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JOSÉ A. CARRILLO, MANUEL J. CASTRO, SERAFIM KALLIADASIS, AND SERGIO P. PEREZ

Abstract. We propose high-order well-balanced finite-volume schemes for a broad class of hydro-

dynamic systems with attractive-repulsive interaction forces and linear and nonlinear damping. Our
schemes are suitable for free energies containing convolutions of an interaction potential with the den-

sity, which are essential for applications such as the Keller-Segel model, more general Euler-Poisson
systems, or dynamic-density functional theory. Our schemes are also equipped with a nonnegative-

density reconstruction which allows for vacuum regions during the simulation. We provide several

prototypical examples from relevant applications highlighting the benefit of our algorithms elucidate
also some of our analytical results.

1. Introduction

Well-balanced schemes have emerged as a paramount tool to simulate systems governed by bal-
ance/conservation laws. This is due to their ability to numerically preserve steady states and resolve
small perturbations of those states even with coarse meshes. Well-balanced schemes were introduced
nearly three decades ago, with the initial works by Bermúdez and Vázquez [7], Greenberg and Ler-
oux [53] and Gosse [50]. One of the most popular applications for well-balanced schemes from the
beginning has been the shallow-water equations. Further contributions of note are the hydrostatic
reconstruction in [3, 25] together with application scenarios where well-balanced schemes have proven
quite successful: tsunami propagation [27], coastal hydrodynamics [65] and irregular topographies [43],
to name but a few. Inspired by the strong results for the shallow-water equations, plenty of authors
have successfully employed well-balanced schemes in a plethora of balance-law problems from wave
propagation in elastic media [82] and chemosensitive movement of cells [41] to flow through a noz-
zle [45] and the Euler equations with gravity [60, 81]. Recently, a general procedure to construct
high-order well-balanced schemes for 1D balance laws is described in [26].

In our previous work [21] we extended the applicability of well-balanced schemes to the broad
class of hydrodynamic models with attractive-repulsive interaction forces. In particular we considered
interactions associated with nonlocal convolutions or functions of convolutions, which is commonplace
in applications such as the Keller-Segel model [10], more general Euler-Poisson systems [56] or in
dynamic-density functional theory (DDFT) [48, 49]. This class of balance laws may contain linear or
nonlinear damping effects, such as the Cucker-Smale alignment term in collective behaviour [37]. The
corresponding hydrodynamic systems have the general form

(1)


∂tρ+∇ · (ρu) = 0, x ∈ Rd, t > 0,

∂t(ρu)+∇·(ρu⊗ u)= −ρ∇δF [ρ]

δρ
− γρu−ρ

∫
Rd

ψ(x− y)(u(x)− u(y))ρ(y) dy,
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(Manuel J. Castro) Dpto. Análisis Matemático, Estad́ıstica e Investigación Operativa y Matemática Apli-
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where the free energy functional F [ρ] contains the pressure P (ρ) and generic potential terms H(x, ρ)
and can be decomposed as

−ρ∇δF
δρ

= −∇P (ρ)− ρ∇H(x, ρ).

The potential terms H(x, ρ) involve an external field V (x) and an interaction potential W (x) convo-
luted with the density ρ, so that

H(x, ρ) = V (x) +W (x) ? ρ.

Finally, the free-energy functional has the form

(2) F [ρ] =

∫
Rd

Π(ρ)dx +

∫
Rd

V (x)ρ(x)dx +
1

2

∫
Rd

∫
Rd

W (x− y)ρ(x)ρ(y)dxdy,

where ρΠ′′(ρ) = P ′(ρ). The steady states of the system (1), whose preservation at the discrete level is
the main aim of the design of well-balanced schemes, are characterized by

(3)
δF
δρ

= Π′(ρ) +H(x, ρ) = constant on each connected component of supp(ρ) and u = 0,

where the constant can vary on different connected components of supp(ρ). These steady states are
stationary (u = 0) due to the dissipation of the linear damping −γρu or nonlinear damping in the
system (1), which ensures that the momentum eventually vanishes. This is due to the fact that the
total energy of the system, defined as the sum of kinetic energy and free energy,

(4) E(ρ,u) =

∫
Rd

1

2
ρ |u|2 dx + F(ρ),

is formally dissipated (see [16,22,47]) as

(5)
dE(ρ,u)

dt
= −γ

∫
Rd

ρ |u|2 dx−
∫
Rd

∫
Rd

ψ(x− y) |u(y)− u(x)|2 ρ(x) ρ(y) dx dy.

Furthermore, the system (1) also satisfies an entropy identity

(6) ∂tη(ρ, ρu) +∇·G(ρ, ρu) = −ρu ·∇H(x, ρ)−γρ |u|2−ρ
∫
Rd

ψ(x−y)u(x) · (u(x)−u(y))ρ(y) dy,

where η(ρ, ρu) and G(ρ, ρu) are the entropy and the entropy flux defined as

η(ρ, ρu) = ρ
|u|2

2
+ Π(ρ), G(ρ, ρu) = ρu

(
|u|2

2
+ Π′(ρ)

)
.

In addition to the well-balanced property, many authors have sought to construct numerical schemes
that preserve the structural properties of the system (1) during its temporal evolution. These endeav-
ours have aimed to first satisfy discretely the entropy identity (6) and second the dissipation relations
for the total energy in (5), both for the original system (1) and its overdamped versions. We refer
the reader to Refs. [4, 42, 80] for more information about entropy stable schemes and to Refs. [5, 13]
for insights details and useful insights energy dissipating schemes. The well-balanced finite-volume
scheme of our previous work [21] was designed to be at the same time well-balanced, entropy stable
and energy dissipating, though only for first- and second-order accuracy.

The main contribution of the present work is to extend our previous scheme for the system (1)
from first and second order to high order. Several authors have already proposed high-order well-
balanced schemes for systems where the potential terms in the free energy (2) are local, such as the
shallow-water equations [23,24,28,31,70], chemotaxis [41] and other applications [82]. These schemes
rely on finite differences, finite volumes or discontinuous Galerkin approaches, and specially for the
shallow-water case there have been plenty of contributions devoted to particular configurations and
scenarios: presence of dry areas and bottom topography [43], tsunami propagation in 2D meshes [27],
traffic flow model [28], moving steady states [24,30,71], etc.

Here we consider the much broader class of free energies in (2), which include interaction potentials
leading to forces given by convolution with the density ρ and possible linear or nonlinear damping
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effects from the field of collective behaviour. Applications of this type include the Keller-Segel model,
generalized Euler-Poisson systems [56] and DDFT [48,49]. We complement our high-order finite volume
schemes with the desired properties of well-balancing and the nonnegativity of the density, which allows
for vacuum regions in the simulations. Our work lays the foundations for the construction of well-
balanced high-order schemes that may satisfy further fundamental properties of the system (1), such
as the discrete versions of the energy dissipation in (5) and entropy identity in (6), or even the well-
balanced property for the challenging moving steady states. Developing schemes, amongst the class
of positivity-preserving high-order schemes introduced in the present work, satisfying also the entropy
stability and energy dissipating properties, is a challenging open question.

The paper is structured as follows. First, in Section 2 we explain the construction of our well-
balanced high-order finite volume scheme. In Subsection 2.1 we begin by recalling our first-order
numerical scheme from [21], and then in Subsection 2.2 we provide an first-attempt extension of such
scheme to high order. The correct well-balanced formulation for that high-order scheme is provided in
Subsection 2.3. The last Subsection 2.4 contains the summarized algorithmic implementation of the
scheme. Second, in Section 3 we depict a battery of simulations for relevant applications of system
(1). In Subsection 3.1 we numerically check the well-balanced property and high-order accuracy of our
scheme, and subsequently in Subsection 3.2 we tackle applications for varied choices of the free energy,
leading to interesting numerical experiments for which analytical results are limited in the literature.

2. High-order well-balanced finite volume scheme

The different terms of the one-dimensional system (1) are usually gathered in the form of

(7) ∂tU + ∂xF (U) = SH(U,H) + SD(x, U),

with

U =

(
ρ
ρu

)
, F (U) =

(
ρu

ρu2 + P (ρ)

)
and

SH(U,H) =

(
0

−ρ∂xH

)
, SD(x, U) =

 0

−γρu− ρ
∫
R
ψ(x− y)(u(x)− u(y))ρ(y) dy

 ,

where U are the unknown variables, F (U) the fluxes, and SH(U,H) and SD(x, U) are the sources
related to forces with potential H and damping terms respectively. In what follows, we only consider
the source term SH(U,H) due to the forces as we focus on the definition of a well-balanced high-order
scheme for stationary solutions (3). At the end of this Section we propose a high-order discretization
of the source damping term SD(x, U) that vanishes at stationary states.

We consider a mesh composed by cells [xi−1/2, xi+1/2], 1 ≤ i ≤ N , whose length ∆x is supposed
to be constant for simplicity. Let us denote by Ui(t) the approximation of the average of the exact
solution at the ith cell, [xi−1/2, xi+1/2] at time t,

(8) Ui(t) =

ns∑
j=1

αjU(xji , t)
∼=

1

∆x

∫ xi+1/2

xi−1/2

U(x, t) dx,

and we denote by Hi(t) the approximation of the cell average of H(x, ρ) = V (x) +W (x) ? ρ at time t,

Hi(t) =

ns∑
j=1

αjH(xji , ρ(xji , t))
∼=

1

∆x

∫ xi+1/2

xi−1/2

H(x, ρ(x, t)) dx.

In the previous expressions we denote as αj and xji , for j = 1, · · · , ns, the weights and quadrature
points of a particular high-order quadrature formula for the cell [xi−1/2, xi+1/2]. In this work we
employ the fifth-order standard Gaussian quadrature described in appendix A.

As pointed out in the introduction, one of the main contributions of this work is to construct high-
order well-balanced schemes for free energies that may depend on the convolution of the density and
an interaction potential, W (x)?ρ. These convolutions are included in the steady state relations in (3),
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but for the discrete version of these relations one has to approximate the convolutions by a high-order
quadrature formula. In the next definition we clarify the concept of well-balanced scheme for this kind
of free energies.

Definition 2.1 (Well-balanced scheme). We consider a semi-discrete method to approximate (7),

(9)


dUi
dt

= − 1

∆x
H(∆x, Uj(t), Hj(t), j ∈ Si),

U(0) = U0,

where U(t) = {Ui(t)}Ni=1 represents the vector of the approximations of the averaged values of the
exact solutions at time t, U0 = {Ui(0)} is the vector of the initial conditions, and Si the stencil of the
numerical scheme.

Now let us assume that u(x) = 0, ρ(x) is a smooth function and H∆x(x) is a discrete approximation
of H = V +W ? ρ with the form

H∆x(x) = V (x) + ∆x

M∑
l=1

ns∑
m=1

αmW (x− xml )ρ(xml )

and satisfying

(10) Π′(ρ(x)) +H∆x(x) = CΓ in each ΛΓ,Γ ∈ N,

where ΛΓ, Γ ∈ N, denotes the possible infinite sequence indexed by Γ of subsets ΛΓ of subsequent
indices i ∈ {1, . . . , N} where ρ(x) > 0 and u = 0, and CΓ the corresponding constant in that connected
component of the discrete support.

Then it follows that the semi-discrete numerical scheme (9) is said to be well-balanced for

U =

(
ρ(x)

0

)
and H∆x

if the vector of their approximated averages is a critical point of (9), i.e.

H(∆x, Uj , Hj , j ∈ Si) = 0, 1 ≤ i ≤ N,

where

Ui =

ns∑
j=1

αjU(xji ) and Hi =

ns∑
j=1

αjH∆x(xji ).

In what follows we begin by briefly recalling in Subsection 2.1 the first-order well-balanced scheme for
(7) introduced in [21], which serves as an starting point to construct high-order schemes by employing a
high-order reconstruction operator, as described in Subsection 2.2. Then in Subsection 2.3 we describe
how to adapt these high-order schemes so that they are well-balanced in the sense defined in 2.1.

2.1. First-order numerical scheme. The first-order semi-discrete well-balanced finite-volume scheme
for system (7) introduced in [21] can be written as

(11)
dUi
dt

= − 1

∆t

(
F−i+1/2 − F+

i−1/2

)
,

where F±i+1/2 is defined using a standard consistent numerical flux for the homogeneous system applied

to the so-called hydrostatic-reconstructed states, with an extra term ensuring the consistency of the
numerical scheme (11) applied to system (7), as well as its well-balanced character. In [21] the midpoint
quadrature formula is used to approximate both the cell-averages of the exact solution and H∆x(x).
In what follows we suppress the time-dependence in the cell averages for simplicity. We define F±i+1/2

in terms of the cell averages Ui, Ui+1, Hi and Hi+1 as

(12) F±i+1/2(Ui, Ui+1, Hi, Hi+1) = F(UHR,−i+1/2 , U
HR,+
i+1/2 )± SHR,±i+1/2 ,
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where F(U, V ) is the standard local Lax-Friedrich numerical flux for the homogeneous system,

(13) F(U, V ) =
1

2
(F (U) + F (V )− |λ(U, V )|(V − U)) ,

where |λ(U, V )| is a bound for the maximum absolute value of the wave speeds for the Riemann problem
with the constant states U and V .

In [21] we employ the hydrostatic reconstruction firstly introduced in [3] in the context of shallow-

water equations. Here we denote the hydrostatic-reconstructed states as UHR,±i+1/2 , and we compute them

as follows:

1) Firstly an intermediate state Hi+1/2 is computed as

Hi+1/2 = max(Hi+1, Hi).

2) Next, we define the hydrostatic-reconstructed states as

UHR,±i+1/2 =

 ρHR,±i+1/2

(ρu)HR,±i+1/2

 ,

where

(14)

ρHR,−i+1/2 = ξ
(
Π′ (ρi) +Hi −Hi+1/2

)
, (ρu)

HR,−
i+1/2 = ρHR,−i+1/2ui,

ρHR,+i+1/2 = ξ
(
Π′ (ρi+1) +Hi+1 −Hi+1/2

)
, (ρu)

HR,+
i+1/2 = ρHR,+i+1/2ui+1,

with ξ(s) being the inverse function of Π′(s) for s > 0 and ui = (ρu)i/ρi.

The last ingredients for the flux in (12) are the terms SHR,±i+1/2 , which correspond to the correction

introduced in the numerical scheme to guarantee consistency and well-balanced properties (see [3,21]),

(15) SHR,+i+1/2 =

(
0

P (ρi+1)− P
(
ρHR,+i+1/2

))
and SHR,−i+1/2 =

(
0

P
(
ρHR,−i+1/2

)
− P (ρi)

)
.

It is straightforward to check that the semi-discrete numerical scheme (11)-(15) is well-balanced in the
sense defined in definition 2.1 (see [21]).

2.2. High-order extension. The basic ingredients to design a high-order finite volume method for
system (7), assuming SD(x, U) = 0, are:

• a consistent first order numerical flux for system (7), like the one proposed in [21] and described
in the previous Subsection;

• a high-order reconstruction operator, i.e. an operator that, given a family of cell values {Ui(t)},
provides at every cell [xi−1/2, xi+1/2] a smooth function that depends on the values at some
neighbor cells whose indexes belong to the so-called stencil Si:

RUi (x) = RUi (x; {Uj(t)}j∈Si),

so that RUi (x) is a high-order approximation of U(x, t) in the ith cell at time t. Here we
use third- and fifth-order CWENO reconstruction operators [12, 63, 64]. The main advan-
tage of CWENO compared to WENO (see [77–79]) reconstruction operators is that CWENO
reconstructions achieve uniform high-order approximation in the entire cell, while WENO re-
construction operators are proposed to achieve high-order approximation at the boundaries
of the cell. Thus, standard WENO-5 reconstructions achieves 5th-order at the boundaries of
the cell, while it is only 3rd-order at the interior points. Therefore, CWENO reconstruction
operators are specially useful in balance laws such as (7), where the source term has to be
evaluated at inner points of the cell. We complement the CWENO reconstruction operators
with the positive-density limiters from [84] to ensure physical admissible reconstructed values
for the density. For further details we refer the reader to appendix B.



6

Using these ingredients, one could consider a high-order finite-volume semi-discrete numerical
method of the form:

(16)
dUi
dt

= − 1

∆x

(
F−i+1/2 − F+

i−1/2

)
+

1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x)) dx,

where

• RtU (x) and RHi (x) are the approximations of the solution U(x, t) and the function H∆x(x),
respectively, at the ith cell given by some high-order reconstruction operators from the sequence
of cell values {Ui(t)} and {Hi(t)}, respectively, i.e.

RUi (x) = Ri(x; {Uj(t)}j∈Si) and RHi (x) = Ri(x; {Hj(t)}j∈Si);
• F±i+1/2 is the numerical flux defined in (12) applied to the reconstructed states U∓i+1/2 and

H∓i+1/2, i.e.

F±i+1/2 = F(U−i+1/2, U
+
i+1/2, H

−
i+1/2, H

+
i+1/2)

with
U−i+1/2 = RUi (xi+1/2), U+

i+1/2 = RUi+1(xi+1/2),

and
H−i+1/2 = RHi (xi+1/2), H+

i+1/2 = RHi+1(xi+1/2).

One can proof that the semi-discrete numerical scheme (16) is a high-order numerical scheme of order
p > 1, if the following three conditions are satisfied (see [26] and the references there in):

(i) H∆x(x) is a high-order approximation of H(x, ρ) of order p > 1;
(ii) RUi (x) and RHi (x) are high-order reconstruction operators of order at least p > 1;
(iii) the volume integral

1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x)) dx

is computed exactly or approximated with a quadrature formula of order greater or equal to
p > 1.

Unfortunately, when employing standard (CWENO, WENO, . . . ) reconstruction the resulting
numerical scheme is, in general, not well-balanced. Indeed, if {Ui}Ni=1 and {Hi}Ni=1 are the cell averages
of a discrete steady state satisfying (10), then their reconstructions do not necessary satisfy the discrete
relations

(17) Π′ (Rρi (x)) +RHi (x) = C, 1 ≤ i ≤ N.
In the previous expression we suppose, for simplicity, that we have only one connected component.

In what follows we aim to propose a modified reconstruction procedure which respects (17) for any
discrete steady state satisfying (10). As we show in the next Subsection, thanks to this modification
we can prove that our scheme is both high-order accurate and well-balanced.

2.3. High-order well-balanced numerical scheme. Let us suppose that the sequences of cell
averages {Ui}Ni=1 and {Ki}Ni=1 are known, with

Ui =


ρi =

ns∑
j=1

αjρ(xji )

(ρu)i =

ns∑
j=1

αj(ρu)(xji )


and

(18) Ki =

ns∑
j=1

αj

[
Π′(ρ(xji )) +H∆x(xji )

]
.

For such cell averages we propose the following reconstruction procedure:
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• We consider a standard high-order reconstruction operator for the conserved variables ρ and
ρu, and also applied to the sequence {Ki}Ni=1,

(19)

Rρi (x) = Ri (x, {ρj}j∈Si) ,

Rρui (x) = Ri (x, {(ρu)j}j∈Si
) ,

RKi (x) = Ri (x, {K}j∈Si
) ;

• the reconstruction operator for H∆x(x) is defined as

(20) RHi (x) = RKi (x)−Π′ (Rρi (x)) ,

with RHi not being a polynomial since it depends on the function Π′(ρ).

The previous reconstruction procedure satisfies the following property:

Theorem 2.2. Let u = 0, ρ(x) and H∆x(x) satisfying (10), that is ρ, u = 0 is a discrete stationary
solution of system (7), then the reconstructions Rρi (x), Rρui (x) and RHi (x) are discrete stationary
solutions of system (7) at [xi−1/2, xi+1/2].

Proof. Let us suppose for simplicity that the the stationary solution is only defined in one connected
component. Therefore, Ki = C, 1 ≤ i ≤ N .

As standard reconstruction operators like CWENO are exact for constant functions, we have that
Rρui (x) = 0 and RKi (x) = C. Therefore in (17) we have that C = Π′(Rρi (x)) + RHi (x), which proves
the result setting H∆x(x) = RHi (x). �

It is important to remark that, even if the reconstruction procedure satisfies the discrete steady
state of system in (17), the semi-discrete numerical scheme (16) may not be in general well-balanced.
This is because the integral ∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x)) dx

has to be numerically approximated, and if such integration is not exact then the well-balancing
property may be destroyed (see [26]). To overcome this difficulty, we follow the strategy proposed
in [26]: a local discrete stationary solution is added to the numerical scheme for every cell. We denote
this solution by U∗i (x) = (ρ∗i (x), 0)T and H∗i (x), and it satisfies

(21)
1

∆x

(
F (U∗i (xi+1/2))− F (U∗i (xi−1/2))

)
=

1

∆x

∫ xi+1/2

xi−1/2

SH(U∗i (x), H∗i (x)) dx.

The previous steady state relation in (21) is satisfied if we choose U∗i (x) = (ρ∗i (x), 0)T and H∗i (x)
as

(22) U∗i (x) =

(
ρ∗i (x) = Rρi (x)

0

)
, H∗i (x) = Ki −Π′(Rρi (x)).

Observe that the convolution is indirectly approximated in the previous expression.
Now, we could rewrite the semi-discrete numerical scheme (16) by just adding the steady state

expression in (21), yielding

(23)

dUi
dt

= − 1

∆x

(
F−i+1/2 − F+

i−1/2 − F (U∗i (xi+1/2)) + F (U∗i (xi−1/2))
)

+
1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) dx.

The advantage of this new version of the scheme relies in the fact that the integral term in (23)
could be approximated by any high-order quadrature formula, without perturbing the well-balanced
character of the numerical scheme. This comes from the fact that, for any discrete stationary solution
satisfying (10), we have that RHi (x) = H∗i (x) and Rρi (x) = ρ∗i (x), so that

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) = 0.
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For such integral here we follow [70], where an n-th order Richardson extrapolation formula is proposed
to evaluate source terms of the form ρ∂xH. We detail the fourth- and sixth-order formulas in the
Appendix C. We finally conclude with the following result.

Theorem 2.3. The numerical scheme (23) with the reconstruction operators (19) and (20) is well-
balanced in the sense of Definition 2.1.

Proof. Let us suppose that u = 0, ρ(x), H∆x(x) satisfy (10). We also assume for simplicity that the
stationary solution is defined on one connected component. Then, as proved in Theorem (2.2), the
reconstructions Rρi (x), Rρui (x) and RHi (x) satisfy (17). Moreover,

1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) dx = 0,

and the reconstructed states at the intercells verify

(24) Π′(ρ+
i+1/2) +H+

i+1/2 = Π′(ρ−i+1/2) +H−i+1/2 = C, u−i+1/2 = u+
i+1/2 = 0.

The relation (24) implies that the hydrostatic-reconstructed states satisfy

(25) ρHR,−i+1/2 = ρHR,+i+1/2 , (ρu)HR,−i+1/2 = (ρu)HR,+i+1/2 = 0.

Using (24) and (25) and the definition of (12) and (15), F−i+1/2 reduces to

F−i+1/2 =

(
0

P (ρ−i+1/2)

)
.

Analogously, we deduce that

F+
i−1/2 =

(
0

P (ρ+
i−1/2)

)
.

Now, taking into account the definition of U∗i (x) given in (22),

U∗i (xi+1/2) =

(
ρ−i+1/2

0

)
, U∗i (xi−1/2) =

(
ρ+
i−1/2

0

)
,

we finally conclude by noting that

1

∆x

(
F−i+1/2 − F+

i−1/2 − F (U∗i (xi+1/2)) + F (U∗i (xi−1/2))
)

= 0.

�

Remark 2.4. The well-balanced reconstruction operators defined in (19) and (20) employ, as expected,
the approximated cell averages of the solution at each time step and an extra quantity corresponding to
the cell average of the variation of the free-energy, denoted by Ki. This quantity plays an important role
to achieve the well-balanced property of the reconstruction operators and the final numerical scheme.
Note that the semi-discrete numerical scheme (23) only allows to evolve in time the cell averages of
conserved variables, and as a result we should provide an extra equation to evolve the variation of
the free-energy. We propose the following: suppose that {ρni } {(ρu)ni } and {Kn

i } are known at time
t = n∆t, and suppose in addition that we use the standard explicit first order Euler scheme to evolve
the conserved variables up to time t = (n+ 1)∆t. Then we propose to update Kn+1

i as

Kn+1
i =Kn

i +

ns∑
j=1

αj

[
Π′
(
Rρ

n+1

i (xji )
)
−Π′

(
Rρ

n

i (xji )
)]

+

ns∑
j=1

αj

[
M∑
l=1

ns∑
m=1

∆xαmW
(
xji − x

m
l

) [
Rρ

n+1

l (xml )−Rρ
n

l (xml )
]]
,(26)

where we use some high-order quadrature formula for the cell averages and convolution operator. Here
we will use the fifth-order Gaussian quadrature described in Appendix A. A similar procedure could
be applied if a high-order RK-TVD scheme (see [52]) is used instead of the explicit Euler scheme to
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discretize the ODE system (23). This is based on the classical observation that these schemes can
be written as linear combinations of explicit Euler steps. Observe also that Kn+1

i = Kn
i on discrete

stationary solutions satisfying (10).

Finally, if the term SD(x, U) is now added to the system, our full high-order semi-discrete well-
balanced finite volume scheme can be written as

dUi
dt

=− 1

∆x

(
F−i+1/2 − F+

i−1/2 − F (U∗i (xi+1/2)) + F (U∗i (xi−1/2))
)

+
1

∆x

∫ xi+1/2

xi−1/2

SH(RUi (x), RHi (x))− SH(U∗i (x), H∗i (x)) dx(27)

− γ(ρu)i +
1

∆x

ns∑
j=1

αjR
ρ,t
i (xji )

[
M∑
l=1

ns∑
m=1

∆xαmψ(xji − x
m
l )
(
Ru,ti (xji )−R

u,t
l (xml )

)
Rρ,tl (xml )

]
,

where Ru,ti =
Rρu,ti

Rρ,ti
. Note that the new terms do not affect to the well-balance property of the scheme

as they vanishes when u = 0.

Remark 2.5. In practical applications is quite important to guarantee that the numerical scheme
preserves the non-negativity of the density ρi(t). The high-order numerical scheme (27) preserves the
non-negativity of the density as consequence of:

(1) the first order numerical flux preserves the non-negativity of the density (see [21]);
(2) the application of the positive-density limiter introduced in [84] and described in appendix

B.3;
(3) a suitable CFL restriction (see (49) and [84]), described also in appendix B.3.

2.4. Algorithmic implementation of the scheme. In this Subsection we summarize the steps to
efficiently implement the high-order well-balanced finite-volume scheme of Subsection 2.3.

The initial conditions for system (7) are the initial density profile ρ0(x) and momentum profile
(ρu)0 (x). These initial conditions are introduced in the numerical scheme by computing their cell
averages via high-order quadrature formula,

ρ0
i =

ns∑
j=1

αjρ0(xji ),

(ρu)
0
i =

ns∑
j=1

αj(ρu)0(xji ),

where the coefficients αj denote the weights of the quadrature formula that multiply the evaluation

of ρ0(x) and (ρu)0 (x) at the quadrature points xji , and ns denotes the number of quadrature points.
Here we employ the fifth-order Gaussian quadrature formula described in the Appendix A.

The initial cell averages of the derivative of the free energy (10) are also required, and are similarly
computed via fifth-order Gaussian quadrature

K0
i =

ns∑
j=1

αj

[
Π′
(
ρ0(xji )

)
+ V (xji ) +

n∑
l=1

ns∑
m=1

∆xαmW
(
xji − x

m
l

)
ρ0(xml )

]
.

The computation of the cell averages using quadrature formulas is only necessary at the initial time
step of the algorithm. For further time steps, the algorithm presented here takes as inputs the cell
averages ρni , (ρu)

n
i and Kn

i , evaluated at t = n∆t, and directly returns the cell averages ρn+1
i , (ρu)

n+1
i

and Kn+1
i at the subsequent time step t = (n+ 1)∆t. The steps for such algorithm are:

1) Perform high-order reconstructions Rρi (x), Rρui (x) and RKi (x) from the sequences of cell values
{ρni }, {(ρu)

n
i }, {Kn

i }, following (19). In our case, such reconstructions are conducted via third-
and fifth-order CWENO reconstructions [12,63,64], details provided in Appendix B.
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For simplicity, the evaluations of the previous reconstructions at the intercells at time t =
n∆t are denoted as

(28)

ρ+
i−1/2 = Rρi (xi−1/2), ρ−i+1/2 = Rρi (xi+1/2),

(ρu)
+
i−1/2 = Rρui (xi−1/2), (ρu)

−
i+1/2 = Rρui (xi+1/2),

K+
i−1/2 = RKi (xi−1/2), K−i+1/2 = RKi (xi+1/2).

Furthermore, when required, the reconstruction of the velocity field u is computed as

Rui (x) =
Rρui (x)

Rρi (x)
, u+

i−1/2 = Rui (xi−1/2), u−i+1/2 = Rui (xi+1/2).

2) Obtain the reconstruction RHi (x) for H∆x(x) from (20), and their evaluations at the intercells
as

H+
i−1/2 = RHi (xi−1/2), H−i+1/2 = RHi (xi+1/2).

In general H+
i+1/2 6= H−i+1/2. The average value between them is taken as

Hi+1/2 = max
(
H+
i+1/2, H

−
i+1/2

)
.

3) Reconstruct the local discrete stationary solution in (21) for every cell, so that U∗i (x) and
H∗i (x) are computed from (22).

4) Perform the so-called hydrostatic reconstruction described in (14), but now with the high-order
reconstructions at the intercells. By denoting as ξ(s) the inverse function of Π′(s) for s > 0,

ρHR,−i+1/2 = ξ
(

Π′
(
ρ−i+1/2

)
+H−i+1/2 −Hi+1/2

)
, (ρu)

HR,−
i+1/2 = ρHR,−i+1/2u

−
i+1/2,

ρHR,+i+1/2 = ξ
(

Π′
(
ρ+
i+1/2

)
+H+

i+1/2 −Hi+1/2

)
, (ρu)

HR,+
i+1/2 = ρHR,+i+1/2u

+
i+1/2.

5) The cell averages ρn+1
i and (ρu)

n+1
i at the subsequent time step t = (n+ 1)∆t are updated by

means of (27), where

(29) F±i+1/2(UHR,−i+1/2 , U
HR,+
i+1/2 , H

−
i+1/2, H

+
i+1/2) = F(UHR,−i+1/2 , U

HR,+
i+1/2 )± SHR,±i+1/2 ,

with the Lax-Friedrich flux in (13),

(30) SHR,+i+1/2 =

(
0

P
(
ρ+
i+1/2

)
− P

(
ρHR,+i+1/2

))
, SHR,−i+1/2 =

(
0

P
(
ρHR,−i+1/2

)
− P

(
ρ−i+1/2

))
,

(31) F
(
U∗i (xi−1/2)

)
=

(
0

P
(
ρ+
i−1/2

))
, F

(
U∗i (xi+1/2)

)
=

(
0

P
(
ρ−i+1/2

))
,

and the integral for the high-order corrections in the source term is computed from the fourth-
and sixth-order formulas in the Appendix C.

6) Finally, update the value Kn+1
i by means of fluctuations from (26).

3. Numerical simulations

Here we employ the high-order finite volume scheme we developed in Section 2 in a variety of
relevant applications, taken from the fields of gas dynamics, porous media, collective behavior and
chemotaxis. First, in Subsection 3.1 we conduct the validation of the properties from the numerical
scheme to ensure both that the high-order and the well-balanced properties are numerically satisfied.
Second, in Subsection 3.2 we proceed to apply the scheme to challenging scenarios where analytical
results are scarce.
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The numerical flux for the simulations is chosen depending on the form of the pressure term, which
satisfies P (ρ) = ρm with m ≥ 1. A local Lax-Friedrich numerical flux is employed for the examples
with ideal-gas pressure, where m = 1 and the support of the density is not compact. On the contrary,
a kinetic scheme based on [73] is employed for pressures with m > 1, due to the presence of vacuum
regions and compactly-supported densities. For the details of these two numerical fluxes we refer the
reader to our previous work [21].

For the temporal integration we implement the versatile third order TVD Runge-Kutta method
[52], with the CFL number chosen as 0.7 in all the simulations. The CFL conditions for these two
numerical fluxes are detailed in equation (49) of appendix B. The boundary conditions are periodic
unless otherwise specified. In all the simulation we set γ = 1 in the linear damping while the nonlinear
damping is in general deactivated, except for example 3.4. The number of cells employed to create the
plots is 200. For the figures we use the third-order time discretization scheme, unless otherwise stated.

In the following numerical simulations we focus on the temporal evolution of the density, momentum
and free-energy variation in (18). For illustrative purposes, we also plot the evolution of the discrete
versions of the total energy in (4) and free energy in (2), which are given by

(32) E∆ =
∑
i

∆xi
2
ρiu

2
i + F∆ and F∆ =

∑
i

∆xi [Π (ρi) + Viρi] +
1

2

∑
i,j

∆xi∆xjWijρiρj .

It is worth mentioning that previous works have constructed finite-volume schemes that satisfy the
discrete analog of the entropy identity in (6) (see “entropy stable schemes” in [42,80]) and free energy
dissipation property in (5) (see “energy dissipating schemes” in [5,13,21]). The extension of the present
scheme to satisfy the challenging discrete properties of entropy stability and energy dissipation with
high-order accuracy will be explored elsewhere.

3.1. Validation of the numerical scheme. The validation of the finite-volume scheme in Section
2 encompasses a test for the well-balanced property and a test for the high-order accuracy in the
transient regimes. Both tests are conducted in two different scenarios, for which different choices of
the free energy in (2) are taken. The details of such scenarios are written in the examples 3.1 and 3.2
of below.

On the one hand, for the well-balanced property we show that the steady-state solution is preserved
in time up to machine precision. For this we select as initial condition a density and momentum profile
satisfying the steady states obtained from (3). Numerically this means that the discrete version of the
variation of the free energy in (10) holds, while the momentum vanishes throughout the domain. The
results for this test are depicted in table 1, for a simulation time run from t = 0 to t = 5 and a number
of cells of 50.

Table 1. Preservation of the steady state for the examples 3.1 and 3.2 with the third-
and fifth-order schemes and double precision, at t = 5

Order of the scheme L1 error

Example 3.1
3rd 1.7082e-16
5th 1.7094e-16

Example 3.2
3rd 5.5020E-17
5th 6.4514E-17

On the other hand, the order of accuracy in the transient regimes is computed by evaluating the L1

error of the numerical solution for a particular mesh-size grid ∆x with respect to a reference solution.
To measure the high-order accuracy of the scheme we select scenarios where shock waves or sharp
gradients in the density and momentum profile do not evolve, such as the ones in the examples 3.1
and 3.2, and we let the simulation run until t = 0.1. We repeat this procedure by halving the ∆x from
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the previous simulation and the order of the scheme is computed as

Order of the scheme = ln2

(
L1 error(∆x)

L1 error(∆x/2)

)
.

For the system with a nonlocal free energy in (1) there are generally no explicit solutions in the transient
regime. This implies that the reference solution has to be computed from the same numerical scheme
with an extremely refined ∆x with the aim of accepting that numerical solution as the exact one. Here
we take 25600 cells to compute such reference solution, while the other numerical simulations for the
order of accuracy employ 50, 100, 200 and 400 cells. The results showing the third- and fifth-order of
accuracy for the scenarios in examples 3.1 and 3.2 are displayed in table 2 and 3.

Example 3.1 (Ideal-gas pressure under an attractive potential). For this example we select
an ideal-gas free energy with pressure P (ρ) = ρ and with a quadratic external potential V (x) = x2/2.
The steady state that we aim to preserve follows from

(33)
δF
δρ

= Π′(ρ) +H(x, ρ) = ln(ρ) +
x2

2
= constant on supp(ρ) and u = 0.

Free energies of this type appear in the context of chemotaxis with a fixed chemoattractant profile
[41, 44, 75], where cells will typically vary their direction when reacting to the presence of a chemical
substance, so that they are attracted by chemically favorable environments and dodge unfavorable
ones. In chemotaxis there is a chemo-attractant function playing a role similar to the external potential
V (x), and in more complex models this chemo-attractant function may even have its own parabolic
equation for its evolution. There are numerous well balanced schemes for chemotaxis. Amongst them
we highlight the fully implicit finite-volume scheme in [40], the scheme allowing for vacuum states
in [69], the Godunov scheme in [51] and the high-order finite-volume and finite-differences schemes
in [41,68,82].

The density profile for the steady state in (33) for an initial mass M0 satisfies a Gaussian distribution
of the form

(34) ρ∞ = M0
e−x

2/2∫
R e
−x2/2dx

.

Table 2. Accuracy test for Example 3.1 with the third- and fifth-order schemes, at t = 0.1

Number of
cells

Third-order Fifth-order
L1 error order L1 error order

50 1.4718E-04 - 1.9260E-05 -
100 2.3726E-05 2.63 5.1254E-07 5.23
200 2.4182E-06 3.29 2.1997E-08 4.54
400 2.6708E-07 3.18 9.2613E-10 4.57

For the order of accuracy test we take as initial condition a perturbation of the steady state in (34),

(35) ρ(x, t = 0) = M0
e−x

2/2 + 0.1 ∗ e−5(x+3)2∫
R
(
e−x2/2 + 0.1 ∗ e−5(x+3)2

)
dx
, ρu(x, t = 0) = 0, x ∈ [−5, 5],

with M0 equal to 1 so that the total mass is also 1. The order of accuracy test from this example is
shown in table 2, while the temporal evolution of the density, momentum, free-energy with respect
to the density, total energy and free energy are displayed in figure 1. The third- and fifth-order of
accuracy of the numerical scheme in Section 2 are evident from table 2. From figure 1 (A) we notice
how the Gaussian distribution corresponding to the steady state is reached at t = 12, while in figure 1
(C) the variation of the free energy is constant throughout the domain, given that the density is not
compactly supported and (10) is satisfied. Finally, it is evident from figure 1 (D) that the discrete
analogs of the total energy and free energy (32) decay in time.
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the varia-
tion of the free energy

(d) Evolution of the total
energy and free energy

Figure 1. Temporal evolution of Example 3.1.

In figure 2 we visually illustrate the difference in accuracy between employing the third- and fifth-
order schemes of this work versus the first-order scheme in our previous work [21], which is summarized
in Subsection 2.1. We display the density and momentum fluctuation profiles at two different times
(t = 0.2 and t = 0.4), which result from substracting the initial conditions in (35) to the numerical
profiles obtained with the same mesh of 100 cells for the three schemes. The choice of measuring the
fluctuations with respect to the initial condition is motivated by capturing the transient behavior. We
also plot a reference profile obtained with the thrid-order scheme and 12600 cells. From figure 2 we
observe the benefit of employing the high-order schemes in comparison to the first-order one, since
they provide a numerical solution much closer to the reference profile for the same number of cells.

Example 3.2 (Generalized Euler-Poisson system: ideal-gas pressure and attractive ker-
nel). For this example we select an ideal-gas free energy with pressure P (ρ) = ρ together with an

interaction potential with a kernel of the form W (x) = x2

2 . In this case the steady state aimed to be
preserved satisfies



14

(a) Density fluctuations at t = 0.2 (b) Momentum fluctuations

at t = 0.2

(c) Density fluctuations at t = 0.4 (d) Momentum fluctuations

at t = 0.4

Figure 2. Density and momentum fluctuations in Example 3.1 for a first-, third-
and fifth-order scheme with the same mesh of 100 cells. The reference solution is
computed with the third-order scheme and 12600 cells.

(36)
δF
δρ

= Π′(ρ) +H(x, ρ) = ln(ρ) +
x2

2
? ρ = constant on supp(ρ) and u = 0.

Free energies of this type are common in Euler-Poisson systems, in which the Euler equations for
a compressible gas are coupled to a self-consistent force field created by the gas particles [56]. This
interaction could be gravitational, leading to the modelling of Newtonian stars [9], or electrostatic with
repelling forces between the particles is is the case of plasma [34, 54]. For Euler-Poisson systems the
free energy contains a function S(t, x) which follows a Poisson-like equation, so that

(37)
δF
δρ

= Π′(ρ) + S(t, x) and ∂xxS(t, x) = cρ,
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with c being either 1 for the gravitational case or -1 for the plasma one. The Poisson equation for
S(t, x) can be solved considering the fundamental solution of the Laplacian in one dimension [62],
which leads to 2S = −c |x| ? ρ. Then, by plugging this expression for S in the variation of the free
energy in (37), one recovers the interaction potential W (x) which is convoluted with the density ρ.
For a S(t, x) following the Poisson equation the interaction potential is W (x) = −c |x|, but for c = −1
one can generalize it to a homogeneous kernel W (x) = |x|α/α, where α > −1 and W (x) = ln |x| when
α = 0 for convention. A popular application of these more general kernels W (x) is in the Keller-Segel
system for cells and bacteria [8, 10,19] which we explore in example 3.5.

Table 3. Accuracy test for Example 3.2 with the third- and fifth-order schemes, at t = 0.1

Number of
cells

Third-order Fifth-order
L1 error order L1 error order

50 5.0109E-04 - 1.0913E-04 -
100 1.2721E-04 1.98 5.0556E-06 4.43
200 1.7573E-05 2.86 5.3713E-08 6.56
400 2.3001E-06 2.93 2.3448E-10 4.52

For Example 3.2 we select α = 2, leading to the interaction potential W (x) = x2

2 in the variation of
the free energy in (36). The steady state for a general mass M0 is equal to the steady state for example

3.1 and satisfies (34). Notice that the particular choice of W (x) = x2

2 and a symmetric initial condition
makes this Example analytically equivalent to the case of external quadratic potential in Example 3.1
with the same initial data, just expand the convolution and use symmetry. However, by treating it
numerically as a convolution we are able to check the order of accuracy for interaction potentials. For
the order of accuracy test the initial condition is a symmetric perturbation of the steady state in (34),

ρ(x, t = 0) = M0
e−x

2/2 + 0.05 ∗ e−5(x+3)2 + 0.05 ∗ e−5(x−3)2∫
R
(
e−x2/2 + 0.05 ∗ e−5(x+3)2 + 0.05 ∗ e−5(x−3)2

)
dx
, ρu(x, t = 0) = 0,

with x ∈ [−10, 10] and M0 equal to 1 so that the total mass is also 1. The order of accuracy test from
this example is shown in table 3, while the temporal evolution of the density, momentum, variation of
the free energy with respect to the density, total energy and free energy are depicted in figure 3. The
third- and fifth-order of accuracy of the numerical scheme in Section 2 are evident from table 3. Figure
3 (A) shows that the density remains symmetric at all times eventually reaching the steady state profile
in (34). It is also evident from figure 3 (C) that the variation of free energy reaches a constant value
in the regions where the density is non-compactly supported, while figure 3 (D) demonstrates that the
total energy and free energy exhibit a temporal decay.

3.2. Numerical experiments and applications. Here we apply the finite-volume scheme we de-
veloped in Section 2 to applications of the shallow-water system, a collective behaviour system with
Cucker-Smale and Motsch-Tadmor damping terms, and the Keller-Segel model. Our scheme is useful
to run challenging numerical experiments for which analytical results are limited in the literature, such
as in the above applications.

Example 3.3 (Shallow water: pressure proportional to square of density and attractive
potential). In this example we select a pressure satisfying P = ρ2 together with an attractive external
potential V (x). This scenario corresponds to the well-known shallow-water equations, which model
free-surface gravity waves whose wavelength is much larger than the characteristic bottom depth.
The choice of P = ρ2 leads to the presence of dry regions during the water-height evolution. These
equations are applied in a wide range of engineering and scientific applications involving free-surface
flows [83], such as tsunami propagation [27], dam break and flooding problems [35] and the evolution
of rivers and coastal areas [33].

The main three challenges to accurately simulate the shallow-water equations are the preservation
of the steady states, the preservation of the water-height positivity and the transitions between wet
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the varia-
tion of the free energy

(d) Evolution of the total
energy and free energy

Figure 3. Temporal evolution of Example 3.2.

and dry areas. Many authors have consequently proposed various numerical schemes addressing these
challenges, employing methodologies ranging from finite-difference and finite-volume schemes to dis-
continuous Galerkin ones. The reader can find more relevant references about high-order schemes [24],
well-balanced reconstructions [3], density positivity [84] and the simulation of the wet/dry front [43]
in the introduction of this work and in the comprehensive survey from Xing and Shu [83].

For this example we aim to show that our numerical scheme accurately captures the dry regions
during the simulation and when reaching the steady states. This is thanks to the combination of the
positive-density reconstruction in Appendix B and the choice of a kinetic numerical flux which is able
to handle vacuum regions [73]. We show this by conducting simulations with two different choices for
the external potential V (x) with the following initial conditions for both cases

ρ(x, t = 0) =
e−(x−x0)2/16∫

R e
−(x−x0)2/16dx

, ρu(x, t = 0) = −0.1 sin
(πx

10

)
, x ∈ [−5, 5],
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the varia-
tion of the free energy

(d) Evolution of the total
energy and free energy

Figure 4. Temporal evolution with single-well external potential and symmetric
density in Example 3.3.

with x0 being the initial centre of mass. The steady states for the choice of pressure and external
potentials of this example satisfy

(38) ρ∞ = (C(x)− V (x))+,

where C(x) is a piecewise constant function being zero outside the support of the density.
The details of each simulation are:

1) Single-well external potential and symmetric density: V (x) = x2/2 and x0 = 0. The results
of this simulation are depicted in figure 4. Figure 4 (a) shows the formation of the compact
support of the density during the time evolution with the steady state taking the shape of a
positive parabola and satisfying (38). We also observe that the variation of the free energy in
figure 4 (c) reaches a constant value only in the support of the density, in agreement with the
steady-state relation in (3). We also note that in 4 (d) the discrete total energy decreases in
time, while the discrete free energy has a slight increase around t = 3 due to an exchange of
energy with the kinetic energy.
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the varia-
tion of the free energy

(d) Evolution of the total
energy and free energy

Figure 5. Temporal evolution with double-well external potential and asymmetric
density in Example 3.3.

2) Double-well external potential and asymmetric density: V (x) = x4/4 − 3x2/2 and x0 = 1.5.
The results of this simulation are depicted in figure 5. From the evolution of the density in
figure 5 (a) it is evident that two compactly-supported bumps of density are formed when
reaching the steady state. This is due to the external potential having two wells. In addition,
the mass in the bumps is not the same, since the initial density is not symmetric. It is also
important to remark that, when reaching the steady state, the variation of the free energy in
each compacted support of the density is constant but has different values. This is depicted in
figure 5 (c) and agrees with the steady state relation (3). We refer the reader to our previous
work [21] for similar simulations considering varied scenarios with double-well potentials.

Example 3.4 (Collective behaviour: comparison of linear, Cucker-Smale and Motsch–
Tadmor dampings). In this example we explore the impact of adding linear and nonlinear damping
terms to the general system (1). The motivation for the nonlinear damping comes from the field of col-
lective behaviour, in which a large amount of interacting individuals or agents organize their dynamics
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by influencing each other and without the presence of a leader. Most of the literature in collective
behaviour is based on individual based models (IBMs) which are particle descriptions considering the
three basic effects of attraction, repulsion and alignment of the individuals. The combination of these
three effects has proven to be very versatile and extends beyond the typical animal applications for
schools of fish [58], herds of mammals [46] or flocks or birds [57]. Indeed, these models are now playing
a critical role in understanding complex phenomena including consensus and spatio-temporal patterns
in diverse problems ranging from the evolution of human languages [39] to the prediction of criminal
behaviour [76] and space flight formation [72].

There are plenty of works in the literature addressing the mean-field derivation of kinetic and other
macroscopic models from the original particle descriptions [17, 18, 55]. These derived hydrodynamic
equations agree with our general system (1) and model the attraction and repulsion effects via the
interaction potential W (x). The third effect for collective behaviour is alignment which in our system
(1) it is achieved by means of the nonlinear and nonlocal damping of the RHS of the momentum
equation. The most popular approach for the velocity consensus is the Cucker-Smale (CS) model [37,38]
which adapts the momentum of a particle depending on the momentum and distance of the other
particles. Several authors have proposed refined variations of the CS model, and among them we
remark the weighted-normalized model by Motsch and Tadmor (MS) [67] (which will be referred to in
the following as the MS model). It basically corrects the CS model by eliminating the normalization
over the total number of agents, which leads to inaccurate behaviours in far-from-equilibrium scenarios.
Instead, the MT model introduces the concept of relative distances between agents with the cost,
however, of destroying the symmetry of the original CS model. For further details on flocking and
alignment with the CS and related models we refer the reader to [14,15,32,66].

The objective of this example is to illustrate the differences of adding to the general system (1)
linear damping, the CS or the MT model. The damping term for each of them is

(39)



−γρu if linear damping,

−ρ
∫
Rd

ψ(x− y)(u(x)− u(y))ρ(y) dy if Cucker-Smale damping,

− ρ
ψ?ρ

∫
Rd

ψ(x− y)(u(x)− u(y))ρ(y) dy if Motsch-Tadmor damping,

where ψ(x) is a nonnegative symmetric smooth function, called the communication function, satisfying
for this example

ψ(x) =
1

(1 + |x|2)
1
4

.

It should be noted that the CS damping term in (39) would reduce to linear damping if the commu-
nication function ψ(x) was a constant function ψ(x) = 1. In addition, the difference between the CS
and MT models is the normalization over ψ ? ρ that is added to the MT model to ensure that the
damping term is independent of the total mass of the system.

The simulation for this example is chosen to specifically address a particular drawback of the CS
model. This occurs in the evolution of two groups of agents separated by a certain significant distance
and whose masses have different degrees of magnitude. What happens with the CS model is that the
damping term for the small group of agents is negligible due to the normalization over the total number
of agents in the system. This means that those agents do not seek alignment from the beginning of the
simulation, and as a result the convergence towards alignment is delayed. On the contrary, with the
MT model the normalization over ψ ?ρ in (39) allows to take the relative distances between the agents
into account, and the small group of agents reacts much faster to the effect of the rest of agents. In the

simulation we also add a Morse-like interaction potential [13, 20] of the form W (x) = −e−|x|2/2/
√

2π,
which quickly decays at large distances and does not add any attraction between the two groups of
agents. Note that we are forced to add this attraction term to balance the pressure and thus allow for
our well-balanced scheme in Section 2.
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This configuration is depicted in figure 6. Specifically, figure 6 (a) and (b) shows with blue the
initial conditions for the density and the momentum. On the one hand, in the density there are two
groups of agents with mass of 0.9 and 0.1, satisfying

ρ(x, t = 0) = 0.9
e−(x+1)2/2∫

R e
−(x+1)2/2dx

+ 0.1
e−(x−11)2∫

R e
−(x−11)2dx

, x ∈ [−5, 14],

while on the other hand for the momentum the two groups have opposite velocity signs, in agreement
with

ρu(x, t = 0) =

{
2 ρ(x, t = 0) if x < 5,

−2 ρ(x, t = 0) if x ≥ 5.

(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the dis-
crete free energy

(d) Evolution of the dis-
crete total energy

Figure 6. Simulation of Example 3.4 until t = 1. γ = 1 denotes the linear damping
simulation, CS the Cucker-Smale simulation and MT the Motsch-tadmor simulation.

What we expect to happen in this situation is that the large group imposes its velocity sign over the
small group, so eventually all the agents align with positive velocity. From the momentum simulation
in figure 6 (b) we observe that after t = 1 the MT model has already changed the velocity sign of the
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small group from negative to positive, while for the CS model the velocity is still negative. In general,
linear damping is the one that dissipates more momentum, as depicted in the momentum plot of figure
6 (b) and in the total energy plot of figure 6 (d). The free energy and total energy decay are similar
for both the CS and MT models. A similar numerical experiment was already conducted in [14] using
particle methods.

Example 3.5 (Hydrodynamic Keller-Segel system). The Keller-Segel model has been widely
employed for chemotactic aggregation of biological populations such as cells, bacteria or insects. It
models how the production of a particular chemical by these organisms leads to long-range attraction
and eventually results in self-organization. Its first formulation was proposed in [59] and consisted in
a drift-diffusion equation for the density (which is obtained in the overdamped limit of our system (1))
coupled with a diffusion equation for the chemical concentration.

In this example we are interested in the hydrodynamic extension of the Keller-Segel model proposed
in [29] and takes into account the inertia of the biological entities and has been proposed in [29]. It
follows the same structure as the generalized Euler-Poisson system in the example 3.2 with the free
energy satisfying (37) and the chemical concentration usually taken as S = W (x)?ρ (see [11,19]). The
homogeneous kernel W (x) follows W (x) = |x|α/α, where α > −1 and W (x) = ln |x| when α = 0 for
convention. The difference with example 3.2 is that here the pressure follows P (ρ) = ρm with m ≥ 1,
thus allowing for compactly-supported steady states and vacuum in the density if m > 1. We refer
the reader to [6] for more information about the Keller-Segel model and the diffusion equation for the
chemical concentration.

In our previous work [21] we applied our first- and second-order well-balanced scheme to investigate
the competition between the attraction from the local kernel W (x) and the repulsion caused by the
diffusion of the pressure P (ρ). For the overdamped Keller-Segel model there are basically three possible
regimes [10,11], which result from adequately tuning the parameters α in the kernel W (x) and m in the
pressure P (ρ): diffusion dominated regime (m > 1−α), balanced regime (m = 1−α) where a critical
mass separates self-similar and blow-up behaviour, and aggregation-dominated regime (m < 1 − α).
Results with the momentum equation included, and thus inertia, are still quite limited in the literature,
with only some specific scenarios studied [15, 22]. In our previous work [21] we investigated the role
of inertia for a choice of parameters of α = 0.5, m = 1.5 and α = −0.5, m = 1.3, which led to a
diffusion-dominated and aggregation-dominated regimes, respectively.

For this example we aim to explore the case of α = 0 which leads to the singular potential W (x) =
ln |x|. Initially, for the two first simulations of this example we set m = 1 so that P (ρ) = ρ. In
the overdamped limit this scenario corresponds to the balanced regime since m = 1 − α, and there
is a critical mass separating the global-in-time from the finite-time blowup solution. We aim to run
two simulations with identical initial conditions which differ only in a multiplicative constant for the
density which allows to set a different mass of the system. The objective is to find global-in-time and
finite-time blowup solutions by only changing the mass of the system. With that aim we set the initial
conditions as

(40) ρ(x, t = 0) = M
e−(x)2/16∫

R e
−(x)2/16dx

, ρu(x, t = 0) = 0, x ∈ [−8, 8],

with M being the mass of the system.
For the first simulation we set the mass of the system to be M = 0.1. The results are shown in

figure 7 where the numerical solution is clearly global-in-time and diffusion-dominated. Eventually the
steady state is reached,

δF
δρ

= Π′(ρ) +H(x, ρ) = ln(ρ) + ln |x| ? ρ = constant on supp(ρ) and u = 0.

From figure 7 (a) we observe that the solution is completely diffused and the final profile for the density
is uniform. From figure 7 (c) we notice that the variation of the free energy with respect to the density
is constant once the steady state is reached, and from figure 7 (d) we remark how the total and free
energy decay during the temporal evolution.
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the varia-
tion of the free energy

(d) Evolution of the total
energy and free energy

Figure 7. Temporal evolution of the Keller-Segel system with P = ρ, W (x) = ln |x|
and initial conditions (40) with M = 0.1. Global-in-time solution.

For the second simulation we select a mass of M = 3 while keeping the same initial conditions as in
(40). As displayed in figure 8, the solution now presents a finite-time blowup around t ≈ 7.5, leading
to an aggregation-dominated behaviour. Figure 8 (a) reveals that the density is concentrated towards
the middle of the domain while figure 8 (b) shows that the momentum presents an infinite slope when
reaching the blowup. From figure 8 (d) we notice that the total and free energy temporally decay until
the blowup occurs.

Finally, we also aim to compare diffusion-dominated solutions where m > 1 leading to steady
states that are compactly supported. For this purpose we set the initial conditions to be (40) with a
mass of M = 1. For comparison we look at two scenarios with P = 3ρ2 and P = 3ρ2.5 so that the
exponent m is different. In figure 9 we depict the final steady states that arise from the two choices
of m. From figures 9 (a) and (c) we observe that the final compactly-supported density profiles have
slightly different shapes due to the balances between the attraction from the local kernel W (x) and
the repulsion caused by the diffusion of the pressure P (ρ).
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the varia-
tion of the free energy

(d) Evolution of the total
energy and free energy

Figure 8. Temporal evolution of the Keller-Segel system with P = ρ, W (x) = ln |x|
and initial conditions (40) with M = 3. Finite-time blowup solution.
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Appendix A. Details about the fifth-order Gaussian quadrature

In this section we detail the procedure to approximate an integral via the fifth-order Gaussian
quadrature. Briefly, Gaussian quadratures of n points yield exact values of integrals for polynomials
of degree up to 2n− 1. In our case we implement Gaussian quadratures of 3 points, so that the spatial
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(a) Evolution of the density (b) Evolution of the momentum

(c) Evolution of the density (d) Evolution of the total
energy and free momentum

Figure 9. Temporal evolution of the Keller-Segel system with W (x) = ln |x| and
initial conditions (40) with M = 1. Compactly-supported steady state. (a)-(b) P =
3ρ2, steady state t = 250, (c)-(d) P = 3ρ2.5, steady state t = 100.

error is of the order O(∆x5). In this way we do not limit the order of the high-order finite volume
schemes, since the order of this quadrature is always higher or equal than ones in the reconstructions
of the scheme.

The approximation of a function f(x) within an interval [−1, 1] via a three-point Gaussian quadra-
ture [1] satisfies ∫ 1

−1

f(x) dx =
5

9
f

(
−
√

3

5

)
+

8

9
f (0) +

5

9
f

(√
3

5

)
.

In our case, this integration is performed within each of the finite volume cells in [xi−1/2, xi+1/2] centred
at xi and with size ∆x. The cell averages in the finite volume schemes are also divided over ∆x. As a
result, the transformation of weights and spatial coordinates for the Gaussian quadrature from [−1, 1]
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to [xi−1/2, xi+1/2] results in

1

∆x

∫ xi+1/2

xi−1/2

f(x) dx =
5

18
f

(
xi −

∆x

2

√
3

5

)
+

4

9
f (xi) +

5

18
f

(
xi +

∆x

2

√
3

5

)
.

From this last expression we get that the coefficients αj for j ∈ {1, 2, 3} satisfy

α1 =
5

18
, α2 =

4

9
, α3 =

5

18
,

with the spatial nodes xji within the cell i for the evaluations of the integrand located at

x1
i = xi −

∆x

2

√
3

5
, x2

i = xi, x3
i = xi +

∆x

2

√
3

5
.

Appendix B. Details about the positive-density CWENO reconstruction

In this section we proceed to summarize the third- and fifth-order CWENO reconstructions of a
generic function g(x) whose cell averages {gi}, defined as in (8), are taken as input. Each cell has
size ∆x, is centred at {xi} and is contained in the region

[
xi−1/2, xi+1/2

]
. These reconstructions are

applied in (19) to compute the high-order reconstructions Rρi (x), Rρui (x) and RKi (x). For further
details about the CWENO algorithm, we refer the reader to [12,36,63,64].

In subsection B.1 we detail the third-order reconstruction, in subsection B.2 we proceed with the
fifth-order reconstruction, and finally in subsection B.3 we end up by summarizing the positive-density
limiters from [84], which are essential to prove the positivity of the overall finite volume scheme.

B.1. Third-order CWENO reconstruction. The third-order CWENO reconstruction from [63]
satisfies

(41) Rgi (x) = gi + g′i(x− xi) +
1

2
g′′i (x− xi)2,

with gi, g
′
i and g′′i resulting from

gi = wii−1

(
g̃i−1 + ∆x g̃′i−1 +

1

2
∆x2 g̃′′i−1

)
+ wii g̃j + wii+1

(
g̃i+1 −∆x g̃′i+1 +

1

2
∆x2 g̃′′i+1

)
,

g′i = wii−1

(
g̃′i−1 + ∆x g̃′′i−1

)
+ wii g̃

′
i + wii+1

(
g̃′i+1 −∆x g̃′′i+1

)
,

g′′i = wii−1 g̃
′′
i−1 + wii g̃

′′
i + wii+1 g̃

′′
i+1,

(42)

and g̃k, g̃′k and g̃′′k , for k = {i− 1, i, i+ 1}, being computed as

g̃k = gk −
gk−1 − 2gk + gk+1

24
, g̃′k =

gk+1 − gk−1

2∆x
, g̃′′k =

gk+1 − 2gk + gk−1

∆x2
.

The weights wik appearing in (42), for k = {i− 1, i, i+ 1}, satisfy

(43) wik =
αik

αii−1 + αii + αii+1

, where αik =
Ck(

ε+ ISik
)p .

The constants Ci−1, Ci, Ci+1, ε and p for αik in (43) are

(44) Ci−1 =
3

16
, Ci =

5

8
, Ci+1 =

3

16
, ε = 10−6, p = 3.

Finally, the smoothness indicators ISik for αik in (43), where k = {i− 1, i, i+ 1}, result from

ISii−1 =
13

12
(gi−2 − 2gi−1 + gi)

2
+

1

4
(gi−2 − 4gi−1 + 3gi)

2
,

ISii =
13

12
(gi−1 − 2gi + gi+1)

2
+

1

4
(gi−1 − gi+1)

2
,

ISii+1 =
13

12
(gi − 2gi+1 + gi+2)

2
+

1

4
(3gi − 4gi+1 + gi+2)

2
.

(45)
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The proposed choice of the constants in (44) and the smoothness indicators in (45) is based on the
original work for third-order CWENO reconstruction in [63]. The reader can find about other more
refined choices in [64] and later works [2, 36,61,74].

B.2. Fifth-order CWENO reconstruction. The fifth-order CWENO reconstruction from [12] sat-
isfies

(46) Rgi (x) = gopt(x) +
∑

k∈{1,2,3,c}

(
wik − Ck

)
gk(x),

with gopt, g1, g2, g3 and gc resulting from

(47)

gopt(x) =

5∑
j=1

aj(x− xi)j−1, g1(x) =

3∑
j=1

bj(x− xi)j−1, g2(x) =

3∑
j=1

cj(x− xi)j−1,

g3(x) =

3∑
j=1

dj(x− xi)j−1, gc(x) = (gopt(x)− C1 g1(x)− C2 g2(x)− C3 g3(x)) /Cc.

The coefficients aj for j ∈ {1, 2, 3, 4, 5} which appear in the optimal polynomial gopt(x) in (47) are
taken as

a1 =
1067

960
gi −

29

480
(gi+1 + gi−1) +

3

640
(gi+2 + gi−2) , a2 =

34 (gi+1 − gi−1) + 5 (gi−2 − gi+2)

48∆x
,

a3 =
gi−2 + 22 gi + gi+2 − 12 (gi+1 + gi−1)

−16∆x2
, a4 =

2 (gi+1 − gi−1) + (gi−2 − gi+2)

−12∆x3
,

a5 =
gi−2 + 6gi + gi+2 − 4 (gi+1 + gi−1)

24∆x4
.

The rest of the coefficients bj , cj and dj for j ∈ {1, 2, 3} which appear in the polynomials g1, g2 and
g3, respectively, follow from

b1 =
23

24
gi +

1

12

(
gi−1 −

1

2
gi−2

)
, b2 =

3gi − 4gi−1 + gi−2

2∆x
, b3 =

gi − 2gi−1 + gi−2

2∆x2
,

c1 =
13

12
gi +

1

24
(gi−1 + gi+1) , c2 =

gi+1 − gi−1

2∆x
, c3 =

gi+1 − 2gi + gi−1

2∆x2
,

d1 =
23

24
gi +

1

12

(
gi+1 −

1

2
gi+2

)
, d2 =

3gi − 4gi+1 + gi+2

−2∆x
, d3 =

gi − 2gi+1 + gi+2

2∆x2
.

The weights wik for k ∈ {1, 2, 3, c} in the fifth-order CWENO reconstruction (46) satisfy

(48) wik =
αik∑

k∈{1,2,3,c} α
i
k

, where αik =
Ck(

ε+ ISik
)p .

The constants C1, C2, C3, Cc, ε and p for αik in (48) are

C1 =
1

8
, C2 =

1

4
, C3 =

1

8
, Cc =

1

2
, ε = 10−6, p = 2.

Finally, the smoothness indicators ISik which appear in the computation of αik in (48), with k ∈
{1, 2, 3, c}, result from

ISi1 = b22∆x2 +
13

3
b23∆x4, ISi2 = c22∆x2 +

13

3
c23∆x4, ISi3 = d2

2∆x2 +
13

3
d2

3∆x4,

ISi4 = a2
2∆x2 +

(
13

3
a2

3 +
1

2
a2 a4

)
∆x4.
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B.3. Positive-density CWENO reconstruction. The third- and fifth-order CWENO reconstruc-
tions in (41) or (46), respectively, can be modified to yield positive values for evaluations at specific
spatial points of the finite volume cell. In our case we are interested in obtaining positive values of
the density at the points required by the numerical scheme in (27). Namely, those points are: the
boundaries of the cell, computed in (28) and employed for in (29), (30) and (31), and the quadrature
points to compute the integrals in the nonlinear damping term in (27), the distribution of the high-
order corrections in the source term in (27) and described in appendix C, and the update of Kn+1

i in
(26). We refer the reader to the appendices A and C for the details of the location of the quadrature
points.

Zhang and Shu [84] proposed a methodology to construct maximum-principle-satisfying high-order
schemes. Here we apply their work in [84] to modify the CWENO reconstructions in the subsections
B.1 and B.2, so that they preserve the positivity of the density. The procedure is the following:

1) Construct the third- or fifth-order CWENO polynomial in (41) or (46), respectively, for all the
finite volume cells.

2) Evaluate the reconstructed polynomials at the spatial points required by the numerical scheme
in (27): the boundaries of the cells and quadrature points. We denote as M the total number
those spatial points.

3) For each cell i compute the minimum mi of the evaluations of the reconstructed polynomial

at the required spatial points xji , for j ∈ {1, . . . ,M}, so that mi = minj∈{1,...,M}R
g
i (x

j
i ).

4) Modify the reconstructed polynomial in (41) or (46) so that mi ≥ 0, in the following way:

R̃gi (x) = θ (Rgi (x)− gi) + gi, with θ = min

{
|0− gi|
|mi − gi|

, 1

}
.

5) Evaluate all the M spatial points within each cell with the modified reconstructed polynomial

R̃gi (x).
6) Apply the following CFL condition for the time step ∆t, depending on the numerical flux

employed and where αj is the quadrature weight of the spatial point xji , for j ∈ {1, . . . ,M}:

(49) ∆t =



CFL
∆x minj∈{1,...,M} αj

max
∀
(
U
−
i+1

2

,U
+

i+1
2

){∣∣∣u+
√
P ′(ρ)

∣∣∣,∣∣∣u−√P ′(ρ)∣∣∣} , if Lax-Friedrich flux,

CFL
∆x minj∈{1,...,M} αj

max
∀
(
U
−
i+1

2

,U
+

i+1
2

){|u|+3
m−1

4

} , if kinetic flux.

The quadrature weights αj employed in this work are specified in the appendices A and C.
For the details about the numerical fluxes we refer the reader to our previous work [21].

Appendix C. Details about the integration for the high-order corrections

In this section we follow [70,71] to propose a fourth- and sixth-order quadrature for the high-order
corrections in the source term, which appear in the last term of (27) and satisfy

(50) Ii =

∫ x
i+1

2

x
i− 1

2

(
S
(
Rρi (x), RHi (x)

)
− S (U∗i (x), H∗i (x))

)
dx.

The first step is to define a general trapezoidal numerical quadrature Imi for the integral Ii in (50),

which employs m points xji = xi−1/2 + (j − 1)∆x/m of the cell i, with j ∈ {1, . . . ,m}. Such integral
yields
(51)

Imi =

m−1∑
j=1

[
Rρi (x

j
i ) +Rρi (x

j+1
i )

2

(
RHi (xj+1

i )−RHi (xji )
)
− Rρi (x

j
i ) +Rρi (x

j+1
i )

2

(
H∗i (xj+1

i )−H∗i (xji )
)]

.
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The integral Imi is a second-order approximation of Ii in (50), and its asymptotic form satisfies [70]

(52) Imi = Ii + c1

(
∆x

m

)2

+ c2

(
∆x

m

)4

+ . . .

The strategy to obtain the fourth- and sixth-order schemes relies in computing the integral Ii in (50)
as a linear combination of Imi for different m, such that the desired errors in (52) are cancelled. The
required formulas of integration are:

a) Fourth-order quadrature employing I1
i and I2

i , so that

Ii =
4I2
i − I1

i

3
+O(∆x4).

b) Sixth-order quadrature employing I1
i , I2

i and I3
i , so that

Ii =
81

40
I3
i −

16

15
I2
i +

1

24
I1
i +O(∆x6).

As a remark, the order of these quadratures is maintained as long as the order of the reconstructions
for the density in (19) and the potential in (20) is greater than or at least equal to the order of the
quadrature formulas. Otherwise the order of the quadrature is diminished and matches the order of
the reconstruction.
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[22] J. A. Carrillo, A. Wróblewska-Kamińska, and E. Zatorska, On long-time asymptotics for viscous hydrody-

namic models of collective behavior with damping and nonlocal interactions, Mathematical Models and Methods in
Applied Sciences, 29 (2018), pp. 31–63.

[23] M. J. Castro, T. M. de Luna, and C. Parés, Well-balanced schemes and path-conservative numerical methods,

in Handbook of Numerical Analysis, vol. 18, Elsevier, 2017, pp. 131–175.
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