6x^2 + 5x - 7$$

has

- (a) no stationary points;
- (b) one stationary point;
- (c) two stationary points;
- (d) three stationary points.

Extension: Find a condition on a, b, c, and d, for the cubic $y = ax^3 + bx^2 + cx + d$ to have two stationary points.

MAT 2008 Q1E

The highest power of x in

$$\left\{ \left[\left(2x^6 + 7 \right)^3 + \left(3x^8 - 12 \right)^4 \right]^5 + \left[\left(3x^5 - 12x^2 \right)^5 + \left(x^7 + 6 \right)^4 \right]^6 \right\}^3$$

is

- (a) x^{424} , (b) x^{450} , (c) x^{500} , (d) x^{504} .

MAT 2008 Q1D

When

$$1 + 3x + 5x^2 + 7x^3 + \dots + 99x^{49}$$

is divided by x-1 the remainder is

- (a) 2000,
- (b) 2500,
- (c) 3000,
- 3500. (d)

MAT 2009 Q1I

The polynomial

$$n^2x^{2n+3} - 25nx^{n+1} + 150x^7$$

has $x^2 - 1$ as a factor

- (a) for no values of n;
- (b) for n = 10 only;
- (c) for n = 15 only;
- (d) for n = 10 and n = 15 only.

MAT 2007 Q1F

The equation

$$8^x + 4 = 4^x + 2^{x+2}$$

has

- (a) no real solutions;
- (b) one real solution;
- (c) two real solutions;
- (d) three real solutions.

MAT 2008 Q1H

The equation

$$9^x - 3^{x+1} = k$$

has one or more real solutions precisely when

(a)
$$k \ge -\frac{9}{4}$$
, (b) $k > 0$, (c) $k \le -1$, (d) $k \ge \frac{5}{8}$.

(b)
$$k > 0$$

(c)
$$k \leqslant -1$$

(d)
$$k \geqslant \frac{5}{8}$$
.

Bonus question (not MAT)

A triangle ABC has side lengths AB = 3, BC = 5, CA = 7. Find the angle $\angle ABC$.

Find another triangle with integer side lengths and the same angle at B.

Extension: Find another triangle with integer side lengths and half the angle at B.

For more information or to check your answers, search for "Eisenstein triple".