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|. Weak convergence and products

Assume
uc —u
as ¢ — 0.

véE = v

QUESTION
When is it true that

uve —uv| 77

FALSE IN GENERAL: High frequencies in u¢ and v may “resonate”.

EXAMPLE:

u = v =sin(%) =0, uv = sinz(f) -

N
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THEOREM

Let n = 2 and assume

ug + b(x, t)ug =0, vi + c(x, t)vg = 0.

If
then

PROOF: (L. Tartar) Define
U = [bus, u]", Ve = [v, —cv]T.

We have
div U® = (bu)x + uf = b, u*
curl Ve =vi — (—cv), = cve.

By Div-Curl Lemma,
ue-ve—~u-Vv.
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N 0
This says
(b—c)u‘v® — (b— c)uv.

ANOTHER PROOF: Change variables:

Convert to u¢ = u¢(x), v¢ = v¢(t). Easy to see that
u(x)ve(t) = u(x)v(t).
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Il. Weak convergence and triple products

Assume
ut —u
Ve = v as € — 0.

we — w

QUESTION
When is it true that

uvews — uvw | 77

REFERENCES: J.-L. Joly, G. Metivier and J. Rauch, “Trilinear compensated
compactness and nonlinear geometric optics”, Annals of Math. 142 (1995),
121-169.

M. Christ, “On trilinear oscillatory integral inequalities and related topics”,
preprint (2021)
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THEOREM (Joly—Metivier-Rauch)

Assume
ut = u(x), ve=ve(t), wi+a(x,t)wg =0
If a> 0 and
(|Og a)xt 7é 07
then

WHAT IS THE MEANING OF THE CONDITION

| = (loga). #0]?

This is a formula for the curvature of the 3-web comprising the horizontal lines,
the vertical lines and the trajectories of the ODE

7= 3(77 t)'
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Introduce the simple transport PDE

¢+ ag, =0| in R,

any solution ¢ = ¢(x, t) of which is constant along the flow lines of the ODE
¥ =a(y,1).

LEMMA
Assume
ox >0, ¢ <0

and define ‘

Pxt

zZ = -

Pe

Then

ze + (az)x = k.
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II1. 3-webs in the plane

C B = 5
D (0] A D [e) A
E F E F

THEOREM

(i) If Kk =0, then the points A, B, C, D, E, F are the vertices of a closed
curvilinear “hexagon”.

(ii) If instead k # 0, the points A, B, C, D, E, F are not the vertices of a closed
hexagon.
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IS 00 202020202
A PDE PROOF: 1. Assume O = (0,0) and let ¢ solve the transport PDE with

initial conditions x 1
d(x,0 :/ dy.
( ) 0 a(yv 0) Y

de(x,0) = —a(x,0)dx(x,0) = —a(x, O) = -1,

and so @x(x,0) = 0. Thus

Then

z(x,0) =0,
where z = %

2. Assume k = 0. It follows from the Lemma that z = 0. Therefore ¢, = 0 and
consequently

0= //OABC b dict = $(B) + 6(0) — 4(A) — 6(C),

0= //ODEF Pyt dxdt = ¢(E) —|—¢(O) — ¢(D) _ ¢(F)

Since ¢(0) = = ¢(E) =0 and ¢(C) = ¢(D), it follows that ¢(F) = ¢(A).
So the points A and F are on the same flow line.
9/15



3. Suppose instead that x < 0. Since z; + (az)x =  in R?, with z =0 on the
horizontal line {t = 0}, we have

z<0 in Rx {t >0}
z>0 in R x {t <0}

As ¢yt = ¢rz and ¢y < 0,

bt >0  inRx{t>0}
b <0 inRx{t <0}

Therefore

0< //OABC Oyt dxdt = qb(B) + ¢(O) _ ¢(A) _ ¢(C)7

0> / /O e dde = 9(E) +0(0) ~ 9(D) — 4(F).

Since ¢(0) = =¢(E) =0 and ¢(C) = ¢(D), we have ¢(A) < #(F). So A
and F are not on the same flow line: the hexagon does not close up. O
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Zero curvature gives resonances

It turns out that if K = 0 (equivalently, all the hexagons close up), then there exist
3 functions

wl(x)’ 7/)2(1‘)7 1/}3()(’ t)a

with non vanishing gradients, such that 3 ; 4+ ay3 x = 0 and

P1(x) + ¥a(t) + 3(x,t) =0 (Resonance condition)
(Proof: Solve the PDE for 13 by separating variables.)
Let

j¥1)

<o (t) - P3(x,t)

u(x) =e""< ,vi(t) =€ ,wi(x,t) =€ ¢

Then

us,ve,wé —0
by (non)stationary phase estimates, but

uvewe =1.
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V. Compactness and curvature

Assume {u¢(x)} is bounded in L*(R), w® = w¢(x, t) solves the PDE

’ wi + a(x, t)wg =0,

and
w¢—0 ase—0.

Let x : R> — R be a smooth cutoff function and introduce the nonlinear
correlation function

THEOREM

Assume that

k#0 inR2

Then
A\ — 0 strongly in L*(R?).
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S
OUTLINE OF PROOF:
1. Write

=/ "y de = / ' J L w0 )y ) e

We have
we(x, t) = v¥(o(x, 1)),

where ¢ solves the transport PDE and v¢ — 0. Also,

e I§z d
\/271' / ) dé.
where
vé — 0 uniformly on bounded sets.

Hence

¢ = //// A€ Jy dxdyd€dn,

]RA

for

A = u ) (y)ve()(ve(m)

Jy = / (€100 . g,

0
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R
2. Assume that for each (x, y,&,n), the mapping

t— §¢(X, t) - 77¢(}’a t)

has a unique, nondegenerate minimum at 7 = 7(x, y,&,n). Then standard
stationary phase estimates show

Ic = ////R ¢ Jy dxdyd€dn + o(1),

b = ei“’(x,yém)bsz%

where
for
V(x,y,6m) =&p(x, ) =nd(y,7), T="1(x,y,£,n).

3. Now define the Fourier integral operator

Tf(x,y) = // ey EM b £(£ n) dedn.
J JR2
| claim
T L2(R,) — L*(R3)

is a bounded linear operator.
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The key observation for showing this is that

v v Y
det( x§ X"):B/mr,f dr #0,
Vye Wy, x (r.7)
where B denotes a nonvanishing expression.

Since 7 is a bounded linear operator on L2, the extra term |£|~2 above lets us
show that
1= 0.

REMARK In the real proof, we have to factor

w(x, t) = v¥((x, 1)) = V*(d(x, 1))

for two different solutions of the transport PDE, to get to the situation stated in
blue on the previous slide.
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