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Analysis of devices made from ENZ materials

Talk plan:
(1) The big picture
(2) Photonic doping

(3) ENZ-based resonators
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The big picture

Electromagnetic waves are described by Maxwell’s equations. In the
time-harmonic TM setting, where H = (0, 0, u(xy, x2)) and
E = 1 (—0.u,01u,0), Maxwell reduces to a scalar Helmholtz egn

iwe

V.- (1Vu> + w?u(x)u = sources
&(x)

where w = frequency, and e(x), (x) are the permittivity and
permeability (typically piecewise constant).

Geometry matters a lot when solving a PDE. But if e(x) =d ~ 0 in
some region, then expect Vu ~ § there. So as 6 — 0, we're not
solving a PDE. Thus: geometry of ENZ region shouldn’t matter so
much.
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Application to waveguide design

Silveirinha & Engheta, PRL 2006

@ Parallel plate waveguides
joined by ENZ region.
(Waveguides meet ENZ
region orthogonally.)

@ In ENZ limit, reflection
coefficient depends on
area Ay of ENZ region

pEC ]
€ 4 but not its shape.

6—) L) Va«1

Pec @ Faithful transmission

(p =~ 0) when a1 =~ a.
and Ao is small.

_ (a1—ap)+iwpgAg

reflection coefft p = (& Ta)—Tons Ao
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Application to waveguide design, cont'd

Silveirinha & Engheta, PRB 2007

@ A follow up paper introduced
a new idea: use non-ENZ
inclusions to give central
region an effective
permeability fies.

@ Then good transmission

pEC doesn’t require that Ay be
A 3
& L ™ small. It's enough that
S v HettAo =~ 0.

@ ['ll discuss the meaning of
Hett iN due course.

(a1—ap)+iwpeirAg

reflection coefft p = (a1 Fa5) T e Ao
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Application to ENZ-based resonators

Liberal, Mahmoud, Engheta, Nature Comm 2016

Can one design a resonator by placing
a non-ENZ inclusion in an ENZ shell,

isolated by a perfectly conducting @ Inthe ENZ limit, only area of

boundary? ENZ shell matters (not shape).

@ Real materials have losses; to
model this, ¢ should be a small
complex number in the ENZ
region. The resonant frequency
is then also complex.

@ The imaginary part of the

This means finding €, D, and w.. such resonant frequency controls
that there’s a nonzero solution of quality of the resonator. It does
1 depend on geometry. What
V- <%VU) +w?uu=0 shape optimizes it?

when e(x) =0in Q\ D.
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How can mathematics help?

The ENZ limit is an idealization. How robust are its predictions?

Actually e = e(w) = &’ + ie” is a complex-valued function of frequency.

@ ¢’ may be small, but it's never zero — it corresponds to losses.

@ ¢’ can vanish only at isolated frequencies.

So, the ENZ limit is an idealization. In a real ENZ material, ¢ is merely
small —a complex number ¢ near 0.
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How can mathematics help?

The ENZ limit is an idealization. How robust are its predictions?

Actually e = e(w) = &’ + ie” is a complex-valued function of frequency.
@ ¢’ may be small, but it's never zero — it corresponds to losses.
@ ¢/ can vanish only at isolated frequencies.

So, the ENZ limit is an idealization. In a real ENZ material, ¢ is merely
small —a complex number ¢ near 0.

The physics literature has understood the limiting behavior as § — 0,
but not the leading-order corrections due to

@ losses (imaginary part of § > 0) and

@ change of frequency (real part of 6 # 0).

(It considers these effects through numerics.)
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Asymptotics or calculus?

These are PDE problems with a small parameter §. Are we doing
asymptotics or calculus?

The answer: calculus. Everything is complex-analytic in § (even for
boundaries with corners). Leading-order corrections assoc § # 0 are
just the first terms in a Taylor expansion.

As we’'ll see, leading-order corrections are described by a PDE. (They
do feel the geometry of the ENZ region.)
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Asymptotics or calculus?

Is it surprising that we’re doing calculus, not asymptotics?

Maybe yes: the operator V - (a(x)Vu) is
not elliptic when a(x) changes sign.
Or maybe not: when a(x) takes just two values, bdry integral version

of V- (a(x)Vu) = f inverts a Fredholm operator, unless ratio of
values is —1.

And yet: bdry integral operators are different for domains with

corners; V - (a(x)Vu) = f can be ill-posed for other (negative) values
of the ratio.

We do not use boundary integrals.
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Photonic doping

Recall the second
waveguide example, where
non-enz inclusions were
used to give the central
region an effective p.

I'll capture the essential

math by considering a O
slightly different problem:

scattering off a “doped” =,
ENZ obstacle (studied by

Liberal et al, Science Q
2017).

source
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Scattering off a doped ENZ obstacle

For 6 complex (near 0), set

(x) = 1 xe DU(R?*\Q) (the exterior and dopant)
=1 s xeq\D (the ENZ region)

Writing w?;. = k2 (and taking k to have nonneg imaginary part), our
PDE becomes

—V-qu[;—kzu(;:f in R?
€s

lim \ﬁ(g — ik)us = 0 (radiation condition at co)

r—oo or
Assumptions: O
@ The source f is supported away Pt
from the obstacle. =V,
@ The dopant isn’t resonant Q

(k® + Dir eigenval of —A in D).
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Getting started

Our strategy: expand solution in powers of 4,
Us = Vo + 6Vi + 0%V + - -

then show the series has a finite radius of convergence.

The first term vy term gives the limiting behavior as § — 0. It was
found in the physics literature:

c*e(X) + 8(x) X € exterior O
Vo(x) = c* x € ENZ region v,
c*pa(x) x € dopant. a

where 1, 14, and s, are certain auxiliary solutions of Helmholtz (to be
defined soon), and ¢* is a complex constant (to be identified soon).
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Auxiliary Problems

—Ag = k*1py  in dopant

1/1d =1 atoD
—As=k?s+f inexterior O
s=0 atof ¢v source
radiation cond at co Q@
Q

—Avpe = k%ipe  in exterior
ve=1 atoQ
radiation cond at co
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The situation thus far

Recall the PDE: O

source

—V-(e;5'Vus) — KPus = f inR? =,
with the radiation condition at co

We expect us = vo + vy + - --. The proposed leading-order term

Cc*e(x) + s(x) X € exterior
Vo(x) = c* x € ENZ region
c*a(x) x € dopant
is continuous at the boundaries, but
@ the value of ¢* has not yet been determined, and
@ the boundary flux g—aﬁvo/au is not continuous.

Both issues will be fixed at the next order.
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The next order term

We expect us = vo + vy + O(62).
Introducing some notation:

Ao(X) X € exterior
vi(x) :== e+ ¢o(x) x € ENZregion @ ¢ solves a Poisson
Xo(X)  x € dopant equation, not Helmholtz

. . . @ Consistency determines c*.
with the convention that e, is

constant and fENZ do = 0. @ This bo ma.keS the bdry .
fluxes continuous at leading
Focusing first on the ENZ region: order.
¢o solves @ The value of g is
5w ) undetermined. (It is set by
—A¢o = k°c” in ENZ region

the consistency condition at
Oy o = C"Dy1he + 0,8  at outer bdry of ENZ the next order.)

Ovo = Cc*Oy1pg at dopant bdry.
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Recall: us = vo + vy + O(62) with

Ao(X) X € exterior
vi(X) = e+ ¢o(x) x € ENZregion
xo(X) X € dopant

and we just determined ¢o. The
functions )y and xo solve

—AXg = KXo
Ao = ¢o
radiation cond at co

in exterior
at outer boundary of ENZ

—Axo = k®xo in dopant
Xo = ¢o at dopant bdry

Robert V. Kohn

The next-order term and beyond

@ With these choices, vy + dv4
is cont’s, solves the PDE up
to order &', and flux
continuity holds at order ¢°.

@ The process can be
repeated. The next corrector
in ENZ region makes flux
continuity hold at order 6'; it
provides Dir bc for next-order
correctors in the dopant and
exterior; etc.

@ The PDE’s solved at each
stage are similar to those we
solved to find ¢o, Ao, and xo.

@ Resulting series for us has
finite radius of convergence,
by comparison to a suitable
geometric series.
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Why is this interesting?

The exterior feels the scatterer only through its Dirichlet-to-Neumann
map. In the limit 6 — 0, exterior feels only the constant c*.

The presence of a dopant changes c¢*. A more physical viewpoint: it
gives the ENZ scatterer an effective permeability 1..¢r that’s different
from its physical permeability 1.
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Why is this interesting?

The exterior feels the scatterer only through its Dirichlet-to-Neumann
map. In the limit 6 — 0, exterior feels only the constant c*.

The presence of a dopant changes c¢*. A more physical viewpoint: it
gives the ENZ scatterer an effective permeability 1..¢r that’s different
from its physical permeability 1.

Quantitatively: the consistency condition for ¢q gives
* 1 1

¢t i=— d
/3 20 81/9
where p 5
g=ro\D|+ [ Legn' — [ gy,
a0 Ova ap Ovp

The value of . induced by the dopant is the value of i that yields
the same c¢* without any dopant. Since k? = w?y, this amounts to

awe 81/](1

1
il W an'.

w? e | +/ gwe dH' = ?uQ\ D +/
aa 9va ko)

One easily solves for .
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A different application

Design of ENZ-based resonators

Consider resonator made from a
non-ENZ inclusion in an ENZ shell,
isolated boundary where du/don = 0.

This means considering €, D, and \s
such that there’s a nonzero solution of

V. (ﬁvw) FsUs =0 inQ
with dus/On = 0 at 99Q; here, as usual,

1 inD
55("):{ 5 inQ\D.

Robert V. Kohn

@ Both us and \s are analytic

functions of §; moreover
As = XA« +0X1 + ... where ).
and )\ are both real.

To model losses in ENZ region, ¢
should be taken purely
imaginary. This gives X5 the
leading-order imag part 6.

Imag part of s controls decay of
the resonance. (In our
time-harmonic setting, fields are
proportional to e~ ™! and

A= w?n)

This raises the optimal design
question: minimize ||, to
minimize the effect of losses.
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Dependence on §

Proof of analyticity in ¢ is a lot like the photonic doping example. I'll
discuss just the leading-order corrections. One expects

[ 1406¢1+6%¢pa+---  INENZ
"7 Yoo+ +ooe D

DY WSy ) VINEY 5 VI TIp

where each ¢; has mean 0, and 14 solves (as
usual) —Ayg = Abg in D, with ¢pg = 1 at 9D.

Leading-order PDE gives ¢1:

Consistency restricts A.. The
possibilities are discrete, but there
are infinitely many (and . is never
a Dir eigenvalue of —A in D).

—A¢1 = A in ENZ region
Ov¢1 =0 atouter bdry
8u¢1 = 81,1/10' at oD.
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The optimal design problem

As usual in perturbation theory of eigenvalues, leading-order
correction of the eigenvalue is related to leading-order correction of
eigenfunction. In fact: As = A + dA1 + ... with

| = — Jonz Vr[?
Aenz + [, V3

where Agnz is the area of the ENZ region Q \ D.

Our optimal design problem is to minimize |A{|. The conditions that
determine A, and the denominator of the expression for A\ depend
only on the area of he ENZ region. So our optimal design problem

amounts to

' 2
max — / / 3V
AgNz=const ENZ

=  max min/ %|VW\2—/\*W—/ (Ovtbg)w
ENZ oD

Agnz=const W
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A result on the optimal design problem
Aexgconst / / %\V@IZ

= max min/ %|VW\2—A*W—/ (CRINN
ENZ oD

Agnz=const W

When D is a circle, the optimal ENZ shell is a concentric annulus.
Sketch of the proof:

@ When D is a circle and the ENZ shell is an annulus, ¢ = ¢1(r) is
very explicit. It is an increasing function of r. Since the value at
the outer boundary is constant, we can extend it (using this
constant value) to all R?,

@ Use this extension of ¢4 as a test function w in the variational
characterization of \;.
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Work in progress on the optimal design problem
\A/

In general, we believe one must look for a
“relaxed” solution. This leads (at least
formally) to a convex optimization.
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Work in progress on the optimal design problem

\N.Y/
In general, we believe one must look for a
“relaxed” solution. This leads (at least
formally) to a convex optimization.

If 9(x) is the local volume fraction of the ENZ region, the relaxed
problem is
max min/ 0IVwP —oxw — [ (d.0g)W
R2\D oD

J 6(x)=const W

The objective is convex in w and linear in 6, so convex duality applies
(at least formally). Swapping maxg and min,, and evaluating maxy by
hand gives
max min/ 0IVwP —oxw — [ (d.0g)w
R2\D aD

J 6(x)=const W

:min/ %(‘VW‘2,>\*W,;()+,/ (RN
W Jr2\D aD
for some constant k (a Lagrange multiplier for the area constraint).
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Conclusions

Wrapping up

@ The ENZ limit involves divergence-form operators V - (a(x)Vu)
where a(x) = 1/6 — oo in the ENZ region.

@ Perturbation theory still applies, when done right; everything is
analytic in .

@ Leading-order corrections explain robustness of ENZ-based
designs wrt (a) losses, and (b) variation of the frequency.

@ The ENZ-based resonator presents an interesting optimal
design problem.
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Conclusions

Wrapping up

@ The ENZ limit involves divergence-form operators V - (a(x)Vu)
where a(x) = 1/6 — oo in the ENZ region.

@ Perturbation theory still applies, when done right; everything is
analytic in .

@ Leading-order corrections explain robustness of ENZ-based
designs wrt (a) losses, and (b) variation of the frequency.

@ The ENZ-based resonator presents an interesting optimal
design problem.

Looking ahead: can something similar be done in 3D?

@ Since V x H = jweE and V x E = —jwuH, H is only curl-free in
the ENZ region.

@ The physics literature does include 3D devices, including 3D
resonators a bit like the 2D example. We're looking at them.
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