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Abstract
We consider density solutions for gradient flow equations of the form ut = ∇ · (γ(u)∇N(u)),

where N is the Newtonian repulsive potential in the whole space Rd with the nonlinear convex
mobility γ(u) = uα, and α > 1. We show that solutions corresponding to compactly supported
initial data remain compactly supported for all times leading to moving free boundaries as in the

linear mobility case γ(u) = u. For linear mobility it was shown that there is a special solution
in the form of a disk vortex of constant intensity in space u = c1t

−1
supported in a ball that

spreads in time like c2t
1/d
, thus showing a discontinuous leading front or shock. Our present

results are in sharp contrast with the case of concave mobilities of the form γ(u) = uα, with
0 < α < 1 studied in [9]. There, we developed a well-posedness theory of viscosity solutions
that are positive everywhere and moreover display a fat tail at infinity. Here, we also develop a

well-posedness theory of viscosity solutions that in the radial case leads to a very detail analysis

allowing us to show a waiting time phenomena. This is a typical behavior for nonlinear degenerate

diffusion equations such as the porous medium equation. We will also construct explicit self-

similar solutions exhibiting similar vortex-like behaviour characterizing the long time asymptotics

of general radial solutions under certain assumptions. Convergent numerical schemes based on

the viscosity solution theory are proposed analysing their rate of convergence. We complement

our analytical results with numerical simulations ilustrating the proven results and showcasing

some open problems.

1 Introduction
We are interested in the family of equations of the form

ut = ∇ · (γ(u)∇v) (0,+∞)× Rd,
−∆v = u (0,+∞)× Rd,
u = u0 t = 0,

where the function γ(u) is called the mobility. They all correspond to gradient flows with nonlinear
mobility of the Newtonian repulsive interaction potential in dimension d ≥ 1

F(u) =
1

2

∫
Rd

N(u)udx ,

with N(u) the Newtonian repulsive potential [7], as they can be written in the formut +∇ · (γ(u)w) = 0 (0,+∞)× Rd,

w = −∇δF
δu

(0,+∞)× Rd.
(1.1)
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We will consider nonnegative data and solutions. The linear case γ(u) = u is well-known in the
literature as a model for wave propagation in superconductivity or superfluidity, cf. Lin and Zhang

[15], Ambrosio, Mainini, and Serfaty [3, 4], Bertozzi, Laurent, and Léger [6], Serfaty and Vazquez

[17]. In that case the theory leads to uniqueness of bounded weak solutions having the property

of compact space support, and in particular there is a special solution in the form of a disk vortex

of constant intensity in space u = c1t
−1 supported in a ball that spreads in time like c2t

1/d, thus

showing a discontinuous leading front or shock. This vortex is the generic attractor for a wide class

of solutions.

We want to concentrate on models with nonlinear mobility of power-like type γ(u) = uα, α > 0.
The sublinear concave 0 < α < 1 range was studied in our previous paper [9]. For nonnegative
data the study provides a theory of viscosity solutions for radially symmetric initial data that are

positive everywhere, and moreover display a fat tail at infinity. In particular the standard vortex

of the linear mobility transforms into an explicit selfsimilar solution that reminds of the Barenblatt

solution for the fast diffusion equation. A very detailed analysis is done for radially symmetric

data and solutions via the corresponding mass function that satisfies a first-order Hamilton-Jacobi

equation.

The present paper contains the rest of the analysis of power-like mobility for convex superlinear

cases when γ(u) = uα, and α > 1. Again, we perform a fine analysis in the case of radially sym-
metric solutions by means of the study of the corresponding mass function. The theory of viscosity

solutions for the mass function still applies. As for qualitative properties, let us stress that in this

superlinear parameter range α > 1 solutions recover the finite propagation property and the exis-
tence of discontinuity fronts (shocks). We analyse in detail how the stable asymptotic solution goes

from the fat tail profile of the sublinear case α < 1 to the shock profile of the range α > 1 when
passing through the critical value α = 1.

Another important aspect of the well-posedness theory that we develop for viscosity solutions

with radially symmetric initial data, is that the classical approach based on optimal transport theory

for equations of the form (1.1) developed in [2, 12, 7] fail for convex superlinear mobilities as de-

scribed in [7] since the natural associated distance is not well-defined [12]. Therefore, our present

results are the first well-posedness results for gradient flows with convex superlinear power-law

mobilities, even if only for radially symmetric initial data. Finally, let us mention that we still lack of

a well-posedness theory for gradient flow equations of the form (1.1) with convex superlinear mo-

bilities for general initial data, possibly showing that the vortex-like solutions are generic attractors

of the flow.

We also highlight how different convex superlinear mobilities are with respect to the linear mo-

bility case by showing the property of an initial waiting time for the spread of the support for

radial solutions that we are able to characterize. Indeed, let u0 be radial and supported in a ball:
suppu0 = BR. We prove that there is finite waiting time at r = R if and only if

lim sup
r→R−

(R− r) 1−α
α

∫
r<|x|<R

u0(x) dx = C < +∞. (1.2)

The waiting time phenomenon is typical of slow diffusion equations like the Porous Medium Equa-

tion [19] or the p-Laplacian equation. In our class of equations it does not occur for the whole range
0 < α ≤ 1. We are able to estimate the waiting time in terms of the limit constant C in (1.2).

We combine the theory with the computational aspect: we identify suitable numerical meth-

ods and perform a detailed numerical analysis. Indeed, we construct numerical finite-difference

convergent schemes and prove convergence to the actual viscosity solution for radially symmet-

ric solutions based on the mass equation. By taking advantage of the connection to nonlinear

Hamilton-Jacobi equations, we obtain monotone numerical schemes showing their convergence

to the viscosity solutions of the problem with a uniform rate of convergence, see Theorem 5.6 in

constrast with the case of concave sublinear mobilities in [9].

The paper is structured as follows. We start by constructing some explicit solutions and devel-

oping the theory for radially symmetric initial data by using the mass equation in Sections 2 and 3

respectively. We construct the general viscosity solution theory for radially symmetric initial data
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in Section 4 showing the most striking phenomena for convex superlinear mobilities: compactly

supported free boundaries determined by sharp fronts and the waiting time phenomena. Section

5 is devoted to show the convergence of monotone schemes for the developed viscosity solution

theory with an explicit convergence rate. The numerical schemes constructed illustrate the sharp-

ness of the waiting time phenomena result, and allow us to showcase interesting open problems

in Section 6. A selection of figures illustrates a number of salient phenomena. We provide videos

for some interesting situations as supplementary material in [20].

2 Explicit solutions
The aim of this section is to find some important explicit solutions of

ut = ∇ · (uα∇v) (0,+∞)× Rd

−∆v = u (0,+∞)× Rd

u = u0 t = 0

(P)

Notice that, as in [9], we still have that, for C ≥ 0

u(t) = (C + αt)−
1
α (2.1)

is a solution of the PDE. The repulsion potential v diverges quadratically at infinity. For C = 0 we
recover the Friendly Giant solution, introduced in [9].

2.1 Self-similar solution
The algebraic calculations developed in [9] still work, we get self-similar solutions of the form

U(t, x) = t−
1
αF (|x|t− 1

αd ),

with the self-similar profile

F (|y|) =

(
α+

(
ωd|y|d
α

)− α
α−1

)− 1
α

. (2.2)

Let us remark that, for α > 1, we have F (0) = 0 and F (+∞) = α−
1
α (see Figure 1 for a sketch of the

self-similar profiles depending on α). This is different to the case 0 < α < 1, where F (0) is a positive
constant and F decays at infinity. In our present case α > 1, the self-similar solutions have infinite
mass, whereas for 0 < α < 1 the self-similar solutions have finite mass.

Figure 1: Self-similar profiles when d = 1
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For 0 < α < 1 these self-similar give the typical asymptotic behaviour as t → +∞. For α > 1 we
will show this is no longer the case, for finite mass solutions.

2.2 Vortexes
The vortex solutions defined as

u(t, x) =

{
(u−α0 + αt)−

1
α ωd|x|d < S(t) = M/(u−α0 + αt)−

1
α

0 otherwise
(2.3)

are local weak solutions of (P).

Remark 2.1. Notice that, for t→ −u−α0 /α, the vortex collapses to the Dirac delta of massM .

This solution was also constructed by characteristics and the Rankine-Hugoniot condition in [9,

Section 5.2]. However, in that case the Lax-Oleinik condition of incoming characteristics failed. In

our present setting for α > 1, this shock-type solutions are entropic, and we will prove that they are
indeed viscosity solutions of the mass equation (3.1). We will prove that, for α > 1, they now have
significant relevance. In particular, they describe the asymptotic behaviour as t→ +∞. Notice that
the the radius of the support S(t) of this kind of solutions solves an equation of type

dS

dt
= M(u−α0 + αt)−1+

1
α . (2.4)

There are also complementary vortex solutions:

u(t, x) =

{
0 |x|d < a

(c−α0 + αt)−
1
α |x|d > a

(2.5)

which are stationary (and solve the mass problem (3.1) by characteristics). This type of solution

belongs to a theory of solutions in L∞, but not L1.

3 Mass of radial solutions
In [9] we proved that the mass of a radial solution

m(t, r) =

∫
Br

u(t, x) dx

written in volume coordinates ρ = dωdr
d is a solution of the equation

mt +m(mρ)
α = 0. (3.1)

3.1 Characteristics for the mass equation
In [9] we computed the generalised characteristics for the mass equation in the case of sublinear

mobility, α < 1. The algebra for characteristics still works

ρ = ρ0 + αm(ρ0)u0(ρ0)α−1t , (3.2)

and the solutions behave like

u(t, ρ) = (u0(ρ0)−α + αt)−
1
α , (3.3)

and

m(t, ρ) = m0(ρ0) (1 + αu0(ρ0)αt)
1− 1

α .
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Remark 3.1. Notice that the the generalised characteristics are not the level sets ofm.
These solutions are well defined, for a given u0, while the characteristics do not cross.

Proposition 3.2. Let u0 be non-decreasing and C1. Then, there is a classical global solution of the mass
equation, given by characteristics.
Proof. Let Pt(ρ0) = ρ0 + αm(ρ0)u0(ρ0)α−1t. Clearly Pt(0) = 0. If u0 is non-decreasing,

dPt
dρ0
≥ 1, and

hence it is invertible. We construct

u(t, ρ) =


((
u0(P−1t (ρ))

)−α
+ αt

)− 1
α

if u0(P−1t (ρ)) 6= 0,

0 if u0(P−1t (ρ)) = 0.

(3.4)

It is immediate to see that u is continuous and C1.

For 0 < α < 1, in [9] we developed a theory of classical solutions for non-increasing initial
data. In that case, rarefaction fan tails appeared, which gave rise to classical solutions of the mass

equation. In our present case α > 1, it seems that the good data is radially non-decreasing, but this
is not possible in an L1 ∩ L∞ theory, unless a jump is introduced.

3.2 The Rankine-Hugoniot condition
We will prove in Section 4.3 that solutions with a jump, given by a Rankine-Hugoniot condition,

will be the correct “stable” solutions. As in [9], shocks (i.e. discontinuities) propagate following a

Rankine-Hugoniot condition. If S(t) is the position of the shock, we write the continuity of mass
condition

m(t, S(t)−) = m(t, S(t)+).

Taking a derivative and applying the equation (3.1) we have that

dS

dt
(t) = m(t, S(t))

u(t, S(t)+)α − u(t, S(t)−)α

u(t, S(t)+)− u(t, S(t)−)
. (3.5)

Remark 3.3. Notice that, in the case of the vortex the Rankine-Hugoniot condition determines
precisely the support. In particular, we have u(t, S(t)+) = 0 and u(t, S(t)−) = (u−α0 + αt)−

1
α so (3.5)

is precisely (2.4). In fact, the vortex is simply a cut-off of the Friendly Giant with a free-boundary

determined by the Rankine-Hugoniot condition.

3.3 Local existence of solutions by characteristics
Theorem 3.4. Let 0 ≤ u0 ∈ L1(Rn) ∩ L∞(Rn) be radial and such that uα−10 is Lipschitz. Then, there
exists a small time T > 0 and a classical solution of the mass equation given by characteristics defined
for t ∈ [0, T ].
Proof. The solution given by (3.2) and (3.3) is well defined as long as the characteristics cover the
whole space, and do not cross. This is equivalent to Pt(ρ0) = ρ0+αm(ρ0)u0(ρ0)α−1t being a bijection
[0,+∞) → [0,+∞). Again, we construct (3.4). Since Pt(0) = 0, it suffices to prove that dPt

dρ0
≥ c0 > 0.

We take the derivative explicitly and find that

dPt
dρ0

= 1 + αt

(
dm0

dρ0
uα−10 +m0

d

dρ0
(uα−10 )

)
= 1 + αt

(
uα0 +m0

d

dρ0
(uα−10 )

)
.
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Due to the hypothesis

L:= sup
ρ0≥0

∣∣∣∣uα0 +m0
d

dρ0
(uα−10 )

∣∣∣∣ <∞,
and we have that

dPt
dρ0
≥ 1 − αtL which is strictly positive if t ≤ T < 1/(αL). Since uα−10 is Lipschitz

and bounded, then 1 − αTL ≤ dPt
dρ0
≤ C is Lipschitz. Hence, P−1t is Lipschitz in ρ0. Also, it is easy to

see that P−1t is continuous in t. Since it is immediate to check that u is continuous by composition,
we have thatm is of class C1, and the proof is complete.

Corollary 3.5 (Waiting time). Let 0 ≤ u0 ∈ L1(Rn) ∩ L∞(Rn) be radial and such that uα−10 is Lipschitz.
Then, there is a short time T > 0 such that, if suppu0 ⊂ BR, then any classical solution of the mass
equation satisfies suppu(t, ·) ⊂ BR for t < T .
Proof. Notice that, if u0 is compactly supported, then outside the support the characteristics are
given by Pt(ρ0) = ρ0. As long as the solution is given by characteristics, if suppu0 ⊂ BR for ρ > ωdR

d,

then u(t, ρ) = 0.

Remark 3.6. This effect of preservation of the support for a finite time is known as waiting time.
In Section 3.4 we will show this holds true as long as the solution is smooth. In Section 4.5 we

show that this waiting time effect must be finite. This will lead us to show that solutions must loose

regularity.

Remark 3.7. Notice that higher regularity of u0 is preserved by characteristics. Taking a derivative
du

dρ
=
((
u0(P−1t (ρ))

)−α
+ αt

)−1− 1
α

u−1−α0

du0
dρ0

dP−1t

dρ.

=
(
1 + αtu0(P−1t (ρ))α

)−1− 1
α

du0
dρ0

1
dPt
dρ0

=

(
1 + αtu0(P−1t (ρ)))α

)−1− 1
α

1 + αt
(
uα0 +m0

d
dρ0

(uα−10 )
) du0

dρ0

It is easy to see that, for small time, if u0 is smooth enough, then u is of class C1.

Remark 3.8. The condition uα−10 Lipschitz is sharp. Let us take, for ε > 0

u0(ρ) = (c0 − ρ)
1−ε
α−1

+ (3.6)

and let us show that characteristics cross for all t > 0. Looking at the characteristics for ρ0 = c0 − δ
with δ positive but small (so thatm0(ρ) > M/2) we have that

ρ = ρ0 + αm0(ρ)(c0 − ρ0)1−ε+ t

≥ c0 − δ + α
M

2
δ1−εt

But for δ <
(
αMt
2

) 1
ε
we have ρ > c0. But this is not possible, since it must have crossed the charac-

teristic ρ = c0 coming from ρ0 = c0. No solutions by characteristics can exist.

The crossing of characteristics will immediately lead to the formation of shock waves. The shock

waves will be lead by a Rankine-Hugoniot condition as above.

Remark 3.9. As shown in Remark 3.8, with initial datum (3.6) we cannot expect solutions by char-
acteristics. We could potentially paste solutions by characteristics on either side of a shock. We will

show that this is the case, and we will show that solutions with bounded and compactly supported

initial data will indeed produce a propagating shock at the end of their support, possibly with a

waiting time (see the main results in Section 4).
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3.4 Explicit Ansatz with waiting time
For fixed massM and prescribed support of u = mρ we can construct local classical solutions with

waiting time T . We will prove that

m(t, ρ) =

(
M

α
α−1 − α 1

α−1
(c0 − ρ)

α
α−1

+

(T − t) 1
α−1

)α−1
α

, if t < T and ρ >
(
c0 − α

1
αM(T − t) 1

α

)
+

(3.7)

is a classical solution of mt + mα
ρm = 0. We represent this function in Figure 2. We will extend

this function by zero ρ ≤
(
c0 − α

1
αM(T − t) 1

α

)
+
to construct a viscosity subsolution of the mass

equation.

Figure 2: Ansatz solution

The intuition to construct this kind of explicit Ansatz in “separated variables” is well known in

the context of nonlinear PDEs of power type (see, e.g., [19]). One starts with a general formula of

the type

m(t, ρ) =

(
M

1
β − c (c0 − ρ)γ

(T − t)δ
)β

and we match the exponents through the scaling properties of the equation. By taking β = α−1
α ,

γ = α
α−1 > 1 and δ = 1

α−1 this gives

mt +mmα
ρ =

(
M

1
β − c (c0 − ρ)γ

(T − t)δ
)β−1

(c0 − ρ)γ

(T − t)δ+1
[−cδβ + (cγβ)α] .

Hence, the sign is that of −cδβ + (cγβ)α, which in our case is precisely − c
α + cα.

Remark 3.10. We have also checked the following properties
1. m ∈ C1 in its domain of definition, since γ ≥ 1, the matching at ρ = c0 is guaranteed by the
explicit formula formρ.

2. The domain of definition ofm depends on the value of T , and ρ = 0may not the contained in
the domain.
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3. It is easy to check that the function u = mρ associate to the Ansatz satisfies

u(t, ρ) =
c

m(t, ρ)
1

α−1 (T − t) 1
α−1

(c0 − ρ)
1

α−1

+ . (3.8)

Notice that uα−1 is a Lipschitz function of ρ. The easiest way to check this expression is by
using

m
α
α−1 = M

α
α−1 − c (c0 − ρ)

α
α−1

+

(T − t) 1
α−1

,

taking a derivative in ρ, and solving formρ.

4. Conversely, notice that the condition uα−10 in Theorem 3.4 is sharply satisfied by

u0(ρ) ∼ (c0 − ρ)
1

α−1

+ .

If this is the behaviour of u0 then close to ρ = c0 we have that

(m
α
α−1

0 )ρ =
α

α− 1
m

1
α−1

0 (m0)ρ =
α

α− 1
m

1
α−1u0 ∼

α

α− 1
M

1
α−1 (c0 − ρ)

1
α−1

+

and, integrating in [ρ, c0]

M
α
α−1 −m

α
α−1

0 ∼M 1
α−1 (c0 − ρ)

α
α−1

+ .

Solving form, we precisely recover the Ansatz

m0 ∼
(
M

α
α−1 −M 1

α−1 (c0 − ρ)
α
α−1

+

)α−1
α

.

3.5 A change of variable to a Hamilton-Jacobi equation
The change in variablem = θ

α−1
α leads to the equation

θt +

(
α− 1

α

)α−1
θαρ = 0. (3.9)

This equation is of classical Hamilton-Jacobi form, and falls in the class studied by Crandall and

Lions in the famous series of papers (see, e.g. [11]). Letting w = θρ we recover a Burguer’s conser-
vation equation

wt +

(
α− 1

α

)α−1
(wα)ρ = 0. (3.10)

The theory of existence and uniqueness of entropy solutions for this problem is well-know (see,

e.g. [5, 8, 14] and related results in [13, 16]). Notice that the relation between u and w is somewhat
difficult

w(t, ρ) =
d

dρ

[(∫ ρ

0

u(t, σ) dσ

)α−1
α

]
.

Remark 3.11. Notice that, for α < 1 this change of variable does not make any sense since as ρ→ 0
we have thatm→ 0 so θ → +∞. We would be outside the L1 ∩ L∞ framework.

4 Viscosity solutions of the mass equation
4.1 Existence, uniqueness and comparison principle
The Crandall-Lions theory of viscosity solutions developed in [9] for α < 1, works also for the case
α ≥ 1 without any modifications. Sincemρ = u ≥ 0 we can write the equation as

mt + (mρ)
α
+m = 0. (4.1)

8



Then, the Hamiltonian H(z, p1, p2) = (p2)αz is defined and non-decreasing everywhere. We write
the initial and boundary conditions

mt + (mρ)
α
+m = 0 t, ρ > 0

m(t, 0) = 0 t > 0

m(0, ρ) = m0(ρ) ρ > 0.

(4.2)

The natural setting is with m0 Lipschitz (i.e. mρ = u ∈ L∞) and bounded (i.e. u ∈ L1). We introduce

the definition of viscosity solution for our problem and some notation.

Definition 4.1. Let f : Ω ⊂ Rm → R. We define the Fréchet subdifferential and superdifferential

D−u(x) =

{
p ∈ Rm : lim inf

y→x

u(y)− u(x)− p(y − x)

|y − x| ≥ 0

}
D+u(x) =

{
p ∈ Rm : lim sup

y→x

u(y)− u(x)− p(y − x)

|y − x| ≤ 0

}
.

Definition 4.2. We say that a continuous functionm ∈ C([0,+∞)2) is a:

• viscosity subsolution of (4.2) if

p1 + (p2)α+m(t, ρ) ≤ 0, ∀(t, ρ) ∈ R2
+ and (p1, p2) ∈ D+m(t, ρ). (4.3)

andm(0, ρ) ≤ m0(ρ) andm(t, 0) ≤ 0.

• a viscosity supersolution of (4.2) if

p1 + (p2)α+m(t, ρ) ≥ 0, ∀(t, ρ) ∈ R2
+ and (p1, p2) ∈ D−m(t, ρ).

andm(0, ρ) ≥ m0(ρ) andm(t, 0) ≥ 0.

• a viscosity solution of (4.2) if it is both a sub and supersolution.

Themain results in [9] show the comparison principle and the well-posedness result for viscosity

solutions of (4.2).

Theorem 4.3. Let m and M be uniformly continuous sub and supersolution of (4.2) in the sense of
Definition 4.2. Thenm ≤M .
We will denote by BUC the space of bounded uniformly continuous functions.

Theorem 4.4. If m0 ∈ BUC([0,+∞)) be non-decreasing such that m0(0) = 0. Then, there exists a
unique bounded and uniformly continuous viscosity solution. Furthermore, we have that

‖m(t, ·)‖∞ = lim
ρ→+∞

m(t, ρ) = ‖m0‖∞, ‖mρ(t, ·)‖∞ ≤ ‖(m0)ρ‖∞. (4.4)

Ifm0 is Lipschitz, then so ism.

4.2 The vortex
We next show that the mass associated to vortexes (2.3) (see Figure 3) are viscosity solutions if and

only if α ≥ 1. In [9] we showed that the mass associated to vortex solutions are not of viscosity
type for α < 1. Intuitively, this is another instance of degenerate diffusion versus fast diffusion-like
behaviour, i.e. compactly supported versus fat tails.

Theorem 4.5. The mass associated to the vortex solution (2.3)
m(t, ρ) = min{(c−α0 + αt)−

1
α ρ, c0L}. (4.5)

is a viscosity solution for α ≥ 1.

9



Figure 3: Representation of (4.5) where c0 = L = 1

Proof. Let us fix a t0, ρ0 > 0. If we are not on the edge, i.e. (c−α0 + αt0)−
1
α ρ0 6= c0L, then m is a

classical solution and it satisfies the viscosity formulation.

Let us, therefore, look at a point such that

(c−α0 + αt0)−
1
α ρ0 = c0L. (4.6)

It is clear that no smooth function ϕ ≤ m can be tangent to m at (t0, ρ0), since the derivative of
mρ(t0, ρ

−
0 ) > mρ(t0, ρ

+
0 ). Therefore, the definition of viscosity supersolution is immediately satisfied,

since D−m(t0, ρ0) = ∅.
To check that m is a viscosity subsolution, let us take (p1, p2) ∈ D+m(t0, ρ0). Due to the explicit

formula p2 ∈ [0, (c−α0 + αt)−
1
α ], and since it is non-increasing in t, p1 ≤ 0.

If p2 = 0 then, since p1 ≤ 0, (4.3) is satisfied. Assume p2 6= 0. There exists ϕ ∈ C1 such that ϕ ≥ m,
ϕ(t0, ρ0) = m(t0, ρ0) and ϕt(t0, ρ0) = p1 and

ϕρ(t0, ρ0) = p2 ≤ (c−α0 + αt)−
1
α . (4.7)

Let us take a look at the level sets. Since ϕ ≥ m, we have that {ϕ < c0L} ⊂ {m < c0L}. Therefore
∂{ϕ < c0L}, is contained in the region {m < c0L}. Since ϕ andm coincide at (t0, ρ0), then ∂{ϕ < c0L}
and ∂{m < c0L} are tangent at (t0, ρ0) (see Figure 4).

ρ

t

(t0, ρ0)

domϕ

ϕ < M
ϕ ≥M

m < M m =M

Figure 4: Relation between level sets. In the figure,M = c0L.

Since p2 > 0, ∂{ϕ < c0L} can be parametrised by a curve (t, ρ∗(t)) defined for t ∈ (t0 − ε, t0 + ε)
such that ϕ(t, ρ∗(t)) = c0L and ρ

∗(t0) = ρ0. Hence, taking a derivative and evaluating at (t0, ρ0)

ϕt(t0, ρ0) +
dρ∗

dt
(t0)ϕρ(t0, ρ0) = 0.
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On the other hand, ∂{m < c0L} can be parametrised as (t, S(t)) where

S(t) = c0L(c−α0 + αt)
1
α

and hence
dS

dt
= c0L(c−α0 + αt)−1+

1
α . (4.8)

Notice that the sign of α − 1 decides the convexity or concavity of the matching curve. Since the
level sets are tangent at (t0, ρ0), the derivatives coincide and we have

dρ∗

dt
(t0) =

dS

dt
(t0) = c0L(c−α0 + αt0)−1+

1
α .

Hence, we have that

p1 = ϕt(t0, ρ0) = −dρ∗

dt
(t0)ϕρ(t0, ρ0) = −c0L(c−α0 + αt)−

1
α p2.

Applying (4.7) and that α ≥ 1 we have that

p1 +m(t0, ρ0)pα2 = −c0L(c−α0 + αt)−
1
α p2 + c0Lp

α
2

= c0Lp2

(
pα−12 − (c−α0 + αt)−

1
α

)
≤ 0,

which is precisely (4.3). This completes the proof.

Remark 4.6. The notion of viscosity solution can be extended, by approximation, to cover non-
negative finite measures as initial data u0. Notice that these vortex solutions concentrate as t ↘
−c−α0 /α to the Heaviside functionm(t, ρ)→ c0LH0(ρ). As we point out above, this proves that if

u0 = Mδ0 (i.e. m0 = MH0), (4.9)

then the solution is a cut-off of the Friendly Giant (2.1)

u(t, ρ) =

{
(αt)−

1
α ρ < M(αt)

1
α

0 ρ > M(αt)
1
α

,

and hence

m(t, ρ) =

{
(αt)−

1
α ρ ρ ≤M(αt)

1
α

M ρ > M(αt)
1
α

. (4.10)

For every ε > 0 this is a viscosity solution of (4.2) in C((ε,+∞)× R+). Notice thatm is of self-similar
form

m (t, ρ) = MG

(
ρ

M(αt)
1
α

)
, where G(y) =

{
y y ≤ 1

1 y > 1
. (4.11)

In fact, by translation invariance, it is possible to show that u0 = Mδc0 , i.e.

m0(ρ) = MHc0(ρ)

then

m(t, ρ) =


0 ρ < c0

(αt)−
1
α (ρ− c0) ρ ∈ [c0, c0 +M(αt)

1
α )

M ρ > c0 +M(αt)
1
α

. (4.12)

is a viscosity solution of the mass equation defined for t > 0. With self-similar form

m (t, ρ) = MG

(
ρ− c0
M(αt)

1
α

)
, where G(y) =


0 y ≤ 0

y y ∈ (0, 1)

1 y > 1

. (4.13)
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4.3 Monotone non-decreasing data with final cut-off
As in [9], the theory of existence and uniqueness is written in terms ofm, but we take advantage of
the intuition from the conservation law (P) for u, to construct explicit solutions through character-
istics. Notice that taking a derivative in (4.2) we can write

ut + (uαm)ρ = 0.

Afterwards, we check that the constructed solution, fall into our viscosity theory form.

Since it is suggested by (3.2) that characteristics do not cross if u0 is non-decreasing, let us look
for solutions with initial data

u0(ρ) =

{
ũ0(ρ) ρ < S0

0 ρ > S0.
, where ũ0 in continuous and non-decreasing in [0, S0]. (4.14)

When m0 and u0 are non-decreasing, it clear that characteristics with foot on ρ0 ∈ [0, S0] do not
cross. If ũ0 6≡ 0, then u0(S−0 ) = ũ0(S0) > 0 and there is a shock starting at S0 which will propagate

following the Rankine-Hugoniot condition (3.5).

We construct the viscosity solution as follows. The characteristic of foot ρ0 = S0 is precisely

S(t) = S0 + αMũ0(S0)α−1t.

For ρ < S(t) we can go back through the characteristics with Pt defined above. Let us define

ũ(t, ρ) =


0 if ũ0(ρ) = 0

(ũ0(Pt(ρ))−α + αt)−
1
α if ũ0(ρ) > 0 and ρ < S(t)

0 if ρ > S(t)

, (4.15)

The shock is given by 
dS

dt
= Mũ(t, S(t))α−1

S(0) = S0

. (4.16)

Finally we define

u(t, ρ) =

{
ũ(t, ρ) ρ < S(t)

0 ρ > S(t).
(4.17)

Solving explicitly is not possible. However, we can prove that

Proposition 4.7. Let α ≥ 1, (4.14). Then, the mass of (4.17) is a viscosity solution of (4.2) and S(t) ≤
S(t).
Proof. Since α ≥ 1, we have that

dS

dt
= m(t, S(t))u(t, S(t)−)α−1 = m(t, S(t))ũ(t, S(t))α−1 ≤ αMũ0(S0)α−1 =

dρ

dt
.

where M = supm0. Also S(0) = S(0). Hence the shock is slower than the last characteristic (i.e.
S(t) ≤ S(t)) and this implies that there are no outgoing characteristics and the Lax-Oleinik condition
is satisfied.

Now, in order to check that it is a viscosity solution, we can repeat the proof of Theorem 4.5,

replacing (4.8) by (4.16).
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4.4 Two Dirac deltas
Let us now consider that

u0 = m1δρ1 +m2δρ2 . (4.18)

where 0 ≤ ρ1 < ρ2. Then the initial mass m0 is discontinuous, and this creates some technical

difficulties. We will show the viscosity solution for (4.2) is the primitive of

u(t, ρ) =



0 ρ < ρ1

(αt)
− 1
α ρ ∈ [ρ1, S1(t)]

0 ρ ∈ [S1(t), ρ2]((
ρ−ρ2
αm1t

)− α
α−1

+ αt

)− 1
α

ρ ∈ [ρ2, S2(t)]

0 ρ > S2(t)

(4.19)

where

S1(t) = ρ1 +m1 (αt)
α−1
α , (4.20)

and

S2(t) = ρ2 + αm1K−1
(
m2

αm1

)
t

1
α , (4.21)

with

K(τ) =

∫ τ

0

(
s−

α
α−1 + α

)− 1
α ds. (4.22)

We have the following estimates for the function K−1: for τ ≤ s0 there exists c(s0), C(s0) > 0 such
that

c(s0)τ
α
α−1 ≤ K−1(τ) ≤ C(s0)τ

α
α−1 . (4.23)

This solution is defined for all t such that S1(t) ≤ ρ2, i.e. t ≤ ((ρ2 − ρ1)/m1)
α
α−1 /α. For large t, S1

would need to be computed from another further Rankine-Hugoniot condition. We will only use

the value for t small, so this computation is enough for our purposes.

Figure 5: Solutions with u0 given by two characteristics. Computed with the numerical scheme for
m in Section 5 reproducing the exact solution up to approximation error. The function u = mρ is

recovered by numerical differentiation.
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Approximation by viscosity solutions We will prove there is an explicit solution defined for

some T > 0 which is of viscosity type for t > 0. We will approximate the initial data by

uε,δ0 =



m1

ε
ρ ∈ [ρ1, ρ1 + ε]

m2

ε

(ρ− (ρ2 − δ))
δ

ρ ∈ [ρ2 − δ, ρ2]

m2

ε
ρ ∈ [ρ2, ρ2 + ε]

0 otherwise

, (4.24)

for ε and δ small enough. The ε-regularisation is used to approximate the Dirac deltas at the level
of u. The δ-regularisation is used to resolve the appearance of a rarefaction wave at ρ2 due to a gap
in the characteristics. Since viscosity solutions are stable by passage to the limit, we only need to

show that our approximating solution are viscosity solutions.

The first part of the solutions does not notice the δ-regularisation. We take ε small enough so
that ρ1 + ε < ρ2 − 2ε. For ρ < ρ2 we reconstruct a vortex type solution following Section 4.2 with an
initial gap

uε(t, ρ) =


0 ρ < ρ1((m1

ε

)−α
+ αt

)− 1
α

ρ ∈ [ρ1, S
ε
1(t)]

(4.25)

where the first shock is given by

Sε1(t) = ρ1 + ε1 +m1

(((m1

ε

)−α
+ αt

)α−1
α

−
(m1

ε

)1−α)
. (4.26)

Solutions in this form are defined for t ∈ [0, Tε) such that S
ε
1(Tε) = ρ2 − δ. We leave to the reader to

check that Tε does not tend to zero with ε→ 0.

For the second part, the characteristics with foot ρ0 ∈ [ρ2 − δ, ρ2] are given by

ρ = ρ0 + α

(
m1 +

m2

2

(ρ0 + δ − ρ2)2

εδ

)(m2

εδ
(ρ2 + δ − ρ)

)α−1
t (4.27)

On the other hand, if ρ0 ∈ [ρ2, ρ2 + ε] we have

ρ = ρ0 + α
(
m1 +

m2

2ε
δ +

m2

ε
(1− (ρ2 + ε− ρ0))

)(m2

ε

)α−1
t. (4.28)

Notice that in both cases u is given by

u(t, ρ) = (u0(ρ0)−α + αt)−
1
α .

By mass conservation we have a further shock starting from ρ2 + ε given by a Rankine-Hugoniot
condition

dSε,δ2

dt
(t) = (m1 +m2)uε,δ(t, S

ε
2(t)−)α−1.

The first part of solution is of viscosity type, by an argument analogous to Section 4.2 and the

second part have a monotone non-decreasing datum with final cut-off as in Section 4.3. We are

reduced now to pass to the limit as ε and δ tend to 0.

Passage to the limit as δ → 0 For [0, ρ2 − δ] the solution did not depend on δ, so there is no work
needed. Applying a similar argument as in [9] we can pass to the limit in (4.27). The characteristics

with foot in [ρ2, ρ2 + δ] collapse to a rarefaction fan at ρ2 of the form

ρ = ρ2 +m1η
α−1
0 t, η0 ∈

[
0,
m2

2ε

]
. (4.29)
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By inverting η0 in (4.29) we recover the solution

uε(t, ρ) =
(
η−α0 + αt

)− 1
α =

((
ρ− ρ2
αm1t

)− α
α−1

+ αt

)− 1
α

.

The other characteristics are for foot ρ0 ∈ [ρ2, ρ2 + ε] and, by passing analogously to the limit in
(4.28), we have

ρ = ρ0 + α
(
m1 +

m2

ε
(1− (ρ2 + ε− ρ0))

)(m2

ε

)α−1
t.

Since uε0 is non-decreasing the characteristics do not cross. The Rankine-Hugoniot condition is now

dSε2
dt

(t) = (m1 +m2)uε(t, S
ε
2(t)−)α−1.

Passage to the limit as ε→ 0 Passing to the limit we end up only with the rarefaction fan charac-

teristics and recover (4.19) where the first shock is given by (4.20) and the second shock, S2 which

defines the support, is a solution of the ODE
dS2

dt
(t) = (m1 +m2)

((
S2(t)− ρ2
αm1t

)− α
α−1

+ αt

)−α−1
α

,

S2(0) = ρ2.

(4.30)

Notice that this equation is singular at t = 0 but it can be rewritten as

dS2

dt
(t) = (m1 +m2)t−

α−1
α

(
t

1
α−1

(
S2(t)− ρ2
αm1

)− α
α−1

+ α

)−α−1
α

.

Since
α−1
α ∈ (0, 1) the Cauchy problem is well-posed. Alternatively, one can write S2 implicitly as the

only value such that ∫ S2(t)

ρ2

u(t, ρ) dρ = m2.

In other words, ∫ S2(t)

ρ2

((
ρ− ρ2
αm1t

)− α
α−1

+ αt

)− 1
α

dρ = m2. (4.31)

This solution is defined for 0 ≤ t < T where

T =
1

α

(
ρ2 − ρ1
m1

) α
α−1

.

By scaling analysis on the integral, we can give an algebraic expression of S2(t). We apply the

change of variables ρ = ρ2 + αm1st
1
α to deduce

m2 =

∫ S2(t)

ρ2

((
ρ− ρ2
αm1t

)− α
α−1

+ αt

)− 1
α

dρ =

∫ S2(t)−ρ2

αm1t
1
α

0

((
st−

α−1
α

)− α
α−1

+ αt

)− 1
α

t
1
ααm1 ds

= αm1

∫ S2(t)−ρ2

αm1t
1
α

0

(
s−

α
α−1 + α

)− 1
α ds = αm1K

(
S2(t)− ρ2
αm1t

1
α

)
.

Hence, we recover (4.21). To show (4.23) we simply indicate that, for s ≤ s0

s−
α
α−1 ≤ s− α

α−1 + α ≤ C(s0)s−
α
α−1
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4.5 Waiting time
4.5.1 Existence and estimate
We turn the explicit solution in (3.7) into a viscosity subsolution by extending it by zero, that is we

definem(t, ρ) as

m(t, ρ):=



0 if ρ < c0 − α
1
αM(T − t) 1

α(
M

α
α−1 − α 1

α−1
(c0 − ρ)

α
α−1

(T − t) 1
α−1

)α−1
α

if ρ ∈ (c0 − α
1
αM(T − t) 1

α , c0)

M if ρ ≥ c0

. (4.32)

Proposition 4.8. m(t, ρ) is a viscosity subsolution ofmt +mmα
ρ = 0.

Proof. It is clear that 0 is a solution ofmt+mmα
ρ = 0. So is the second part for ρ > c0−c

1
αM(T − t) 1

α ,

as we have checked in Section 3.4. At the matching point ρ = c0 − c
1
αM(T − t) 1

α , we have that

mρ(t, ρ
−) = 0, mρ(t, ρ

+) = c
(
0+
)− 1

α
(c0 − ρ)

1
α

(T − t) 1
α

= +∞

This corner does not allow any smooth ϕ to be tangent from above at this point, and hence the
condition of viscosity subsolution is trivially satisfied.

We will denote by c0 = max suppu0, where u0 = (m0)ρ, that coincides with the boundary of
m0 = M in the sense that

m0(ρ) < M for ρ < c0 and m0(ρ) = M for ρ ≥ c0. (4.33)

Corollary 4.9. Letm0 ∈ BUC([0,+∞)) and let c0 = max suppu0. If

lim sup
ρ→c−0

M −m0(ρ)

(c0 − ρ)
α
α−1

< +∞, (4.34)

then there is waiting time as in Corollary 3.5.
Proof. First, we prove that

sup
ρ∈[0,c0]

M −m0(ρ)

(c0 − ρ)
α
α−1

< +∞.

Let ρk be such that
M −m0(ρk)

(c0 − ρk)
α
α−1
−→ sup

ρ∈[0,c0]

M −m0(ρ)

(c0 − ρ)
α
α−1

.

If the supremumwere infinite, sinceM−m0(ρk) is bounded, then we have that ρk → c0. This results
in

lim
k

M −m0(ρk)

(c0 − ρk)
α
α−1
≤ lim sup

ρ→c−0

M −m0(ρ)

(c0 − ρ)
α
α−1

< +∞

leading to a contradiction.

Therefore, there exists C > 0 such that for all ρ ∈ [0, c0]

M −m0(ρ)

(c0 − ρ)
α
α−1
≤ C.

In particular, we have that

m0(ρ) ≥M − C(c0 − ρ)
α
α−1 .
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We can apply the convexity of the function f(x) = x
α
α−1 to show that

m0(ρ)
α−1
α ≥M α

α−1 − α
α−1M

1
α−1C(c0 − ρ)

α
α−1 = M

α
α−1 − α

1
α−1

T
1

α−1

(c0 − ρ)
α
α−1

+ = m(0, ρ)
α−1
α .

for a well chosen T (see, e.g. Figure 6). Therefore, applying the comparison principle Theorem 4.3
thenm ≥ m, and thusm has waiting time.

Figure 6: The explicit Ansatz viscosity subsolution (4.32) guarantees existence of waiting time. The

subsolution is represented from the explicit solution, whereas u is computed through the numerical
scheme in Section 5. See a movie simulation in the supplementary material [20, Video 1].

4.5.2 Non-existence of waiting time
Theorem 4.10. Letm0 ∈ BUC([0,+∞)) and let c0 = max suppu0. If

lim sup
ρ→c−0

M −m0(ρ)

(c0 − ρ)
α
α−1

= +∞. (4.35)

Then, there is no waiting time.
Proof. To prove there is no waiting time, we want to show that S(t) > c0 for any t > 0. In order to
do this, we will construct we a sequence of supersolutions mk with Sk(t) = max supp(mk)ρ(t, ·) and
times tk ↘ 0 such that Sk(tk) > c0. This ensures that, for some k we have 0 < tk < t and hence
S(t) ≥ Sk(t) ≥ Sk(tk) > c0.

Let us consider a sequence dk such that

dk → lim sup
ρ→c−0

M −m0(ρ)

(c0 − ρ)
α
α−1

.

There exists ρk ↗ c0 such that
M −m0(ρk) ≥ dk(c0 − ρk)

α
α−1 . (4.36)

We construct the viscosity supersolutionsmk with initial derivative

uk,0 = m0(ρk)δ0 + (M −m0(ρk))δρk .

It is clear thatmk(0, ρ) ≥ m(0, ρ). By using the comparison principle Theorem 4.3,mk ≥ m.
Now we apply the theory of Section 4.4. We will select tk > 0 such that Sk(t) ≥ c0 + εk for t ≥ tk

with εk = c0−ρk
2 > 0. Using (4.21), (4.22) and (4.36) we have that

Sk(t) = ρk + αm0(ρk)K−1
(
M −m0(ρk)

αm0(ρk)

)
t

1
α ≥ ρk + αm0(ρk)K−1

(
dk(c0 − ρk)

α
α−1

αm0(ρk)

)
t

1
α .

Due to our choice of ρk, it is sufficient that

ρk + αm0(ρk)K−1
(
dk(c0 − ρk)

α
α−1

αm0(ρk)

)
t

1
α ≥ c0 + εk.
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Solving for t, we have that

t ≥

 (c0−ρk)+εk
αm0(ρk)

K−1
(
dk(c0−ρk)

α
α−1

αm0(ρk)

)

α

. (4.37)

We know that dk(c0 − ρk)
α
α−1 ≤ M −m0(ρk) → 0, therefore we need to study K−1 close to 0. Going

back to (4.23) there exists a constant C > 0 such that (c0−ρk)+εk
αm0(ρk)

K−1
(
dk(c0−ρk)

α
α−1

αm0(ρk)

)

α

≥ C


(c0−ρk)+εk
αm0(ρk)(

dk(c0−ρk)
α
α−1

αm0(ρk)

)α−1
α


α

=
3α

2α
C

dα−1k

=: tk.

Due to the hypothesis of the theorem dk → +∞ and hence tk → 0.

See a movie simulation of one of the mass supersolutions interacting with a solution without

waiting time in the supplementary material [20, Video 2].

Remark 4.11. Notice that if the lim sup is finite, the previous proof can be adapted to show that the
supersolutionsmk give an upper bound of the waiting time.

Remark 4.12. As pointed out in Corollary 3.5, the spatial support of classical solutions does not
change in time. Taking c0 = max suppu0, we construct the supersolutionm with initial derivative

u0 = m0

(c0
2

)
δ0 +

(
M −m0

(c0
2

))
δ c0

2
.

This supersolution shows that the support of umust move after a finite time and therefore that the
solution is no longer classical.

4.6 Asymptotic behaviour
We give first a general result of asymptotic behaviour in mass variable.

Theorem 4.13. Assume that u0 ∈ L∞(0,∞) has compact support, M = ‖u0‖L1 , m be the viscosity
solution with initial datam0 and S(t) = inf{ρ : m(t, ρ) = M}. Then S(t) ∼M(αt)

1
α with estimate

0 ≤ S(t)

M(αt)
1
α

− 1 ≤ S(0)

M
(αt)−

1
α . (4.38)

Furthermore,m has the asymptotic profile in rescaled variable y = ρ

M(αt)
1
α
with an asymptotic estimate

sup
y≥ε

∣∣∣∣∣∣
m
(
t,M(αt)

1
α y
)

MG(y)
− 1

∣∣∣∣∣∣→ 0, as t→ +∞ where G(y) =

{
y y ≤ 1

1 y > 1
(4.39)

for any ε > 0.
Proof. By Remark 4.6 we take as super and subsolutionm andm with initial data

m0(ρ) = MH0(ρ), m0(ρ) = MHS(0)(ρ).

Hencem ≥ m ≥ m. Due to the explicit form ofm andm, we have that

M(αt)
1
α ≤ S(t) ≤ S(0) +M(αt)

1
α .

Due to the self-similar form ofm andm given in Remark 4.6, the result is proven.
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Remark 4.14. Notice that form0 = 0 in [0, a], we havem(t, ρ) = 0 in [0, a] so the supremum of y ≥ 0
is always 1. If u0 is continuous and u0(0) > 0, then the supremum can be taken for y ≥ 0.

Let us discuss the asymptotic behaviour when the datum is monotone non-decreasing with final

cut-off. We recall (4.14)-(4.17). We define

U(t, ξ) =
u(t, (αt)

1
α ξ)

(‖u0‖−αL∞ + αt)−
1
α

Since the solution is constructed by characteristics we have that

U(t, ξ) =


0 if u0((αt)−

1
α ξ) = 0(

η0(t, ξ)−α + αt

‖u0‖−αL∞ + αt

)− 1
α

if u0((αt)−
1
α ξ) > 0 and (αt)

1
α ξ ≤ S(t)

0 if (αt)
1
α ξ > S(t)

where η0(t, ξ) ∈ (0, ‖u0‖L∞). Due to (4.38), as t→ +∞ we have that

U(t, ξ)→
{

1 if ξ ∈ (0,M)

0 if ξ ∈ (M,+∞).

The value at 0 depends on whether u0(0) = 0.

5 A numerical scheme
In the pioneering paper by Crandall and Lions [10], the authors developed a theory of monotone

schemes for finite differences of Hamilton-Jacobi equations, where solutions are shown to converge

to the viscosity solution. They study equations of the form

mt +H(mρ) = 0. (5.1)

For these equations it is natural to develop only explicit methods. However, for our case mt +
H(mρ)m = 0, we will see that it more natural, and probably more stable, to do an explicit-implicit
approximation of the non-linear term H(mρ)m. In fact, since the nonlinear term is linear in m, we
can solve for the implicit step in an explicit manner. More precisely, considering an equispaced

discretization

tn = htn ρj = hρj. (5.2)

We select the following finite-difference schemes

Mn+1
j −Mn

j

ht
+

(
Mn
j −Mn

j−1

hρ

)α
Mn+1
j = 0

which can be written as

Mn+1
j =

Mn
j

1 + ht

(
Mn
j −Mn

j−1

hρ

)α
+

= G(Mn
j ,M

n
j−1). (5.3)

Here, G is given by

G(p, q) =
p

1 + htH
(
p−q
hρ

) , where H(s) = sα+.

Notice that the method depends only on the parameter ht/h
α
ρ . Taking derivatives we have that

∂G

∂p
=

1 + htH
(
p−q
hρ

)
− ht

hρ
H ′
(
p−q
hρ

)
p(

1 + htH
(
p−q
hρ

))2 ,
∂G

∂q
=

phtH
′
(
p−q
hρ

)
hρ

(
1 + htH

(
p−q
hρ

))2 ≥ 0
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Then G is non-decreasing in p under the simple CFL condition:

ht
hρ
H ′
(
p− q
hρ

)
p ≤ 1

2
. (5.4)

Since the denominator inG is larger than 1, we have thatG(p, q) ≤ p. This is immediately translated
to a maximum principle forMn

j

Mn+1
j ≤Mn

j ≤ ‖m0‖∞. (5.5)

For α ≥ 1 we have two options to obtain a CFL condition. We can check whether the numerical
derivative is bounded (this can be done for some methods, see Section 5.2) or cut-off the equation

by a nice value. Form0 fixed, sincemρ ≤ ‖(m0)ρ‖L∞ due to (4.4), the equation (5.1) whereH(s) = sα+
is equivalently to itself with

H(s) = (max{s, ‖(m0)ρ‖∞})α+ . (5.6)

We write this cut-off to ensure monotonicity. Nevertheless, once the method is monotone,

Lemma 5.3 ensures that the cut-off part is not reached. Hence, this cut-off is purely technical.

For α ≥ 1 this new H given by (5.6) satisfies

0 ≤ H ′(s) ≤ α‖(m0)ρ‖α−1∞ .

Therefore, (5.4) can be taken as

ht
hρ
≤ 1

2α‖(m0)ρ‖α−1∞ ‖m0‖∞
. (CFL)

We propose the scheme
Mn+1
j =

Mn
j

1 + htH

(
Mn
j −Mn

j−1

hρ

) if j > 0, n ≥ 0

M0
j = m0(hρj) if j ≥ 0

Mn
0 = 0 if n > 0.

(M)

Remark 5.1. As we pointed out in [9], for 0 < α < 1 this method is not monotone. This was fixed
by regularising H . For δ > 0 we take

Hδ(s) = (s+ + δ)α − δα. (5.7)

By including the boundary and initial condition, we constructed the method
Mn+1
j =

Mn
j

1 + htHδ

(
Mn
j −Mn

j−1

hρ

) if j > 0, n ≥ 0

M0
j = m0(hρj) if j ≥ 0

Mn
0 = 0 if n > 0.

(Mδ)

with this regularisation we know that H ′δ(s) ≤ αδα−1 so we have a CFL condition

ht
hρ
≤ δ1−α

2α‖m0‖∞
. (CFLδ)

In [9] we made δ to converge to 0 with ht and hρ, showing the convergence of the numerical solu-
tions.
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5.1 Properties of monotone methods
The following properties of (M) when G is monotone in each variable are a classical matter (see the
original result in [10] and the presentation and references in [1]). We just briefly sketch them for

completeness.

Lemma 5.2. Let α ≥ 1, m0 ≥ 0 and bounded and consider the sequence Mn
j constructed by (M) andassume (CFL). We have the following properties:

1. Mn+1
j = G(Mn

j ,M
n
j−1) where G is non-decreasing.

2. Mn
j ≤ ‖m0‖∞

3. Ifm0 ≥ 0 is non-decreasing then:
(a) 0 ≤Mn

j ≤Mn
j+1 for all n, j

(b) There is mass conservation in the numerical scheme
Mn+1
∞ = lim

j→+∞
Mn+1
j = lim

j→+∞
Mn
j = Mn

∞.

Proof. 1. We have shown this above.

2. This is true forM0
j by construction, and hence for all n, due to the previous item.

3. (a) We proceed by induction in n. For time n = 0 this is true due to the monotonicity of m0.

AssumeMn
j ≤Mn

j+1 for all j. Since G is monotone in each coordinate

Mn+1
j+1 = G(Mn

j+1,M
n
j ) ≥ G(Mn

j ,M
n
j ) ≥ G(Mn

j ,M
n
j−1) = Mn+1

j .

(b) Since the sequence is non-decreasing and bounded, it has a limit. Furthermore limj(M
n
j −

Mn
j−1) = 0. Hence, since Hδ(0) = 0 we have that

Mn+1
∞ = lim

j→+∞
Mn+1
j = lim

j→+∞

Mn
j

1 + htH

(
Mn
j −Mn

j−1

hρ

) = Mn
∞.

Notice the biggest advantage of the method (M) is that it preserves the space monotonicity of

m and the total mass, as it should be for a mass equation.

5.2 Convergence of the numerical scheme (M) to the viscosity solution
In order to construct a convergent scheme, it is better to work with a single parameter. For h > 0
we define

hρ = h, ht =
h

2α‖(m0)ρ‖α−1∞ ‖m0‖∞
.

so that (CFL) is satisfied. We now allow Mn
j to be constructed from (M). For tn ≤ t < tn+1 and

ρj ≤ ρ < ρj+1 we write the piecewise linear interpolation of the discrete values as

mh(t, ρ) =


Mn
j + (ρ− ρj)

Mn
j+1 −Mn

j

hρ
+ (t− tn)

Mn+1
j −Mn

j

ht
if ρ ≤ t

Mn+1
j+1 − (ρj+1 − ρ)

Mn+1
j+1 −Mn+1

j

hρ
− (tn+1 − t)

Mn+1
j+1 −Mn

j+1

ht
if ρ > t

(5.8)

This construction ensures that

∂mh

∂ρ
=

{
Unj+1 if ρ < t

Un+1
j+1 if ρ > t

,
∂mh

∂t
=

{
−H

(
Unj
)
Mn+1
j if ρ < t

−H
(
Unj+1

)
Mn+1
j+1 if ρ > t
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where Unj is the numerical space derivative

Unj =
Mn
j −Mn

j−1

hρ
≥ 0, (5.9)

and the numerical time derivative is given by the relation

Mn+1
j −Mn

j

ht
= −H

(
Unj
)
Mn+1
j ≤ 0.

The strategy of the proof is the following. We will show that these space and time numerical deriva-

tives are uniformly bounded, and hencemh is uniformly continuous, non-decreasing in ρ and non-
increasing in t. We can then apply the Ascoli-Arzelá precompactness theorem and show there exists
a convergent subsequence. We will prove the limit is the viscosity solution.

If we subtract (M) for j and j − 1 we recover an equation for the numerical derivative Unj

Un+1
j − Unj

ht
+
H(Unj )Mn+1

j −H(Unj−1)Mn+1
j−1

hρ
= 0. (5.10)

Notice that the natural scaling for this equation is ht/hρ.

5.2.1 Boundedness of the numerical derivative
Since (5.10) is a numerical approximation by a monotone method of the nonlinear conservation

law (P), we can expect a maximum principle.

Lemma 5.3. Let 0 ≤ m0 be uniformly Lipschitz continuous, bounded and non-decreasing,Mn
j be givenby (M), that (CFL) holds and let Unj given by (5.9). Then, Unj ≥ 0 and

sup
j
Un+1
j ≤ sup

j
Unj ∀n ≥ 0. (5.11)

Remark 5.4. Once this is proven, the cut-off (5.6) is not needed.
Proof. That Unj ≥ 0 follows form Lemma 5.2. We write

0 =
Un+1
j − Unj

ht
+Mn+1

j−1
H(Unj )−H(Unj−1)

hρ
+H(Unj )

Mn
j −Mn

j−1

hρ

=
Un+1
j − Unj

ht
+Mn+1

j−1
H(Unj )−H(Unj−1)

hρ
+H(Unj )Unj .

Solving for Un+1
j , using the fact that H is non-decreasing and Unj ≥ 0, we have that

Un+1
j ≤ Unj −

ht
hρ
Mn+1
j−1 (H(Unj )−H(Unj−1))

= Unj −
ht
hρ
Mn+1
j H ′(ξnj )Unj +

ht
hρ
Mn+1
j H ′(ξnj )Unj−1

=

(
1− ht

hρ
Mn+1
j H ′(ξnj )

)
Unj +

ht
hρ
Mn+1
j H ′(ξnj )Unj−1.

Due to (CFL) we have that the coefficients in front of Unj and U
n
j−1 are non-negative. Hence

Un+1
j ≤

(
1− ht

hρ
Mn+1
j H ′(ξnj )

)
sup
j
Unj +

ht
hρ
Mn+1
j H ′(ξnj ) sup

j
Unj

= sup
j
Unj .

And this holds for every j so the result is proved.
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5.2.2 Convergence via Ascoli-Arzelá. Existence of a viscosity solution
Theorem 5.5. Let usm0 ∈W 1,∞(0,+∞) and non-decreasing, (CFL),Mn

j constructed by (M) andmh be
given by (5.8). Then,mh is a family of uniformly continuous functions. Then, for every P > 0

mh → m in C([0, P ]× [0, T ]) as hρ → 0. (5.12)

wherem is a viscosity solution of (4.2). Furthermore, (4.4) holds.
Proof. First, we notice thatmh satisfies (4.4). Due to (5.8), we have that

|mh
ρ(t, ρ)| ≤ ‖(m0)ρ‖∞, |mh

t (t, ρ)| ≤ |H(Unj )Mn+1
j | ≤ H(‖(m0)ρ‖∞)‖m0‖∞.

By the Ascoli-Arzelá theorem there is a subsequence that converges uniformly in [0, P ]× [0, T ].

We will show every convergent subsequence converges to the same limit m, and hence the
whole sequence converges. We still denote by h the indexes of the convergent subsequences.

Letmh be a subsequence converging in [0, T ]× [0, P ]. We check that it is a viscosity subsolution,
and the proof of viscosity supersolution is analogous. Let (t0, ρ0) ∈ (0, T ) × (0, P ) and ϕ ∈ C2 be

such that m − ϕ has a strict local maximum at (t0, ρ0) and m(t0, ρ0) = ϕ(t0, ρ0). We can modify ϕ
outside a bounded neighbourhood of (t0, ρ0), so that m − ϕ attains a unique global maximum at
(t0, ρ0), for h large enough mh − ϕ attains a global maximums in [0, T ] × [0, P ] at an interior points
(th, ρh), and (th, ρh)→ (t0, ρ0) as h→ 0. Our argument is a variation of [18, Lemma 1.8].

Let B ⊂ [0, T ] × [0, P ] be a small open ball around (t0, ρ0) where the maximum is global. Let
ε = − infB(m − ϕ)/2. Define U = {m − ϕ > −ε} ∩ B which is a open and bounded neighbourhood
of (t0, ρ0). We modify ϕ so that is greater thanm+ ε outside U . With the modification,m−ϕ attains
a unique global maximum at (t0, ρ0).

Let h be small enough so that |mh −m| < ε
2 in [0, T ]× [0, P ]. We have that

max
[0,t0+1]×[0,ρ0+1]\U

(mh − ϕ) < max
[0,t0+1]×[0,ρ0+1]\U

(m− ϕ) +
ε

2
≤ −ε

2
.

On the other hand

mh(t0, ρ0)− ϕ(t0, ρ0) > m(t0, ρ0)− ϕ(t0, ρ0)− ε

2
= −ε

2
.

Therefore the maximum over [0, T ]× [0, P ] is attained at some (th, ρh) ∈ U . The sequence (th, ρh) is
bounded, and therefore as a convergent subsequence. Let (t1, h1) be its limit. We have that

mh(th, ρh)− ϕ(th, ρh) ≥ mh(t, ρ)− ϕ(t, ρ) ∀(t, ρ) ∈ [0, T ]× [0, P ].

Passing to the limit, since the maximum is unique, we have that (t1, ρ1) = (t0, ρ0). Since all conver-
gent subsequences share a limit, the whole sequence converges.

For such small values of h, let us define

nh =

⌊
th
ht

⌋
− 1, jh =

⌈
ρh
hρ

⌉
.

Sincemh − ϕ has a global maximum in [0, T ]× [0, P ], we have that

mh(th, ρh)− ϕ(th, ρh) ≥ mh(t, ρ)− ϕ(t, ρ).

Evaluating on the points of the mesh, we get that

Mn
j ≤ ϕ(tn, ρj)− ϕ(th, ρh) +mh(th, ρh).

Sincemh is increasing in ρ and decreasing in t and the fact that G is non-decreasing, we recover

mh(th, ρh) ≤ mh((nh + 1)ht, jhhρ) = Mnh+1
jh

= G(Mnh
jh
,Mnh

jh−1)

≤ G
(
ϕ(tnh , ρjh)− ϕ(th, ρh) +mh(th, ρh), ϕ(tnh , ρjh−1)− ϕ(th, ρh) +mh(th, ρh)

)
=
ϕ(tnh , ρjh)− ϕ(th, ρh) +mh(th, ρh)

1 + htH
(
ϕ(tnh ,ρjh )−ϕ(tnh ,ρjh−1)

hρ

)
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due to the definition of G. Since ϕ is smooth, for h small enough the denominator is positive and
hence

ϕ(th, ρh)− ϕ(tnh , ρjh)

ht
+H

(
ϕ(tnh , ρjh)− ϕ(tnh , ρjh−1)

hρ

)
mh(th, ρh) ≤ 0.

Adding and subtracting ϕ(tnh+1, ρj)/hρ on both sides

ϕ(tnh+1, ρjh)− ϕ(tnh , ρjh)

ht
+H

(
ϕ(tnh , ρjh)− ϕ(tnh , ρjh−1)

hρ

)
mh(th, ρh)

≤ ϕ(tnh+1, ρjh)− ϕ(th, ρh)

th − tnh
th − tnh
ht

.

Clearly th − tnh ≥ 0 and, since ϕ is of class C1 andm is non-increasing in t, we have that

lim
h→0

ϕ(tnh+1, ρjh)− ϕ(th, ρh)

th − tnh
= ϕt(t0, ρ0) ≤ 0,

Therefore, as h→ 0, we conclude that

ϕt(t0, ρ0) +H (ϕρ(t0, ρ0))m(t0, ρ0) ≤ 0,

for any ϕ such thatm− ϕ has a global maximum at (t0, ρ0). Therefore,m is a viscosity subsolution.

5.3 Rate of convergence
Theorem 5.6. Let α ≥ 1 and let ht and hρ satisfy (CFL). Let m0 be Lipschitz continuous and bounded
and letm be the viscosity solution of (4.2) andMn

j be constructed by (M). Then, for any T > 0

sup
j≥0

0≤n≤T/ht

|m(tn, ρj)−Mn
j | ≤ Ch

1
3
ρ .

where C does not depend on hρ.
Remark 5.7. The original paper by Crandall and Lions allows, by a longer and more involved ar-
gument, proves estimates of the form O(

√
ht) with H continuous, but requiring that the function

defining the method is Lipschitz continuous.

Proof. For convenience, in the proof we denote N = dT/hte. Our aim is to prove that

σ = sup
j≥0

0≤n≤T/ht

(m(tn, ρj)−Mn
j ) ≤ Ch

1
3
ρ .

The argument can be analogously repeated for the infimum. If σ ≤ 0 there is nothing to prove.
Assume that σ > 0. Let L be the Lipschitz constant of m0. Due to (4.4), it is also the Lipschitz

constant ofm.

We begin by indicating there exist n1, j1 such that

m(t1, ρ1)−Mn1
j1
≥ 3σ

4
, where t1 = htn1 and ρ = hρj1.

We define

Φ(t, htn, ρ, hρj) = m(t, ρ)−Mn
j − φ(t, htn, ρ, hρj)

where, for ε, λ > 0 we define

φ(t, s, ρ, ξ) =

( |ρ− ξ|2 + |t− s|2
ε2

+ λ(t+ s)

)
Then the maximum is at tε ∈ [0, T ], ρε ∈ [0,+∞) and tε = htnε with nε ∈ {0, · · · , N}, ξε = hρjε with
jε ∈ N ∪ {0}. Again this function is continuous and
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1. Defined over a bounded set in tε and sε.

2. If ρ→ +∞ and j remains bounded then Φ→ −∞ (analogously in ρ bounded and j → +∞).

3. If ρ→ +∞ and j → +∞ then
lim sup
ρ,j→+∞

Φ ≤ m∞ −m∞ ≤ 0,

so there exists a point of maximum (tε, htnε, ρε, hρjε) such that

Φ(tε, sε, ρε, ξε) ≥ Φ(t, s, ρ, ξ) ∀(t, s, ρ, ξ).

In particular

Φ(tε, sε, ρε, ξε) ≥ Φ(t1, t1, ρ1, ρ1) = m(t1, ρ1)−Mn1
j1
− 2λt1.

Taking

λ =
σ

8(1 + T )
(5.13)

we have

Φ(tε, ρε, nε, jε) ≥
σ

2
.

In particular,

m(tε, ρε)−Mnε
jε
≥ σ

2
+ φ(tε, htnε, ρε, hρjε) > 0 (5.14)

Step 1. Variables collapse. As Φ(tε, sε, ρε, ξε) ≥ Φ(0, 0, 0, 0) = 0, we have

|ρε − ξε|2 + |tε − sε|2
ε2

+ λ(tε + sε) ≤ m(tε, ρε)−Mnε
jε
≤ 2‖m0‖∞.

Therefore, we obtain

|ρε − ξε|2 + |tε − sε|2 ≤ 2‖m0‖∞ε2, and ρ2ε + ξ2ε ≤
2‖m0‖∞

ε
.

This implies that, as ε→ 0, the variable doubling collapses to a single point.

Step 2. For ε small enough, tε, ρε, nε, jε > 0. Sincem is Lipschitz continuous
σ

2
< m(tε, ρε)−Mnε

jε

= m(tε, ρε)−m(0, ρε) +m(0, ρε)−m(0, ξε)

+m(0, ξε)−M0
jε +M0

jε −M
nε
jε

≤ Ltε + L|ρε − ξε|,

using the fact thatm(0, ξε) = M0
jε
andMn

j is decreasing in n. If ε is small enough

ε <
σ

4L
√

2‖m0‖∞
, (5.15)

we have Ltε > σ/4 and hence tε > 0. Analogously for ρε > 0.

If nε = 0 then

σ

2
< m(tε, ρε)−M0

jε

= m(tε, ρε)−m(0, ρε) +m(0, ρε)−m(0, ξε) +m(0, ξε)−M0
jε

≤ Ltε + L|ρε − ξε| = L|tε − nε|+ L|ρε − ξε|
≤ L

√
2‖m0‖∞ε.

This is a contradiction if (5.15) holds. An analogous contradiction holds if jε = 0.
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Step 3. An inequality form via viscosity. We check that
(t, ρ) 7−→ m(t, ρ)− φ(t, sε, ρ, ξε) = m(t, ρ)− ψ(t, ρ)

has a maximum at (tε, ρε). Hence, sincem is a viscosity subsolution, we have

∂φ

∂t
(tε, sε, ρε, ξε) +H

(
∂φ

∂ρ
(tε, sε, ρε, ξε)

)
m(tε, ρε) ≤ 0.

Computing the derivatives

2(tε − sε)
ε2

+ λ+H

(
2(ρε − ξε)

ε2

)
m(tε, ρε) ≤ 0. (5.16)

Step 4. An inequality forM applying that G is monotone. As before, the function
(n, j) 7−→Mn

j − (−φ(tε, htn, ρε, hρj)) = Mn
j − ψ(j, n)

has a minimum at (nε, jε). In particular, we obtain

Mn
j ≥Mnε

jε
− ψ(jε, nε) + ψ(j, n).

Since G is monotone, it yields

Mnε
jε

= G(Mnε−1
jε

,Mnε−1
jε−1 )

≥ G
(
Mnε
jε
− ψ(jε, nε) + ψ(jε, nε − 1)︸ ︷︷ ︸

S1

,Mnε
jε
− ψ(jε, nε) + ψ(jε − 1, nε − 1)︸ ︷︷ ︸

S2

)
.

Similarly to the proof of Theorem 5.5, for h small, one can rewrite the previous inequality as

Mnε
jε
− S1

ht
+H

(
S1 − S2

hx

)
Mnε
jε
≥ 0.

Hence, we recover

ψ(jε, nε)− ψ(jε, nε − 1)

ht
+H

(
ψ(jε, nε − 1)− ψ(jε − 1, nε − 1)

hx

)
Mnε
jε
≥ 0. (5.17)

We could compute this explicitly, but it is sufficient and clearer to apply the intermediate value

theorem to deduce

−∂φ
∂s

(tε, s̄ε, ρε, ξε) +H

(
−∂φ
∂ξ

(tε, sε − ht, ρε, ξ̄ε)
)
Mnε
jε
≥ 0

where s̄ε ∈ (sε − ht, sε) and ξ̄ε ∈ (ξε − hρ, ξε). Hence, we conclude that

2(tε − s̄ε)
ε2

− λ+H

(
2(ρε − ξ̄ε)

ε2

)
Mnε
jε
≥ 0. (5.18)

Step 5. An estimate for σ. Substracting (5.16) from (5.18) we have that
σ

4(1 + T )
≤ sε − s̄ε

ε2
+H

(
2(ρε − ξ̄ε)

ε2

)
Mnε
jε
−H

(
2(ρε − ξε)

ε2

)
m(tε, ρε)

≤
(
H

(
2(ρε − ξ̄ε)

ε2

)
−H

(
2(ρε − ξε)

ε2

))
Mnε
jε

+H

(
2(ρε − ξ̄ε)

ε2

)
(Mnε

jε
−m(tε, ρε))

Notice that the second term is non-positive due to (5.14). We now use the Lipschitz continuity ofH ,
which holds for the cut-off given by (5.6), and we obtain that

σ

8
≤ C

∣∣∣∣2(ξ̄ε − ξε)
ε2

∣∣∣∣ ≤ Chρε2 ‖m0‖L∞ .
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Step 6. A first choice of ε. We take ε = Cσ where C is chosen so that (5.15) hold. Then, we have
that

σ3 ≤ Chρ.
where C(T, α) is independent of ht, hx or δ. This completes the proof.

Remark 5.8. Notice that we do not use the equation until step 4 and that the Lipschitz continuity
ofm0 plays a key role. However, the homogeneous boundary conditions do not.

Remark 5.9. Notice that we recover the exponent h 1
3 from the Lipschitz continuity of H . If H is

only α-Hölder continuous as in [9], then the rate of convergence is given by h
α

1+2α .

6 Numerical results
6.1 Asymptotics as t→ +∞

Through numerical experiments, we see that the vortex seems to be the asymptotic solution also in

u variable. In Figure 7 we represent the asymptotic state of the two-bump initial data constructed
explicitly for small times in Section 4.4. We recall that why the computations in Section 4.4 are only

valid for small time is that the first bump reaches the second bump, and we did not compute the

first shock after this happens. However, as we see in Figure 7, the first bump "eats" the second

bump (possibly in finite time), and we recover the vortex. Since u0(0) = 0, we have that u(t, 0) = 0
so the vortex cannot be reached in the supremum norm. Notice also that if u0(0) 6= 0, then u(0, t) =

(u0(0)−α + αt)−
1
α . Nevertheless, the simulation suggest convergence in all Lp norms for 1 ≤ p <∞.

Figure 7: Asymptotic behaviour of u in rescaled variables. See a movie simulation in the supple-
mentary material [20, Video 3].

It is an open problem to determine if the first singularity catches the boundary front in finite

time for these particular solutions.
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6.2 Comparison of the waiting time
It is interesting to compare the behaviour of different powers u0(ρ) = (β + 1)(1 − ρ)β+ which have
total mass M = 1. There is waiting time if β ≥ 1

α−1 (see Corollary 4.9 and Theorem 4.10). We will

work with α = 2. Since the masses are ordered, the waiting time for u0 = 2(1 − ρ)+ is shorter than
that of u0 = 3(1 − ρ)2+. It is interesting to notice that the solution for u0 = 3(1 − ρ)2+ develops a
singularity at the interior of the support, before the support starts moving.

Figure 8: Behaviour of two different powers with waiting time. See a movie simulation in the sup-

plementary material [20, Video 4].

6.3 Level sets of a solution with and without waiting time
In Section 4.6 we showed that t

1
α is the asymptotic behaviour of the support of u for compactly

supported u0. For instance, if u0 is a Dirac δ function at S(0) of mass M , we have shown that the

support is [S(0), S(0) +M(αt)
1
α ]. However, for solutions with waiting time, we do not know what is

the behaviour of the support for t small. We illustrate an example when u0 = (1 − ρ)+ for α = 2 in
Figure 9 (cf. Figure 6). This initial datum produces a solution with waiting time due to Corollary 4.9,

which by Theorem 3.4 is initially given by the generalised characteristics. However, as pointed

out in Remark 3.1 the characteristics are not the level sets of m. Notice that the level sets of m
are not straight even for t small. For comparison, we show a solution not given by characteristics
(therefore not a classical solution) and without waiting time (by Theorem 4.10) which we represent

in Figure 10.
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Figure 9: Level sets of the numerical solution with u0 = (1 − ρ)+ for α = 2, and a uniform mesh in
space of equispaced grid hρ = 1e − 3. In Figure 6 the reader may find a comparison with the mass
subsolution with explicit Ansatz.
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Figure 10: Level sets of the numerical solution not given by characteristics presented in Remark 3.8,

which does not have waiting time due to Theorem 4.10.

Remarks and open problems
1. We have constructed a theory of radial solutions and proved well-posedness of the mass

formulation. Uniqueness in terms of the u variable is an open problem.

2. Is there a non-radial theory? This seems to be a very difficult problem.

3. Is there asymptotic convergence to the vortex solution in the u variable in general?

4. An interesting problem is to construct a theory for infinite mass solutions.

5. In the two bump solution, is there actually convergence to the vortex in finite time? The

numerical experiments suggest so. The ODE for S1 can be written explicitly from the Rankine-

Hugoniot condition, and the question is whether S1(t) = S2(t) for some t > 0.
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