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Trinity Term 2019

November 21, 2019

Part I

A. STATISTICS

(1) Numbers and percentages in each class

See Table 1. Overall, 20 candidates were classified.

Table 1: Numbers in each class (Preliminary Examination)

Numbers Percentages %
2019 (2018) (2017) (2016) (2015) 2019 (2018) (2017) (2016) (2015)

Distinction 7 6 4 7 6 35 42.86 23.53 50 42.86
Pass 11 7 13 4 7 55 50 76.47 28.57 50
Partial Pass 2 1 0 3 1 10 7.14 0 21.43 7.14
Fail 0 0 0 0 0 0 0 0 0 0

Total 20 14 17 14 14 100 100 100 100 100

(2) Vivas

No vivas were given.

(3) Marking of Scripts

In Mathematics, all scripts were single marked according to a pre-agreed
marking scheme which was strictly adhered to. There is an extensive check-
ing process. In Philosophy, all scripts were single marked except for failing
scripts, which were double-marked.
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B. NEW EXAMINING METHODS AND PROCEDURES

No new examining methods and procedures were used for 2018/19.

C. CHANGES IN EXAMINING METHODS AND PROCE-
DURES CURRENTLY UNDERDISCUSSION OR CONTEM-
PLATED FOR THE FUTURE

No changes are under discussion for 2019/20.

D. NOTICE OF EXAMINATION CONVENTIONS FOR CAN-
DIDATES

The Notice to Candidates, containing details of the examinations and assess-
ment, including the Examination Conventions, was issued to all candidates
at the beginning of Trinity term. All notices and examination conventions in
full are on-line at https://www.maths.ox.ac.uk/members/students/undergraduate-
courses/examinations-assessments/examination-conventions.
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Part II

A. GENERAL COMMENTS ON THE EXAMINATION

Timetable

The examinations began on Monday 24th June at 2.30pm and ended on
Friday 28th June at 12:30pm.

Mitigating Circumstances Notices to Examiners

A sub-set of the Examiners (the ‘Mitigating Circumstances Panel’) attended
a pre-board meeting to band the seriousness of circumstances for each factors
affecting performance application received. The outcome of this meeting was
relayed to the Examiners at the final exam board, who gave careful regard
to each case, scrutinised the relevant candidates’ marks and agreed actions
as appropriate. See Section E for further detail.

Determination of University Standardised Marks

For the papers that are common with Mathematics, the examiners followed
the standard procedure for converting raw marks to University Standardized
Marks (USM), and used the same scaling functions as applied for candidates
in Mathematics.

Recommendations for Next Year’s Examiners and Teaching Com-
mittee

There are no recommendations specific to Mathematics & Philosophy. Gen-
eral recommendations are made in the report on the Preliminary Examina-
tion in Mathematics.

B. EQUAL OPPORTUNITIES ISSUES AND BREAKDOWN
OF THE RESULTS BY GENDER

The breakdown of the final classification by gender is as follows:-
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Table 2: Breakdown of results by gender

Class Number

2019 2018 2017
Female Male Total Female Male Total Female Male Total

Distinction 0 7 7 1 5 6 2 2 4
Pass 6 5 11 4 3 7 5 8 13
Partial Pass 2 0 2 1 0 1 0 0 0
Fail 0 0 0 0 0 0 0 0 0

Total 8 12 20 6 8 14 7 10 17

Class Percentage

2019 2018 2017
Female Male Total Female Male Total Female Male Total

Distinction 0 58.33 35 16.67 62.5 42.86 28.57 20 25.53
Pass 75 41.67 55 66.67 37.5 50 71.43 80 76.47
Partial Pass 25 0 10 16.67 0 7.14 0 0 0
Fail 0 0 0 0 0 0 0 0 0

Total 100 100 100 100 100 100 100 100 100

C. STATISTICS ON CANDIDATES’ PERFORMANCE IN
EACH PART OF THE EXAMINATION

Mathematics I

Maths and Philosophy Single School
Question Mean Std Dev Mean Std Dev

Q1 11.00 3.80 10.80 2.73
Q2 14.44 3.83 14.75 2.59
Q3 14.00 3.30 13.91 4.00
Q4 12.05 4.81 12.81 4.07
Q5 13.00 4.47 11.63 4.20
Q6 14.54 4.22 13.76 3.88
Q7 12.53 4.73 13.00 3.22

Mathematics II

Maths and Philosophy Single School
Question Mean Std Dev Mean Std Dev

Q1 10.00 3.02 11.40 3.16
Q2 16.00 5.19 14.31 3.57
Q3 10.88 4.39 11.77 3.15
Q4 11.00 3.35 10.95 3.64
Q5 10.63 5.78 14.02 5.04
Q6 11.20 5.85 11.68 4.82
Q7 8.05 4.17 8.48 3.77
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Mathematics III(P)

Maths and Philosophy Single School
Question Mean Std Dev Mean Std Dev

Q1 12.71 5.65 16.61 3.11
Q2 10.11 4.54 13.83 3.87
Q3 10.93 5.51 15.57 4.41
Q4 6.25 5.43 8.48 5.33
Q5 12.60 3.89 11.24 4.07
Q6 10.42 4.08 12.05 3.85

Elements of Deductive Logic

AvgUSM StdDevUSM

70.3 16.25

Introduction to Philosophy

AvgUSM StdDevUSM

63.9 4.9
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D. COMMENTS ON PAPERS ANDON INDIVIDUAL QUES-
TIONS

See the Mathematics report for reports on the following papers:

Mathematics I

Mathematics II

Mathematics III(P)

Report on Elements of Deductive Logic

This report on the EDL paper covers students in Computer Science & Phi-
losophy, Maths & Philosophy, and Physics & Philosophy.

Comments on single questions

Question 1 (39 answers, mean 18.71, SD 4.58)

This question, which concerned duality in the language L++
1 with >, ⊥, and

an n-ary connective for every n-ary truth function, was the most popular
on the examination, and there were many strong answers.

Part (a) was intended to be an easy introduction to the issues, and most
students had no difficulties with it. A few students made the small error
of forgetting to specify cases for > and ⊥ as well as the n-ary connectives
in inductive definitions. A very small number misunderstood the question
entirely, providing only clauses for the L1 connectives rather than for every
connective in L++

1 (and made similar errors in the other sections); this was
presumably due to failure to read the question carefully.

Similarly, part (b) posed few problems. Serious errors arose only very occa-
sionally in (b)(ii). No substitution map P1 ∧ ¬P2 7→ (P1 ∨ P ) ∧ (¬P2 ∨ P )
exists. There are substitution maps taking P1 ∧ ¬P2 to a sentence logically
equivalent to (P1 ∨ P ) ∧ (¬P2 ∨ P )—but this is not what the question asks
for. A few students provided such sentences as purported positive answers
to (b)(ii).

Parts (c) and (d) represent the core of the question. There were very few
problems with (c)(i). A number of students were insufficiently explicit in
(c)(ii): the fact that a tautology is true in every structure should be clearly
stated, for it is this that allows one to move from A � φ to Aπ � φ. Sub-
parts (d)(i) and (d)(ii) are conceptually straightforward, although (d)(ii) is
tedious to write out, and some students had run out of time or abandoned
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the question by this point. The simplest solution to (d)(iii) involves manipu-
lating definitions to show that |γ|A∗ = |γ|A∗ for γ a sentence letter and then
using the Relevance Lemma; some students gave correct, but more compli-
cated, inductive proofs in which these key ideas were applied in a different
order.

Question 2 (34 answers, mean 17.16, SD 4.59)

This question was popular and, for the most part, posed few conceptual
problems. Part (a) required only knowledge of definitions. For part (b), the
simplest answers result from mechanically applying the DNF theorem: in
(b)(i), for example, (P1 ∧¬P2 ∧¬P3)∨ (¬P1 ∧P2 ∧¬P3)∨ (¬P1 ∧¬P2 ∧P3)
defines g. Other solutions are possible, but a few students appear to have
made errors seeking needlessly elegant or compressed sentences.

Almost all students who failed to answer (c)(i) and (c)(ii) adequately made
the same error: they proved only the ‘hints’ provided in the questions, with-
out explaining how to get from there to proofs of the general result. For
instance, (c)(i) asks the reader to prove that the connective G represent-
ing the truth function g defined in (b)(i) is not, on its own, expressively
adequate; the hint reads ‘First note that g(0, 0, 0) = 0’. Establishing the
hint is a simple calculation, and it shows the way to the idea of the proof:
no ternary truth function f with the property that f(0, 0, 0) = 1 can be
represented using G alone.

But this must be proved explicitly by a induction on complexity of formulas.
The induction, of course, is very easy: Let G be an arbitrary structure with
|P1|G = |P2|G = |P3|G = 0. Clearly if φ is atomic, then |φ|G = 0. The
induction hypothesis is that, for all ψ of complexity < n, |ψ|G = 0. Now we
can use the fact that g(0, 0, 0) = 0 and the fact that any sentence φ must
have the form G(ψ1, ψ2, ψ3) for ψ1, ψ2, and ψ3 of complexity less than that
of φ to show that |φ|G = 0 for any φ of complexity n. So |φ|G = 0 for all φ,
and no such sentence can define an f where f(0, 0, 0) = 1.

Subpart (c)(ii) follows precisely the same idea. For (c)(iii), it is simply
a question of finding translations using creative syntactic manipulation.
In general, students who struggled here either simply ran out of time or
made calculational mistakes. Many answers are possible: translating ¬φ by
H(φ, φ, φ) and φ ∧ ψ by G(φ,H(ψ,ψ, ψ),H(ψ,ψ, ψ)), and then applying the
de Morgan equivalence for ∨, is probably the most obvious.

Question 3 (32 answers, mean 18.31, SD 5.70)

This question had more near-perfect scores, and more significantly erroneous
scripts, than others.
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Part (a) was purely definitional. In (b), a few students made confused
appeals to the Relevance Lemma, failing to note that the demonstrandum
simply is a formulation of the Relevance Lemma. More commonly, tiny
mistakes occurred in the formulation of the base case of the induction: it
should be explicitly noted that where the sentence is a sentence letter, it
must by definition be an αi for some 1 ≤ i ≤ n.

Most students who struggled seriously with the question did so with (c).
The most common error in (c)(i) was failing to recognize that there are two
cases to be considered. In the base case, for instance, either (1) there are
infinitely many A ∈ S such that |α1|A = T or (2) there are not. In case
(1), it holds immediately that |α1|AS

= T and thus there are infinitely many
A ∈ S such that A and AS agree up to α1. In case (1), there are only
finitely many A ∈ S such that |α1|A = T; since S is infinite, there must be
infinitely many A ∈ S such that |α1|A = F. But, by definition, |α1|AS

= F,
so there are infinitely many A ∈ S such that A and AS agree up to α1.
Many students overlooked the possibility of (2). (A similar bifurcation of
cases occurs in the induction step.) Students making this mistake received
only half credit.

Most students who successfully completed (c)(i) found (c)(ii–iv) fairly straight-
forward. The only moderately tricky point is the key step in (c)(iii): noticing
that |αj |Ai = T when j ≥ i. When they occurred, poor results on (c)(iii–iv)
tended to result from running out of time or proofs that exhibited general
structural confusion and obscurity rather than any one stereotypical error.

Question 4 (25 answers, mean 17.10, SD 4.57)

Part (a) of this question posed few difficulties. In part (b), almost all stu-
dents realized that {P} is a minimal interpolant set, but many forgot to
prove it or gave inadequate proofs. It suffices to show that every element of
the interpolant set must be equivalent to one of {P,¬P, P ∨ ¬P, P ∧ ¬P},
and among those only P is an interpolant for P ∧R � P ∨Q.

Essentially the same strategy is required in part (c), although now there
are sixteen cases to check (corresponding to sentences containing P1 and
P2 defining the sixteen binary truth functions). Very few students correctly
found all the (equivalence classes of) interpolants: P1, P1∧P2, P1 ↔ P2, P2 →
P1, generally due to calculational errors or oversights, but all who attempted
the part received significant credit.

In part (d), most students understood the key point: where φ and ψ are L2
sentences that share no predicate letters, there need be no interpolant, since
L2 does not contain > and ⊥. (Thus, for example, there is no interpolant for
Fa∧Fb � Gc∨¬Gc.) Some students thought the problem could be evaded
by using purely logical sentences with equality, which would be correct for
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L= but is inapposite here.

Question 5 (16 answers, mean 17.88, SD 3.52)

Few students had any difficulty with part (a), which merely required paying
attention to the stated syntax rules for the language (‘Klungon’) under con-
sideration. There was one very common error in part (b). The syntax rules
are stated as inductive clauses; the question asks the student to provide an
explicit characterization and prove the equivalence. (The explicit charac-
terization is {x is a string : x = α1

_ · · ·_αn_a_β1_ · · ·_βnwhere α, β ∈
{a, b, c}}). Call this set S. To demonstrate the equivalence, the student
must prove both that every string in S falls under the inductive definition
and that every string that falls under the inductive definition is in S. Only
a minority of students remembered to carry out both of these tasks.

In part (c), few students had serious trouble with (i) or (ii). In subpart (iii),
the nonexistence of φ such that Γ � φ for all Γ follows immediately from the
fact that, for any φ, there exists some valuation vf and sentence ψ such that
vf (ψ) < vf (φ), which in turn follows from the existence of a valuation vf
such that {vf (φ) : φ is a Klungon wff} is unboundedly small. Many students
realized this but failed to prove the existence of such a valuation (which is
not difficult: the example I-function f(a) = 0, f(b) = −1, f(c) = 2 suffices,
as vf (a) = 0 and vf (a_α_c) < vf (α). Similar considerations show that it
is not the case that i Γ � φ, then Γ ∪ {ψ} � φ for all ψ. In subpart (iv), it
suffices to show that any φ with the property Γ � φ must have vf (φ) = 0
for all vf . There was no one characteristic type of error in this responses,
although many students failed to complete the subpart.

Question 6 (8 answers, mean 19.19, SD 4.67)

This was the least popular question, but virtually all responses were ex-
tremely good. None of the material in this question goes beyond the con-
tents of The Logic Manual, although correct synthesis requires some ingenu-
ity. In parts (a)–(c) errors, if present, were generally technical (oversights,
misapplication of rules, or ineffective strategy in the more complicated nat-
ural deduction proofs). Some students merely displayed ND2 derivations of
∀Intro∗ and ∀Elim∗ (in (c)(i)) or ND∗2 derivations of ∀Intro and ∀Elim (in
(c)(ii)) without explaining how this yields the result. This can be done in a
brief sentence, but some elaboration is necessary for a proper proof. In (d),
there are numerous ways to prove the result: the simplest to note is that,
if ψ is logically true, then Γ ∪ {ψ} � φ if and only if Γ � φ and then apply
Completeness to show the admissibility of the proposed rule in ND2. All
of the responses displayed a grasp of the general idea, although some had
unclarities and lacunae that led to less than full credit.
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Question 7 (14 answers, mean 14.88, SD 5.88)

Most students who attempted this question completed it well; there were a
few extremely poor responses to parts (b) and (c), however, which caused
it to have the lowest mean and highest standard deviation overall of all
the questions. It is difficult to attribute specific localized errors to those
responses; instead, they simply displayed a fundamental misunderstanding
of the nature of L2 assignments. (More than one student, for instance, for-
got that that open formulae such as Fx need to be included in the base
cases of (b)(ii–iii); those students also failed to give anything like a reason-
able treatment of substitution in (b)(iii).) Part (c) follows straightforwardly
from (a)(ii), (b)(iii), the semantc clause for the universal quantifier, and a
bit of manipulation. Some students who gave otherwise adequate answers
failed to attempt or complete it, but among those who gave full responses it
posed difficulty only for those students who displayed the kind of conceptual
difficulties in (b)(ii–iii) discussed above.

Question 8 (14 answers, mean 15.14, SD 5.21)

This question had some poor responses, but no specific characteristic types
of error. Parts (a) and (b)(i–ii) posed no conceptual difficulties, but many
students failed to produce a correct natural deduction proof or made serious
formalization errors. For (b)(iii), some students failed to realize that, since
C must be ¬∃x(Q0x ∧ ∀y(Ryx ↔ Py)) or something similar, it cannot be
entailed by {Bn : n > 0}, none of whose instances contain Q0. Part (c)
is a fairly straightforward use of Compactness: students who made it this
far had little trouble with it, although many failed to complete (or even
attempt) the part.

Report on Introduction to Philosophy

General Philosophy Questions

Question 1a (5 answers). Good answers often applied familiar theories
of knowledge to determine what a BIV may know, sometimes bringing in
considerations from Descartes. Weaker answers sometimes took this as an
invitation to discuss scepticism more generally. A surprising number of
candidates seemed to overlook the obvious point that, prima facie at least,
most of the BIV’s beliefs fail to constitute knowledge because they are false.

Question 1b (10 answers). This popular question was generally well done,
with many answers showing a good knowledge of the Gettier literature, and
addressing the question systematically. The best answers often also engaged
critically with the suggestion in the question that because true belief is
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necessary there must be some X where true belief + X is necessary and
sufficient.

Question 2a (1 answer).

Question 2b (5 answers). This question wasn’t so well done. Many
answers tended towards surveying the problem of induction rather than
attempting to engage with the question posed, with only a minority tackling
the issue of whether there is vicious circularity in using deductive reasoning
to justify deduction.

Question 3a (3 answers).

Question 3b (8 answers). Another popular question, that almost always
received answers that displayed a good level of knowledge of the relevant
literature, and engaged with the question posed.

Question 4a (0 answers).

Question 4b (1 answer).

Question 5a (2 answers).

Question 5b (4 answers).

Question 6a (1 answer).

Question 6b (3 answers).

Frege: Foundations of Arithmetic

Question 7 (4 answers).

Question 8 (1 answer).

Question 9 (10 answers). The quality of answers to this popular ques-
tion varied. Good answers displayed a firm grasp of Frege’s object–concept
distinction, and engaged with his arguments for not taking numbers to be
second-level concepts. Weaker answers sometimes misrepresented Frege’s
views, or were thin on argument. In this question, as in some of the others,
candidates sometimes exhibited use–mention confusion.
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Question 10 (10 answers). This question also received answers of variable
quality. Good answers gave a clear account of Frege’s definition, and took
a reasoned view as to whether or not it avoided the Caesar problem and
whether or not it needed to. Weaker answers sometimes failed to give a clear
and correct account of Frege’s definition. In particular, some candidates
incorrectly conflated the number belonging to F with the extension of F.

Question 11 (5 answers). This question received some very strong an-
swers that were able to accurately summarize Frege’s proof strategy, and
identify points where he draws on the thesis that numbers are objects. Good
answers often explained the need for the alternative (Russellian) treatment,
which takes numbers to be second-level concepts, to assume that there are
infinitely many objects at the bottom of the type hierarchy.

Question 12 (6 answers). This question was, on average, the best done
in the Frege section. Answers generally showed a good understanding of
relevant literature surrounding neo-Fregeanism. Candidates often did a good
job of identifying a special epistemic or semantic status arguably both (i)
possessed by Hume’s Principle and (ii) not possessed by Peano Arithmetic;
sometimes, however, they failed to sufficiently interrogate the second claim.

E. COMMENTS ON PERFORMANCE ON IDENTIFIABLE
INDIVIDUALS

This section has been redacted from the public report.

F. NAMES OF MEMBERS OF THE BOARD OF EXAMIN-
ERS

• Prof. Dmitry Belyaev (Chair for Preliminary Examinations)

• Dr Adam Caulton

• Dr Richard Earl

• Prof. James Studd
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