# DSWs and Traveling Wave solutions of Fifth Order KdV Equations

Patrick Sprenger Isaac Newton Institute, University of Cambridge

> INI Visit to Oxford 22 September 2022

# Acknowledgements

Collaborators

Michael Shearer Mark Hoefer Tom Bridges

FundingNSF-DMS grant 812445INI-Simons fellowship

ReferencesPS, M. Hoefer. Nonlinearity 33 (2020)PS, T. Bridges, M. Shearer. *arXiv:2203.01906* 

#### **Korteweg-de Vries Equation: DSWs**



# **DSWs in dispersive hydrodynamics**

#### Internal/surface water waves

#### Nonlinear optics



# **Kawahara Equation**

Model for weakly nonlinear long waves in the presence of strong surface tension [Hunter and Scheurle Physica D (1998)]

$$\eta_t + \frac{3c_0}{2h}\eta\eta_x + \frac{1}{2}c_0h^2(\frac{1}{3} - B)\eta_{xxx} + \frac{c_0h^4}{90}\eta_{xxxx} = 0$$

Rescaled equation  $u_t + uu_x + \sigma u_{xxx} + u_{xxxxx} = 0, \quad \sigma = \pm 1,0$ 

Dispersion relation  $\omega$ 

$$\rho(k;\bar{u}) = \bar{u}k - \sigma k^3 + k^5$$

Applications

- Flexural ice sheets [Marchenko, PMM USSR 52(2) 1988]
- Nonlocal, nematic liquid crystals [Smyth, El Proc Roy Soc A, 472 (2016)]
- Spin-orbit coupled BEC [Khamehchi PRL 118, 155301 (2017)]
- Chains of electromagnetic oscillators [Gorshov et al. Phys Lett. 74 (1979)]
- Collisionless plasma [Kakutani, Ono JPS 26 (1969)]

# Kawahara Riemann problem



# Kawahara Riemann problem

 $u(x,0) = \begin{cases} \Delta & x < 0\\ 0 & x > 0 \end{cases}$  $u_t + uu_x + \sigma u_{xxx} + u_{xxxxx} = 0, \quad \sigma = \pm 1$ 



For sufficiently large amplitude jumps, the resulting DSW resembles those for

$$\sigma = 0$$

[Hoefer, Smyth, PS Stud. Appl Math 142 (2018)]

# **Construction of TW solutions**

Seek traveling wave solution of form u = u(x - ct)

$$-cu + \frac{1}{2}u^2 + \sigma u'' + u^{(4)} = \mathscr{A}$$

Corresponding traveling wave Hamiltonian

$$\mathscr{H} = -\frac{c}{2}u^{2} + \frac{1}{6}u^{3} + \frac{\sigma}{2}(u')^{2} + u'''u' - \frac{1}{2}(u'')^{2} - \mathscr{A}u,$$

Traveling wave jump conditions:  $\llbracket \mathscr{A} \rrbracket = 0$   $c = c_p$ 

 $[\![\mathcal{H}]\!] = 0$ 



# Equilibrium-to-periodic TWs

Solutions computed on periodic domain using Newton-CG method [Yang 2009]

Numerical computations are similar to those for "multi-pulsed" solitary waves [Buffoni, Champneys, Toland J. Dyn. Diff. Eq (1994)]



### **Periodic-to-Periodic**

![](_page_9_Figure_1.jpeg)

Assume the existence of two distinct periodic orbits with the same velocity

Constant Hamiltonian  $\implies$  three dimensional subspace of 4D phase space

Computation two dimensional invariant manifolds of each hyperbolic periodic orbit and their on appropriately chosen Poincare section yields heteroclitic orbit between far-field states

# **Connection to Modulation theory**

Nonlinear modulated wave

$$u = \varphi(\theta; \bar{u}, a, k)$$
  

$$\theta_X = k \quad \theta_T = -\omega \qquad \left(\overline{\varphi^2}\right)_T + \left(\frac{2}{3}\overline{\varphi^3} - 3k^2\sigma\overline{\varphi_\theta^2} + 5k^4\overline{\varphi_{\theta\theta}^2}\right)_X = 0$$
  

$$k_T + \omega_X = 0$$

Whitham shocks satisfy jump conditions

$$-c(\overline{u}_{-} - \overline{u}_{+}) + \frac{1}{2}\left(\overline{\varphi_{-}^{2}} - \overline{\varphi_{+}^{2}}\right) = 0$$
  
$$-\frac{c}{2}\left(\overline{\varphi_{-}^{2}} - \overline{\varphi_{+}^{2}}\right) + \frac{1}{3}\left(\overline{\varphi_{-}^{3}} - \overline{\varphi_{+}^{3}}\right) + \frac{3}{2}\sigma\left(k_{-}^{2}\overline{\varphi_{-,\theta}^{2}} - k_{+}^{2}\overline{\varphi_{+,\theta}^{2}}\right) - \frac{5}{2}\left(k_{-}^{4}\overline{\varphi_{-,\theta\theta}^{2}} - k_{+}^{4}\overline{\varphi_{+,\theta\theta}^{2}}\right) = 0$$
  
$$-c(k_{-} - k_{+}) + \left(c_{-}k_{-} - c_{+}k_{+}\right) = 0$$

Far-field parameters of periodic orbits correspond to solutions of the generalized Riemann problem

$$(\bar{u}, a, k) = \begin{cases} (\bar{u}_{-}, a_{-}, k_{-}) & x < 0\\ (0, a_{+}, k_{+}) & x > 0 \end{cases}$$

 $(\overline{u}) + \frac{1}{2} \left( \overline{\omega^2} \right) = 0$ 

# Whitham shocks

**Theorem**: Traveling waves connecting two distinct periodic waves satisfy jump conditions of Whitham Eqs.

 $-c[[\mathbf{P}]] + [[\mathbf{Q}]] = 0$ 

**Definition**: A Whitham shock is **admissible** if  $\exists$  traveling wave with far-field periodic wave behavior given by jump conditions.

Numerical computations suggest that stable Whitham shocks are *undercompressive* 

Analysis of jump conditions:

Bifurcation from periodic waves to two distinct far-field periodic orbits

Computation of traveling waves:

Find intersections of unstable manifolds of periodic orbits

# **Bifurcations from periodic waves**

Linearize jump conditions around trivial solution  $F(q_0) = 0$ 

$$\mathbf{q_0} = (0, a_0, k_0)$$

Compute parameters for which 
$$\nabla_{\mathbf{q}} F(\mathbf{q}_0) = 0$$

![](_page_12_Figure_4.jpeg)

# **Traveling wave loci**

Families of solutions of jump conditions yields 5 far-field wave parameters:  $(u_-, a_-, k_-, a_+, k_+)$ 

![](_page_13_Figure_2.jpeg)

Example of computed solution locus for fixed  $a_{+} = 2$ 

Limiting cases:  $k_{\pm} \rightarrow 0$ 

Procedure to construct TW:

- Compute Floquet
   multipliers
- Compute corresponding
   stable/unstable manifolds
- Find intersection on appropriate Poincaré section

# **Constructing TWs**

Suppose  $\varphi_{\pm}$  are periodic orbits with real Floquet multipliers

![](_page_14_Figure_2.jpeg)

(a) 2D unstable manifold of  $\varphi_{-}$ : Möbius strip,  $\lambda < -1$ (b) 2D stable manifold of  $\varphi_{+}$ : cylinder,  $0 < \lambda < 1$ 

# **Computations of traveling waves**

![](_page_15_Figure_1.jpeg)

Computations of invariant manifolds of two hyperbolic periodic orbits  $\varphi_{-}$  and  $\varphi_{+}$ 

 $\varphi_{-}$ 

·····  $\varphi_+$ 

![](_page_15_Figure_5.jpeg)

Traveling wave reconstructed from intersections of invariant manifolds at

 $\xi = 0$ 

# **Extension to systems**

Boussinesq systems in shallow water hydrodynamics [Bona, Chen & Saut J. Nonlinear Sci (2002)]

 $\begin{aligned} a, b, c \in \mathbb{R} \\ \eta_t + u_x + (\eta u)_x + a u_{xxx} - b \eta_{xxt} &= 0 \\ u_t + \eta_x + u u_x + c \eta_{xxx} - b u_{xxt} &= 0 \end{aligned} \qquad \begin{aligned} a + 2b + c &= \frac{1}{3} \\ a + b &= \frac{1}{2} \left( \theta^2 - \frac{1}{3} \right) \\ b + c &= \frac{1}{2} \left( 1 - \theta^2 \right) \end{aligned}$ 

Traveling wave equations form Hamiltonian dynamical system in  $\mathbb{R}^4$ 

Preliminary numerical computations suggest existence of localized, oscillatory defects on periodic background

![](_page_16_Figure_5.jpeg)

![](_page_16_Figure_6.jpeg)

# Conclusions

Presence of fifth order dispersion results in nonclassical DSW structure

Portion of nonclassical DSWs correspond to a Whitham shock that satisfy RH conditions for Whitham modulation equations

Traveling waves bifurcate from degenerate periodic orbits that are at the hyperbolic-elliptic transition

Computations of periodic-periodic traveling waves are successful so long as far-tied periodic orbits are both hyperbolic

Open avenues for future work

- Extensions to systems in shallow water hydrodynamics
- Extensions to nonlocal equations, e.g. Ostovsky, Whitham etc

# Thank you!