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Plan of the talk

What are the objects under consideration ?
Div-BV or Div-free symmetric tensors.

Why are they ubiquitous ?
Because of Nœther’s Theorem.

How do we treat them ?
With Compensated Integrability.

Which results do we get ?
Dispersion (Strichartz-like) estimates.
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WHAT? Div-free tensors

U ⊂ Rn an open domain.

Definition 1

A symmetric tensor over U is an n × n symmetric matrix A whose
entries ajk are distributions over U ⊂ Rn .

Its (row-wise) Divergence is a vector of distributions :

(DivA)j =
n∑

k=1

∂kajk .

We often assume positive semi-definiteness ; whence the distributions are
Radon measures.

Definition 2

The tensor A is Div-free if its entries are Radon measures, and DivA ≡ 0.
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Two examples

Diagonal tensors (U = I1 × · · · × In).
Given n functions of n − 1 variables fj = fj (x̂j ),

A := diag(f1, . . . , fn).

Since ∂j fj = 0, A is Div-free.

Special tensors (from Piola’s identity 1).
Given a potential θ : U → R, the matrix of cofactors

A = D̂2θ

is Div-free.

If n = 2, every Div-free tensor is special.

1. Cf. R. Kupferman & A. Shachar : A geometric perspective on the Piola identity in
Riemannian settings (arXiv 2018).
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Div-BV tensors

Compensated Integrability will involve the total mass ‖DivA‖M.
Whence the

Definition 3

A tensor A : Rn → Symn is Div-BV if its entries ajk and the
coordinates (DivA)j are finite measures.

Definition 4

A tensor A : U → Symn is Div-BV if its extension by 0n to U c is
Div-BV over Rn .

Equivalently, A : U → Symn is Div-BV if its entries and the coordinates
(DivA)j , and its (well-defined) normal trace A~ν are finite measures.
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Div-free/BV tensors are ubiquitous

First example : d-dimensional Gas dynamics.

The conservation of mass and momentum writes

∂tρ+ divy(ρu) = 0,

∂t(ρu) + Divy(ρu ⊗ u) = Divy Σ,

where Σ(t , y) ∈ Symd is the stress tensor.

This can be recast as Divt,y A = 0 with

A =

(
ρ ρuT

ρu ρu ⊗ u − Σ

)
∈ Sym1+d .
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Second example : Relativistic GD.

Warning : the tensor involves the conservation law of energy, instead of
that of the mass :

∂t

(
ρc2 + p

c2 − |v |2
− p

c2

)
+ divy

(
ρc2 + p

c2 − |v |2
v

)
= 0,

∂t

(
ρc2 + p

c2 − |v |2
v

)
+ Divy

(
ρc2 + p

c2 − |v |2
v ⊗ v

)
+∇yp = 0.

The (symmetric !) energy-momentum tensor

A =

(
ρc2+p
c2−|v |2 −

p
c2

ρc2+p
c2−|v |2 v

ρc2+p
c2−|v |2 v

ρc2+p
c2−|v |2 v ⊗ v + pI3

)

is Div-free.
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Why ? Variational Principles !

Many physical processes obey to a Variational Principle for a Lagrangian

L[α] =

∫
U

L(α) dx ,

α being a closed differential form :

dα = 0.

Warning : the VP
d

dε

∣∣∣∣
ε=0

L[αε] = 0

involves admissible variations that are not additive (αε 6= α+ εβ), but are
“compositional” :

αε = φ∗εα︸︷︷︸
pullback

, (φε)ε∈R a flow in U .
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Symmetry group :

L(M ∗α) = L(α), ∀α, ∀M ∈ G .

Translations, either rotations or Lorentz transformations ...

Theorem 1 (E. Nœther 1918.)

The VP associates to every one-parameter group of symmetries, a
conservation law.

Applications

Time invariance −→ conservation of energy,

Space invariance −→ conservation of momentum,
whence a Div-free tensor T .

Other invariances −→ If G contains O(q) for a non-degenerate quadratic
form q(x ) = xTSx (q(x ) = |x |2 or q(t , y) = c2t2 − |y |2),
then A := S−1T is symmetric and still Div-free.
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Examples with Lorentz group

Relativistic GD (see above).

(Maxwell system in vacuum) The Electro-magnetic field is a
2-form

α = (~E · dy) ∧ dt + B1dy2 ∧ dy3 + B2dy3 ∧ dy1 + B3dy1 ∧ dy2.

Its closedness expresses the Gauß–Faraday law

∂t ~B + curl ~E = 0, div ~B = 0.
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The Div-free energy-momentum tensor :

A =

(
L− ~E · ~D ~H × ~E
~D × ~B (L + ~B · ~H ) I3 − ~E ⊗ ~D − ~H ⊗ ~B

)
,

where ~D = ∂L

∂~E
, and ~H = − ∂L

∂~B
are the electric/magnetic inductions.

The symmetry requires the identity

~H × ~E = ~D × ~B ,

which is equivalent to Lorentz invariance :

L = L

(
~E · ~B , c

2|~B |2 − |~E |2

2

)
.
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HOW do we treat Div-BV tensor ?

Div-BV mimics the space

BV (Rn) = {f ∈M(Rn) | ∇f ∈M(Rn)},

for which we have
BV (Rn) ⊂ L

n
n−1 (Rn),

with a functional inequality (Gagliardo–Nirenberg–Sobolev)

‖f ‖ n
n−1
≤ cn‖∇f ‖M.

But ∇ is elliptic, while Div is not !! In the spirit of Compensated
Compactness, we expect that some non-linear quantity D(A) behaves
better than the entries aij do individually ...
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Which quantity ?

The examination of either the diagonal (Gagliardo inequality), or the
special cases in a periodic setting

−
∫

(detA)
1

n−1 dx = −
∫

det D2θ︸ ︷︷ ︸
null−Lagr.

dx =

(
det−
∫

Adx

) 1
n−1

suggests that this nice quantity is

A
D7−→ (detA)

1
n−1 .

This is where we need an extra assumption :

positive semi-definiteness : A(x ) � 0n .

For special tensors, this means θ convex.
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Main result : Compensated Integrability

Observe that (detA)
1
n is a well-defined measure,

0n ≤ (detA)
1
n ≤ 1

n
TrA.

Theorem 2 (Comp. Int. in Rn (D.S., JMPA 2019).)

Let A� 0n be a Div-BV tensor over Rn . Then (detA)
1
n ∈ L

n
n−1 (Rn) and

we have ∫
Rn

(detA)
1

n−1 dx ≤ cn‖DivA‖M.

Dual structure : the “2nd” BVP for the Monge-Ampère equation

det D2u = f (> 0, u convex).

The proof exploits Brenier’s theorem in Optimal Transport.
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The constant cn is explicit and sharp ! Equality happens when
A = χB In and B is a ball.

For general domains Ω, the choice A = χΩIn yields the Isoperimetric
Inequality

Vol(Ω)

Vol(Bn)
≤
(

Area(∂Ω)

Area(∂Bn)

) n
n−1

.

With A = f (x )In , one recovers the Sobolev embedding

BV (Rn) ⊂ L
n

n−1 (Rn).
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Periodic framework

Theorem 3 (D.S., Ann. IHP 2018.)

Let A � 0n be a periodic Div-free tensor.

Then

−
∫

(detA)
1

n−1 dx ≤
(

det−
∫

Adx

) 1
n−1

.

Looks like Jensen’s Inequality ...

but det
1

n−1 is not concave over Sym+
n .
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This is Div-quasi-concavity (terminology of Fonseca, Müller, de Philippis)

whence a weak-star upper semi-continuity result :

Theorem 4 (L. de Rosa & R. Tione, JFA 2020.)

Let Am � 0n be a sequence of Div-BV tensors, such that DivAm is
bounded in M(U ) and Am

∗
⇀ A in Lp with p > n

n−1 . Then up to a
subsequence

∗ lim
m→∞

(detAm)
1

n−1 ≤ (detA)
1

n−1 .

See also

Skipper & Wiedemann (2021),

Guerra, Rait, ă & Schrecker (2021, 2022).
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Evolution problems

Here n = 1 + d and x = (t , y).

A splits accordingly

A =

(
ρ mT

m 1
ρm ⊗m + σ

)
, detA = ρ detσ.

The positiveness of A amounts to that of ρ and σ. Denote

M ≡
∫
ρ(t , y) dy .

Theorem 5 (D.S. 2021.)

Let A � 0n be a Div-free tensor over (0,T )× Rd . Then∫ T

0

dt

∫
Rd

(ρdetσ)
1
d dx ≤d M

1
d (‖m(0, ·)‖M + ‖m(T , ·)‖M) .

D. Serre Compensated Integrability and Conservation Laws



Evolution problems

Here n = 1 + d and x = (t , y). A splits accordingly

A =

(
ρ mT

m 1
ρm ⊗m + σ

)
, detA = ρ detσ.

The positiveness of A amounts to that of ρ and σ. Denote

M ≡
∫
ρ(t , y) dy .

Theorem 5 (D.S. 2021.)

Let A � 0n be a Div-free tensor over (0,T )× Rd . Then∫ T

0

dt

∫
Rd

(ρdetσ)
1
d dx ≤d M

1
d (‖m(0, ·)‖M + ‖m(T , ·)‖M) .

D. Serre Compensated Integrability and Conservation Laws



Evolution problems

Here n = 1 + d and x = (t , y). A splits accordingly

A =

(
ρ mT

m 1
ρm ⊗m + σ

)
, detA = ρ detσ.

The positiveness of A amounts to that of ρ and σ.

Denote

M ≡
∫
ρ(t , y) dy .

Theorem 5 (D.S. 2021.)

Let A � 0n be a Div-free tensor over (0,T )× Rd . Then∫ T

0

dt

∫
Rd

(ρdetσ)
1
d dx ≤d M

1
d (‖m(0, ·)‖M + ‖m(T , ·)‖M) .

D. Serre Compensated Integrability and Conservation Laws



Evolution problems

Here n = 1 + d and x = (t , y). A splits accordingly

A =

(
ρ mT

m 1
ρm ⊗m + σ

)
, detA = ρ detσ.

The positiveness of A amounts to that of ρ and σ. Denote

M ≡
∫
ρ(t , y) dy .

Theorem 5 (D.S. 2021.)

Let A � 0n be a Div-free tensor over (0,T )× Rd . Then∫ T

0

dt

∫
Rd

(ρdetσ)
1
d dx ≤d M

1
d (‖m(0, ·)‖M + ‖m(T , ·)‖M) .

D. Serre Compensated Integrability and Conservation Laws



Evolution problems

Here n = 1 + d and x = (t , y). A splits accordingly

A =

(
ρ mT

m 1
ρm ⊗m + σ

)
, detA = ρ detσ.

The positiveness of A amounts to that of ρ and σ. Denote

M ≡
∫
ρ(t , y) dy .

Theorem 5 (D.S. 2021.)

Let A � 0n be a Div-free tensor over (0,T )× Rd . Then∫ T

0

dt

∫
Rd

(ρdetσ)
1
d dx ≤d M

1
d (‖m(0, ·)‖M + ‖m(T , ·)‖M) .

D. Serre Compensated Integrability and Conservation Laws



WHICH results do we get ?

C.I. applies to models that involve a positive Div-BV (often Div-free)
tensor :

Compressible Euler (the pressure being ≥ 0),

Boltzmann equation,

Particle dynamics or mean field models, under a radial, repulsive
interaction force,

Hard spheres dynamics,

Multi-D scalar conservation laws.

It does not ( ?) if the Div-free tensor is indefinite (or can be so) :

Navier-Stokes system,

Maxwell’s equations,

Attractive particle dynamics.
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Euler system of GD

Estimate 1

Hypotheses : physical domain Rd , finite mass M and initial energy E0.

We have ∫ +∞

0

dt

∫
Rd

ρ
1
d p dy ≤d M

1
d

√
ME0 .

A refinement of C.I., involving the action of the projective group, yields
an improved dispersion :

Estimate 2 (mono-atomic gas.)

Suppose p = 2
d ρe or p = ρ1+ 2

d . Denoting I0 =
∫
ρ(0, x ) |x |

2

2 dx the
moment of inertia at initial time, we have∫ +∞

0

t dt

∫
Rd

ρ
1
d p dy ≤d M

1
d

√
MI0 .
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Improved estimates

The time-space integrals do not depend upon the choice of the Galilean
frame.

The right-hand sides do ... Take the infimum !

This lets us replace

ME0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|u0(z )− u0(y)|2dz dy

+M

∫
Rd

ρ0e0 dy ,

and

MI0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|z − y |2dz dy .

D. Serre Compensated Integrability and Conservation Laws



Improved estimates

The time-space integrals do not depend upon the choice of the Galilean
frame.
The right-hand sides do ... Take the infimum !

This lets us replace

ME0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|u0(z )− u0(y)|2dz dy

+M

∫
Rd

ρ0e0 dy ,

and

MI0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|z − y |2dz dy .

D. Serre Compensated Integrability and Conservation Laws



Improved estimates

The time-space integrals do not depend upon the choice of the Galilean
frame.
The right-hand sides do ... Take the infimum !

This lets us replace

ME0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|u0(z )− u0(y)|2dz dy

+M

∫
Rd

ρ0e0 dy ,

and

MI0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|z − y |2dz dy .

D. Serre Compensated Integrability and Conservation Laws



Improved estimates

The time-space integrals do not depend upon the choice of the Galilean
frame.
The right-hand sides do ... Take the infimum !

This lets us replace

ME0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|u0(z )− u0(y)|2dz dy

+M

∫
Rd

ρ0e0 dy ,

and

MI0 7−→ 1

4

∫ ∫
Rd×Rd

ρ0(y)ρ0(z )|z − y |2dz dy .

D. Serre Compensated Integrability and Conservation Laws



Comments

The estimates do not assume an entropy condition.

They involve
however the decay of the mechanical energy t 7→ E (t).

Say that the gas is barotropic (p(ρ) = ργ for γ > 1). Then

ρ ∈ L∞t (L1
y)︸ ︷︷ ︸

mass

∩ L∞t (Lγy)︸ ︷︷ ︸
energy

∩Lγ+ 1
d

t,y︸ ︷︷ ︸
C.I.

.

The internal energy may not concentrate.

We lack a companion estimate for the velocity.

(Mono-atomic) Compare∫ +∞

0

t dt

∫
Rd

ρ
1
d p dy ≤d M

1
d

√
MI0

with (J.-Y. Chemin, 1990)

t2

∫
Rd

p dy ≤ 2

d
I0.
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Kinetic equations (Boltzman)

f (t , y , ξ) the distribution of mass, ξ the velocity of particles.

Essentially the same estimates, but ρ
1
d p is replaced by (det Ξ)

1
d where

Ξ(t , x ) =

∫
Rd

f (t , y , ξ)

(
1 ξT

ξ ξ ⊗ ξ

)
dξ.

That is

det Ξ =
d !

d + 1

∫ ⊗(1+d)

Rd

f (ξ0) · · · f (ξd)V (ξ0, . . . , ξd)2dξ0 · · · dξd ,

where V (ξ0, . . . , ξd) is the volume of the simplex whose vertices are
ξ0, . . . , ξd .

1-D estimate known by J.-M. Bony (1987) ; used by C. Cercignani (2005)
to prove that the DiPerna–Lions’ renormalized solutions are distributional.
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Hard spheres dynamics

Large number of spherical particles Bα(t), α ∈ [[1,N ]].

Elastic collisions.
Total mass M = Nm.

Initial data : positions/velocities. Yields conserved quantities

energy E0 =
m

2

∑
|uα(0)|2,

standard deviation of velocity ū.

Theorem 6 (R. K. Alexander 1975.)

Global existence, pairwise collisions only, for almost every initial data.

Ya. Sinai’s question :

Is the number K of collisions finite ? If so, how does it behave
with N ?
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Theorem 6 (R. K. Alexander 1975.)

Global existence, pairwise collisions only, for almost every initial data.

Ya. Sinai’s question :

Is the number K of collisions finite ? If so, how does it behave
with N ?

D. Serre Compensated Integrability and Conservation Laws



Hard spheres dynamics

Large number of spherical particles Bα(t), α ∈ [[1,N ]]. Elastic collisions.
Total mass M = Nm.

Initial data : positions/velocities. Yields conserved quantities

energy E0 =
m

2

∑
|uα(0)|2,

standard deviation of velocity ū.
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Answers :

Yes (Vaserstein 1979, Illner 1989),

logK = O(N 2 logN ) (Burago & al. 1998),

logK = O(N logN ) (Burdzy 2022),

For some configuration, logK ∼ N
2 log 2 (Burago & Ivanov 2018).

The above estimates don’t involve Functional Analysis. They provide
huge, useless, upper bounds.

Mind that K may be exponentially large !
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Weighted estimate

1st step. Construct a Div-free tensor encoding the dynamics.

Obstacle : The support is a graph =⇒ the rank is ≤ 1 a.e. Hence

(detA)
1
n ≡ 0.

C. I. seems useless.

2nd step. Apply a modified version of C.I., adapted to singular

supports : (detA)
1

n−1 is a set of Dirac masses at the
nodes of the graph.
Related to Minkowski’s problem, solved by Pogorelov
(1978).
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Theorem 7 (D.S., ARMA 2021.)

Then ∑
coll.

|uout − uin|︸ ︷︷ ︸
weight

≤d N 2ū.

Way better than NN ... !

In other words (qα = muα the linear momenta)

mean [TV (t 7→ qα(t))] ≤d

√
ME0 .
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Multi-D scalar conservation laws

Entropy solutions of
∂tu + divy

~f (u) = 0.

Analysis based upon the tensor A = T ◦ u,

T (v) =

∫ v

0

(
1

~f ′(s)

)
⊗
(

1
~f ′(s)

)
dµ(s),

whose rows represent entropy-flux pairs.
Their divergence is controlled : If u0,~f ◦ u0 ∈ L1(Rd), then

A is Div-BV.
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Ex. : Burgers equation

∂tu + ∂1
u2

2
+ · · ·+ ∂d

ud+1

d + 1
= 0.

The non-degeneracy implies a dispersion :

Theorem 8 (D. S. & L. Silvestre, ARMA 2019.)

There are exponents α(d , p), β(d , p) > 0 such that the solution of the
Cauchy problem with u0 ∈ L1(Rd) exists and satisfies for every
1 < p ≤ +∞ and every t > 0

‖u(t)‖p ≤d,p ‖u0‖α1 t−β .

Corollary 1 (M. Crandall’s question (1972).)

The PDE and the entropy inequalities are satisfied in the distributional
sense.
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Thank you for your attention !

D. Serre Compensated Integrability and Conservation Laws


