Warm-up (based on MAT 2014 Q1G)
Expand $\left(1+x+x^{2}\right)^{2}$.
What is the coefficient of x^{2} in the expansion of $\left(1+x+x^{2}\right)^{3}$?
Now let n be a positive integer.

- What is the coefficient of x^{2} in the expansion of $\left(1+x+x^{2}\right)^{n}$?
- What is the coefficient of $x^{3} y^{5}$ in the expansion of $(1+x+y)^{n}$?
- What is the coefficient of $x^{3} y^{5}$ in the expansion of $\left(1+x y+y^{2}\right)^{n}$?

MAT 2008 Q1A

The function

$$
y=2 x^{3}-6 x^{2}+5 x-7
$$

has
(a) no stationary points;
(b) one stationary point;
(c) two stationary points;
(d) three stationary points.

Extension: Find a condition on a, b, c, and d, for the cubic $y=a x^{3}+b x^{2}+c x+d$ to have two stationary points.

MAT 2008 Q1E

The highest power of x in

$$
\left\{\left[\left(2 x^{6}+7\right)^{3}+\left(3 x^{8}-12\right)^{4}\right]^{5}+\left[\left(3 x^{5}-12 x^{2}\right)^{5}+\left(x^{7}+6\right)^{4}\right]^{6}\right\}^{3}
$$

is
(a) x^{424},
(b) x^{450},
(c) x^{500},
(d) x^{504}.

MAT 2008 Q1D

When

$$
1+3 x+5 x^{2}+7 x^{3}+\cdots+99 x^{49}
$$

is divided by $x-1$ the remainder is
(a) 2000 ,
(b) 2500 ,
(c) 3000 ,
(d) 3500 .

MAT 2009 Q1I

The polynomial

$$
n^{2} x^{2 n+3}-25 n x^{n+1}+150 x^{7}
$$

has $x^{2}-1$ as a factor
(a) for no values of n;
(b) for $n=10$ only;
(c) for $n=15$ only;
(d) for $n=10$ and $n=15$ only.

MAT 2007 Q1F

The equation

$$
8^{x}+4=4^{x}+2^{x+2}
$$

has
(a) no real solutions;
(b) one real solution;
(c) two real solutions;
(d) three real solutions.

MAT 2008 Q1H

The equation

$$
9^{x}-3^{x+1}=k
$$

has one or more real solutions precisely when
(a) $k \geqslant-\frac{9}{4}$,
(b) $k>0$,
(c) $k \leqslant-1$,
(d) $k \geqslant \frac{5}{8}$.

Bonus question (not MAT)
A triangle $A B C$ has side lengths $A B=3, B C=5, C A=7$. Find the angle $\angle A B C$. Find another triangle with integer side lengths and the same angle at B.

Extension: Find another triangle with integer side lengths and half the angle at B.
For more information or to check your answers, search for "Eisenstein triple".

