COMPACTNESS AND THE CURVATURE OF 3-WEBS

Lawrence C. Evans

Department of Mathematics
University of California, Berkeley

I. Weak convergence and products

Assume

$$
\left\{\begin{array}{l}
u^{\epsilon} \rightharpoonup u \\
v^{\epsilon} \rightharpoonup v
\end{array} \quad \text { as } \epsilon \rightarrow 0\right.
$$

QUESTION

When is it true that

$$
u^{\epsilon} v^{\epsilon} \rightharpoonup u v \quad ? ?
$$

FALSE IN GENERAL: High frequencies in u^{ϵ} and v^{ϵ} may "resonate".
EXAMPLE:

$$
u^{\epsilon}=v^{\epsilon}=\sin \left(\frac{x}{\epsilon}\right) \rightharpoonup 0, u^{\epsilon} v^{\epsilon}=\sin ^{2}\left(\frac{x}{\epsilon}\right) \rightharpoonup \frac{1}{2} .
$$

THEOREM

Let $n=2$ and assume

$$
u_{t}^{\epsilon}+b(x, t) u_{x}^{\epsilon}=0, v_{t}^{\epsilon}+c(x, t) v_{x}^{\epsilon}=0
$$

If

$$
b \neq c,
$$

then

$$
u^{\epsilon} v^{\epsilon} \rightharpoonup u v .
$$

PROOF: (L. Tartar) Define

$$
U^{\epsilon}=\left[b u^{\epsilon}, u^{\epsilon}\right]^{T}, V^{\epsilon}=\left[v^{\epsilon},-c v^{\epsilon}\right]^{T} .
$$

We have

$$
\left\{\begin{array}{l}
\operatorname{div} U^{\epsilon}=\left(b u^{\epsilon}\right)_{x}+u_{t}^{\epsilon}=b_{x} u^{\epsilon} \\
\operatorname{curl} V^{\epsilon}=v_{t}^{\epsilon}-\left(-c v^{\epsilon}\right)_{x}=c_{x} v^{\epsilon}
\end{array}\right.
$$

By Div-Curl Lemma,

$$
U^{\epsilon} \cdot V^{\epsilon} \rightharpoonup U \cdot V
$$

This says

$$
(b-c) u^{\epsilon} v^{\epsilon} \rightharpoonup(b-c) u v .
$$

ANOTHER PROOF: Change variables:

Convert to $u^{\epsilon}=u^{\epsilon}(x), v^{\epsilon}=v^{\epsilon}(t)$. Easy to see that

$$
u^{\epsilon}(x) v^{\epsilon}(t) \rightharpoonup u(x) v(t) .
$$

II. Weak convergence and triple products

Assume

$$
\left\{\begin{array}{l}
u^{\epsilon} \rightharpoonup u \\
v^{\epsilon} \rightharpoonup v \\
w^{\epsilon} \rightharpoonup w
\end{array} \quad \text { as } \epsilon \rightarrow 0\right.
$$

QUESTION

When is it true that

$$
u^{\epsilon} v^{\epsilon} w^{\epsilon} \rightharpoonup u v w \text { ?? }
$$

REFERENCES: J.-L. Joly, G. Metivier and J. Rauch, "Trilinear compensated compactness and nonlinear geometric optics", Annals of Math. 142 (1995), 121-169.
M. Christ, "On trilinear oscillatory integral inequalities and related topics", preprint (2021)

THEOREM (Joly-Metivier-Rauch)

Assume

$$
u^{\epsilon}=u^{\epsilon}(x), v^{\epsilon}=v^{\epsilon}(t), w_{t}^{\epsilon}+a(x, t) w_{x}^{\epsilon}=0
$$

If $a>0$ and

$$
(\log a)_{x t} \neq 0
$$

then

$$
u^{\epsilon} v^{\epsilon} w^{\epsilon} \rightharpoonup u v w .
$$

WHAT IS THE MEANING OF THE CONDITION

$$
\kappa=(\log a)_{x t} \neq 0 ?
$$

This is a formula for the curvature of the 3-web comprising the horizontal lines, the vertical lines and the trajectories of the ODE

$$
\dot{\gamma}=a(\gamma, t)
$$

Introduce the simple transport PDE

$$
\phi_{t}+a \phi_{x}=0 \quad \text { in } \mathbb{R}^{2}
$$

any solution $\phi=\phi(x, t)$ of which is constant along the flow lines of the ODE $\dot{\gamma}=a(\gamma, t)$.

LEMMA

Assume

$$
\phi_{x}>0, \phi_{t}<0
$$

and define

$$
z=\frac{\phi_{x t}}{\phi_{t}} .
$$

Then

$$
z_{t}+(a z)_{x}=\kappa
$$

III. 3-webs in the plane

THEOREM

(i) If $\kappa \equiv 0$, then the points A, B, C, D, E, F are the vertices of a closed curvilinear "hexagon".
(ii) If instead $\kappa \neq 0$, the points A, B, C, D, E, F are not the vertices of a closed hexagon.

A PDE PROOF: 1 . Assume $O=(0,0)$ and let ϕ solve the transport PDE with initial conditions

$$
\phi(x, 0)=\int_{0}^{x} \frac{1}{a(y, 0)} d y
$$

Then

$$
\phi_{t}(x, 0)=-a(x, 0) \phi_{x}(x, 0)=-a(x, 0) \frac{1}{a(x, 0)}=-1
$$

and so $\phi_{x t}(x, 0)=0$. Thus

$$
z(x, 0)=0,
$$

where $z=\frac{\phi_{x t}}{\phi_{t}}$.
2. Assume $\kappa \equiv 0$. It follows from the Lemma that $z \equiv 0$. Therefore $\phi_{x t} \equiv 0$ and consequently

$$
\begin{aligned}
& 0=\iint_{O A B C} \phi_{x t} d x d t=\phi(B)+\phi(O)-\phi(A)-\phi(C), \\
& 0=\iint_{O D E F} \phi_{x t} d x d t=\phi(E)+\phi(O)-\phi(D)-\phi(F) .
\end{aligned}
$$

Since $\phi(O)=\phi(B)=\phi(E)=0$ and $\phi(C)=\phi(D)$, it follows that $\phi(F)=\phi(A)$. So the points A and F are on the same flow line.
3. Suppose instead that $\kappa<0$. Since $z_{t}+(a z)_{x}=\kappa$ in \mathbb{R}^{2}, with $z=0$ on the horizontal line $\{t=0\}$, we have

$$
\begin{cases}z<0 & \text { in } \mathbb{R} \times\{t>0\} \\ z>0 & \text { in } \mathbb{R} \times\{t<0\}\end{cases}
$$

As $\phi_{x t}=\phi_{t} z$ and $\phi_{t}<0$,

$$
\begin{cases}\phi_{x t}>0 & \text { in } \mathbb{R} \times\{t>0\} \\ \phi_{x t}<0 & \text { in } \mathbb{R} \times\{t<0\}\end{cases}
$$

Therefore

$$
\begin{aligned}
& 0<\iint_{O A B C} \phi_{x t} d x d t=\phi(B)+\phi(O)-\phi(A)-\phi(C), \\
& 0>\iint_{O D E F} \phi_{x t} d x d t=\phi(E)+\phi(O)-\phi(D)-\phi(F) .
\end{aligned}
$$

Since $\phi(O)=\phi(B)=\phi(E)=0$ and $\phi(C)=\phi(D)$, we have $\phi(A)<\phi(F)$. So A and F are not on the same flow line: the hexagon does not close up.

Zero curvature gives resonances

It turns out that if $\kappa \equiv 0$ (equivalently, all the hexagons close up), then there exist 3 functions

$$
\psi_{1}(x), \psi_{2}(t), \psi_{3}(x, t),
$$

with non vanishing gradients, such that $\psi_{3, t}+a \psi_{3, x}=0$ and

$$
\psi_{1}(x)+\psi_{2}(t)+\psi_{3}(x, t) \equiv 0 \quad \text { (Resonance condition) }
$$

(Proof: Solve the PDE for ψ_{3} by separating variables.)
Let

$$
u^{\epsilon}(x)=e^{i \frac{\psi_{1}(x)}{\epsilon}}, v^{\epsilon}(t)=e^{i \frac{\psi_{2}(t)}{\epsilon}}, w^{\epsilon}(x, t)=e^{i \frac{\psi_{3}(x, t)}{\epsilon}}
$$

Then

$$
u^{\epsilon}, v^{\epsilon}, w^{\epsilon} \rightharpoonup 0
$$

by (non)stationary phase estimates, but

$$
u^{\epsilon} v^{\epsilon} w^{\epsilon} \equiv 1 .
$$

IV. Compactness and curvature

Assume $\left\{u^{\epsilon}(x)\right\}$ is bounded in $L^{\infty}(\mathbb{R}), w^{\epsilon}=w^{\epsilon}(x, t)$ solves the PDE

$$
w_{t}^{\epsilon}+a(x, t) w_{x}^{\epsilon}=0
$$

and

$$
w^{\epsilon} \rightharpoonup 0 \quad \text { as } \epsilon \rightarrow 0 .
$$

Let $\chi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth cutoff function and introduce the nonlinear correlation function

$$
\lambda^{\epsilon}(t)=\int_{\mathbb{R}} u^{\epsilon}(x) w^{\epsilon}(x, t) \chi(x, t) d x
$$

THEOREM

Assume that

$$
\kappa \neq 0 \quad \text { in } \mathbb{R}^{2} .
$$

Then

$$
\lambda^{\epsilon} \rightarrow 0 \quad \text { strongly in } L^{2}\left(\mathbb{R}^{2}\right) .
$$

OUTLINE OF PROOF:

1. Write

$$
I^{\epsilon}=\int_{0}^{T}\left(\lambda^{\epsilon}\right)^{2} d t=\int_{0}^{T} \iint_{\mathbb{R}^{2}} u^{\epsilon}(x) u^{\epsilon}(y) w^{\epsilon}(x, t) w^{\epsilon}(y, t) \chi(x, t) \chi(y, t) d x d y d t .
$$

We have

$$
w^{\epsilon}(x, t)=v^{\epsilon}(\phi(x, t)),
$$

where ϕ solves the transport PDE and $v^{\epsilon} \rightharpoonup 0$. Also,

$$
v^{\epsilon}(z)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{i \xi z} \widehat{v^{\epsilon}}(\xi) d \xi
$$

where

$$
\widehat{v^{\epsilon}} \rightarrow 0 \quad \text { uniformly on bounded sets. }
$$

Hence

$$
I^{\epsilon}=\iiint \int_{\mathbb{R}^{4}} \Lambda^{\epsilon} J_{1} d x d y d \xi d \eta
$$

for

$$
\begin{aligned}
& \Lambda^{\epsilon}=u^{\epsilon}(x) u^{\epsilon}(y) \widehat{v^{\epsilon}}(\xi)\left(\widehat{v}^{\epsilon}(\eta)\right)^{-} \\
& J_{1}=\int_{0}^{T} e^{i(\xi \phi(x, t)-\eta \phi(y, t))} b_{1} d t
\end{aligned}
$$

2. Assume that for each (x, y, ξ, η), the mapping

$$
t \mapsto \xi \phi(x, t)-\eta \phi(y, t)
$$

has a unique, nondegenerate minimum at $\tau=\tau(x, y, \xi, \eta)$. Then standard stationary phase estimates show

$$
I^{\epsilon}=\iiint \int_{\mathbb{R}^{4}} \Lambda^{\epsilon} J_{2} d x d y d \xi d \eta+o(1)
$$

where

$$
J_{2}=e^{i \Psi(x, y, \xi, \eta)} b_{2}|\xi|^{-\frac{1}{2}}
$$

for

$$
\Psi(x, y, \xi, \eta)=\xi \phi(x, \tau)-\eta \phi(y, \tau), \tau=\tau(x, y, \xi, \eta)
$$

3. Now define the Fourier integral operator

$$
\mathcal{T} f(x, y)=\iint_{\mathbb{R}^{2}} e^{i \psi(x, y, \xi, \eta)} b_{2} f(\xi, \eta) d \xi d \eta .
$$

I claim

$$
\mathcal{T}: L^{2}\left(\mathbb{R}_{\xi \eta}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}_{x y}^{2}\right)
$$

is a bounded linear operator.

The key observation for showing this is that

$$
\operatorname{det}\left(\begin{array}{ll}
\Psi_{x \xi} & \Psi_{x \eta} \\
\Psi_{y \xi} & \Psi_{y \eta}
\end{array}\right)=B \int_{x}^{y} \kappa(r, \tau) d r \neq 0,
$$

where B denotes a nonvanishing expression.
Since \mathcal{T} is a bounded linear operator on L^{2}, the extra term $|\xi|^{-\frac{1}{2}}$ above lets us show that

$$
I^{\epsilon} \rightarrow 0
$$

REMARK In the real proof, we have to factor

$$
w^{\epsilon}(x, t)=v^{\epsilon}(\phi(x, t))=\tilde{v}^{\epsilon}(\tilde{\phi}(x, t))
$$

for two different solutions of the transport PDE, to get to the situation stated in blue on the previous slide.

