The theme this week is 'tricky multiple-choice questions'. You have been warned!

MAT 2013 Q1H

The area bounded by the graphs

$$
y=\sqrt{2-x^{2}} \quad \text { and } \quad x+(\sqrt{2}-1) y=\sqrt{2}
$$

equals
(a) $\frac{\sin \sqrt{2}}{\sqrt{2}}$,
(b) $\frac{\pi}{4}-\frac{1}{\sqrt{2}}$,
(c) $\frac{\pi}{2 \sqrt{2}}$,
(d) $\frac{\pi^{2}}{6}$.

MAT 2009 Q1J

The number of pairs of positive integers x, y which solve the equation

$$
x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}=2^{30}
$$

is
(a) 0 ,
(b) 2^{6},
(c) $2^{9}-1$,
(d) $2^{10}+2$.

MAT 2012 Q1H

In the region $0<x \leqslant 2 \pi$, the equation

$$
\int_{0}^{x} \sin (\sin t) \mathrm{d} t=0
$$

has
(a) no solution,
(b) one solution,
(c) two solutions,
(d) three solutions.

MAT 2007 Q1I

Given that a and b are positive and

$$
4\left(\log _{10} a\right)^{2}+\left(\log _{10} b\right)^{2}=1
$$

then the greatest possible value of a is
(a) $\frac{1}{10}$,
(b) 1 ,
(c) $\sqrt{10}$,
(d) $10^{\sqrt{2}}$.

MAT 2014 Q1J

For all real numbers x, the function $f(x)$ satisfies

$$
6+f(x)=2 f(-x)+3 x^{2}\left(\int_{-1}^{1} f(t) \mathrm{d} t\right) .
$$

It follows that $\int_{-1}^{1} f(x) \mathrm{d} x$ equals
(a) 4 ,
(b) 6 ,
(c) 11,
(d) $\frac{27}{2}$,
(e) 23 .

MAT 2008 Q1J
In the range $0 \leqslant x<360^{\circ}$ the equation

$$
(3+\cos x)^{2}=4-2 \sin ^{8} x
$$

has
(a) 0 solutions,
(b) 1 solution,
(c) 2 solutions,
(d) 3 solutions.

MAT 2010 Q1I

For a positive number a, let

$$
I(a)=\int_{0}^{a}\left(4-2^{x^{2}}\right) \mathrm{d} x .
$$

Then $\frac{\mathrm{d} I}{\mathrm{~d} a}=0$ when a equals
(a) $\frac{1+\sqrt{5}}{2}$,
(b) $\sqrt{2}$,
(c) $\frac{\sqrt{5}-1}{2}$,
(d) 1 .

MAT 2011 Q1I

In the range $0 \leqslant x<360^{\circ}$ the equation

$$
\sin ^{8} x+\cos ^{6} x=1
$$

has
(a) 3 solutions,
(b) 4 solutions,
(c) 6 solutions,
(d) 8 solutions.

Bonus question (not MAT)
This is a game for two players (player 1 and player 2). First each player will choose a sequence three coin flips; either heads (H) and tails (T). Then we will flip a fair coin until one of the chosen sequences happens. For example, if player 1 chooses "HTT" and player 2 chooses "THH" and then the coin flips land as "HTHTHH" then player 2 wins.

Each player must choose a sequence of three results, with player 1 choosing first, and then player 2 choosing a different sequence of three results. Show that player 2 can choose strategically based on player 1's choice, so that they have more than 50% chance to win the game.

This is called Penney's game, and the solution to the question above is on Wikipedia.

