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Korteweg-de Vries Equation: DSWs
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ut + uux + uxxx = 0

u(x,0) = {1 x < 0
0 x > 0

Gurevich-Pitaevskii solution: 
Modulated elliptic function 

[Gurevich and Pitaevskii JETP (1974)]

u(θ) = r1 + r2 − r3 + 2(r3 − r1)dn2 ( r1 − r3

6
θ; m) θX = k, θT = − ω

X = ϵx, T = ϵt

rT + Vi(r)rX = 0 r = [r1 r2 r3]T

DSW corresponds to 
rarefaction wave solution of 

diagonalized Whitham 
modulation equations

(smoothed)

X /T
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DSWs in dispersive hydrodynamics
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3K, and does not change between 3 and 2.4K. Clearly, d
does not depend only on the value of the surface tension.
At 4.2K, we have also observed that d depends on the
thermalization of the cell with the main bath. Presumably
residual thermal gradients influence the way the liquid falls
over the edge of the mirror.

Since we measure both Q and d, it is possible to compare
the measured value of Rj with the prediction by Watson.
Eq. (2) is easily solved numerically. In Fig. 6, we have
plotted the predicted value of Rj as a function of the
measured Rj in Watson’s model (open symbols). The order
of magnitude is correct, but there is a clear discrepancy; the
predicted value is generally higher than the measured one.
At fixed Rj, the lower the temperature, the higher the
prediction. As the surface tension is the only parameter
which varies significantly, capillary effects are the natural
candidate to explain the disagreement. For the smallest
jump in our experiment, we find that Bo is about 0.2, which
means that capillary forces are more than a small
correction! Hence we also plot the solution of Eq. (3) in
the limit of an abrupt jump (f ¼ 1), shown as solid symbols
in Fig. 6. The model of Bush and Aristoff collapses the
data much better than Watson’s; the predicted values in
this model are now systematically smaller than the
measured ones but this is expected since they are computed
in the limit f ¼ 1, which correspond to a lower boundary
for Rj . Real jumps, especially at low flow rate (i.e. small
radii) look very smooth. A precise comparison with Bush
and Aristoff predictions requires determining the actual
profile of the jump. Unfortunately, our optical techniques
do not work when the local slope is large, which happens
precisely at the jump.

At this stage, it seems that treating the jump as a
discontinuity provides a good estimate of Rj. This is

slightly surprising in view of the image in Fig. 3, where the
jump is smooth and the flow is quite laminar. Such
situations, which require a very accurate temperature
regulation, are obtained only for T ¼ 4:2K and
Qt10mm3=s. For these jumps, we have compared
experimental data with the model developed by Bohr and
co-workers [3]. In order to obtain a prediction for Rj, one
needs to numerically integrate the coupled equations for
the interface height hðrÞ and the velocity profile from a
point r1 inside the jump to a point far downstream, where
h ¼ d . The thickness hðr1Þ is about 10mm. Following the
integration method proposed by Watanabe et al., we
obtain Rj ’ 0:95r$, with r$ ¼ ½ðQ=2pÞ5n&3g&1'1=8 (the nu-
merical factor is not very sensitive to the value of hðr1Þ).
This yields values roughly two times larger than the
experimental one. Thus Bohr’s model does not seem to
describe accurately small jumps. One first reason could be
that capillary forces are neglected. According to Watanabe
et al., capillarity is negligible if the Weber number We (
L2
C=r2$ is small. For Q)10mm3=s, one finds We)0:25 so

that capillarity forces are small but not negligible as in
Bohr’s approach. A second reason could be that Rj is not
very large compared to R0, the point where the velocity
profile changes from a Blasius type to a fully viscous
profile. From Watson [9], one finds that in our experiments
Rj\2R0.

3.3. Going through the superfluid transition

In order to study what happens at the superfluid
transition ðTl ¼ 2:17KÞ, we have set the flow rate at a
constant value Q ¼ 17mm3=s and slowly decreased the
temperature through the transition at a rate of 30mK/min.
Images are shown in Fig. 7. There is little change in the
jump radius on passing through the transition temperature.

ARTICLE IN PRESS

0

0.5

1

1.5

2

2.5

3

R
th

 (m
m

)

Rexp (mm)
0 0.5 1 1.5 2 2.5 3

Fig. 6. Comparison of the measured jump radius Rj with the prediction
without surface tension [9] (open symbols) and with surface tension in the
abrupt-jump limit [5] (closed symbols) Circles: 2.45K; squares: 3.0K;
triangles: 4.25K. Neglecting the surface tension yields too large a radius,
but in the abrupt-jump limit, capillary forces are overestimated.
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Fig. 7. Evolution of the jump as a function of the temperature: Rj varies
only slightly at the superfluid transition. Ripples appears progressively
below Tl. Q ¼ 17mm3=s and Rj ’ 2mm.
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Model for weakly nonlinear long waves in the presence of strong 
surface tension [Hunter and Scheurle Physica D (1998)]


Rescaled equation


Dispersion relation


Applications 

Kawahara Equation
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ηt +
3c0

2h
ηηx +

1
2

c0h2( 1
3 −B)ηxxx +

c0h4

90
ηxxxxx = 0

ut + uux + σuxxx + uxxxxx = 0, σ = ± 1,0

• Flexural ice sheets [Marchenko, PMM USSR 52(2) 1988]

• Nonlocal, nematic liquid crystals [Smyth, El Proc Roy Soc A, 472 (2016)]


• Spin-orbit coupled BEC [Khamehchi PRL 118, 155301 (2017)]

• Chains of electromagnetic oscillators [Gorshov et al. Phys Lett. 74 (1979)]

• Collisionless plasma [Kakutani, Ono JPS 26 (1969)]

ω(k; ū) = ūk − σk3 + k5
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Kawahara Riemann problem 
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ut + uux + σuxxx+uxxxxx = 0, σ = ± 1 u(x,0) = {Δ x < 0
0 x > 0
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Detailed study of DSW 
structure found in PS, 

Hoefer SIAM J Appl Math 
2017
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Kawahara Riemann problem 
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ut + uux + σuxxx+uxxxxx = 0, σ = ± 1 u(x,0) = {Δ x < 0
0 x > 0
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For sufficiently large 
amplitude jumps, the 
resulting DSW 
resembles those for 



[Hoefer, Smyth, PS Stud. Appl 
Math 142 (2018)]
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Traveling 

Wave Partial DSW
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Seek traveling wave solution of form 


Corresponding traveling wave Hamiltonian 


Traveling wave jump conditions: 


u = u(x − ct)

Construction of TW solutions 
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−cu +
1
2

u2 + σu′ ′ + u(4) = 𝒜

ℋ = −
c
2

u2 +
1
6

u3 +
σ
2

(u′ )2 + u′ ′ ′ u′ −
1
2

(u′ ′ )2 − 𝒜u,

[[ℋ]] = 0

[[𝒜]] = 0 c = cp
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Solutions computed 
on periodic domain 
using Newton-CG 
method [Yang 2009]


Numerical 
computations are 
similar to those for  
“multi-pulsed” 
solitary waves [Buffoni, 
Champneys, Toland J. Dyn. Diff. 
Eq (1994)]

Equilibrium-to-periodic TWs
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Periodic-to-Periodic

Assume the existence of two distinct periodic orbits with the same 
velocity 


Constant Hamiltonian  three dimensional subspace of 4D 
phase space


Computation two dimensional invariant manifolds of each 
hyperbolic periodic orbit and their on appropriately chosen 
Poincare section yields heteroclitic orbit between far-field states 

⟹

-80 -60 -40 -20 0 20 40 60

-1

0

1
φ− c− → φ+ c+ →

… … 

Wφ−,u

Wφ+,s
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Whitham shocks satisfy jump conditions 


Far-field parameters of

periodic orbits correspond

to solutions of the

generalized Riemann problem 

Connection to Modulation theory 
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u = φ(θ; ū, a, k)
θX = k θT = − ω

Nonlinear modulated wave 
(u)T+ 1

2 (φ2)X
= 0

(φ2)T
+ ( 2

3 φ3 − 3k2σφ2
θ + 5k4φ2

θθ)X
= 0

kT + ωX = 0

−c(u− − u+) +
1
2 (φ2

− − φ2
+) = 0

−
c
2 (φ2

− − φ2
+) +

1
3 (φ3

− − φ3
+) +

3
2

σ (k2
−φ2

−,θ − k2
+φ2

+,θ) −
5
2 (k4

−φ2
−,θθ − k4

+φ2
+,θθ) = 0

−c(k− − k+) + (c−k− − c+k+) = 0

(ū, a, k) = {(ū−, a−, k−) x < 0
(0,a+, k+) x > 0
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Theorem: Traveling waves connecting two distinct periodic waves 
satisfy jump conditions of Whitham Eqs.

Definition: A Whitham shock is admissible if  traveling wave with 
far-field periodic wave behavior given by jump conditions. 

Numerical computations suggest that stable Whitham shocks are 
undercompressive

Analysis of jump conditions: 
Bifurcation from periodic waves to two distinct far-field periodic 
orbits 

Computation of traveling waves: 
Find intersections of unstable manifolds of periodic orbits  

∃

Whitham shocks 
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−c[[P]] + [[Q]] = 0
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Linearize jump conditions around trivial solution 


Compute parameters for which 


F(q0) = 0

∇qF(q0) = 0

Bifurcations from periodic waves
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q0 = (0,a0, k0)
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Example: 
Numerical 
computations with  


σ = + 1

Near linear 
resonant waves 
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Families of solutions of jump conditions yields 5 far-field wave 
parameters: (u−, a−, k−, a+, k+)

Traveling wave loci 
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solution locus for fixed  = 2a+

Limiting cases:  k± → 0

ū−

Procedure to construct TW: 

• Compute Floquet 

multipliers 

• Compute corresponding 

stable/unstable manifolds 

• Find intersection on 

appropriate Poincaré 
section 
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Suppose  are periodic orbits with real Floquet multipliers φ±

Constructing TWs
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(a) 2D unstable manifold of : Möbius strip, λ < −1
(b) 2D stable manifold of : cylinder, 0 < λ < 1

φ−
φ+

(a) (b)
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u u′ 

u′ ′ 

Computations of traveling waves 
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Traveling wave 
reconstructed from 

intersections of 
invariant manifolds at 

 ξ = 0

Computations of invariant 
manifolds of two hyperbolic 
periodic orbits  and φ− φ+

φ−

φ+

−cu′ + uu′ + αu′ ′ ′ + u(5) = 0
α = + 1
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Boussinesq systems in shallow water hydrodynamics

[Bona, Chen & Saut J. Nonlinear Sci (2002)]


Traveling wave equations form Hamiltonian dynamical system in 
ℝ4

Extension to systems 
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ηt + ux + (ηu)x + auxxx − bηxxt = 0
ut + ηx + uux + cηxxx − buxxt = 0

a, b, c ∈ ℝ

a + b = 1
2 (θ2− 1

3 )
b + c = 1

2 (1 − θ2)

a + 2b + c = 1
3
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Preliminary 
numerical 

computations 
suggest existence  

of localized, 
oscillatory defects 

on periodic 
background 
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Presence of fifth order dispersion results in nonclassical DSW 
structure 


Portion of nonclassical DSWs correspond to a Whitham shock that 
satisfy RH conditions for Whitham modulation equations 


Traveling waves bifurcate from degenerate periodic orbits that are 
at the hyperbolic-elliptic transition 


Computations of periodic-periodic traveling waves are successful 
so long as far-tied periodic orbits are both hyperbolic 


Open avenues for future work 


• Extensions to systems in shallow water hydrodynamics 


• Extensions to nonlocal equations, e.g. Ostovsky, Whitham etc

Conclusions 
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