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Natural existence question: prescribing mean cuvature

(Nn+1, h) compact Riem mfld; g : N → R sufficiently regular.

∃? closed hypersurface Mn ⊂ Nn+1 with mean curvature g?

Theorem (Bel.–Wickramasekera preprint ’20)

Assume g ≥ 0 and Lipschitz (C 0,1), n ≥ 2. There exists M = Mn

C 2-immersed, two-sided (∃ unit normal ν), the mean curvature of
M is gν, and dim(M \M) ≤ n − 7 (small “singular set”). More
precisely, M is a quasi-embedding.

Quasi-embedding : immersion that fails to be an embedding only
due to tangential self-intersections;
around any non-embedded point “two embedded disks, lying on one
side of each other, intersecting tangentially”.
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Singular point: around such a point, M fails to be C 2-immersed.

Singular set expected in high dimensions (it is characteristic already
of area-minimisers).

Mean curvature ~H related to n-area properties:

~H is the “negative gradient” of n-area, i.e.

deform n-dim. hypersurface with speed ~H to (instantaneously)
decrease n-area fastest.
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Natural existence question: prescribing mean cuvature

Notes:

• M is C 2,α-immersed for every α ∈ (0, 1). If g is C k,α for k ≥ 1,
then M is C k+2,α.

• No singular set (M = M) for n ≤ 6.

• The theorem applies for g ≤ 0 (switch the normal).

• g ≡ λ ∈ R: CMC (constant-mean-curvature) hypersurface
(minimal for g ≡ 0).



Which functional to use

Seek PMC hypersurface with mean curvature g  functional

Jg (Ω) = Perimeter(Ω)︸ ︷︷ ︸
Hn(∂Ω)

−
∫

Ω g dHn+1 (or something similar?)

and look for critical points. (For g ≡ 0 it’s the area functional.)

One should not look for minimisers: e.g. g ≡ λ > 0 on Sn+1

height

Per(Ω)− λVol(Ω)

height
Ω
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Finding critical points of “saddle type”: minmax methods

Can we extract limit to produce critical point?

Classical (70s) PDE mountain pass (minmax) methods: functional
defined on a Hilbert space, with validity of ’Palais–Smale condition’
(suitable compactness property).



Limits of smooth submanifolds: singularities and multiplicity

Embed smooth hypersurfaces in the space of varifolds. (Almgren)

Variational manifold: very weak GMT notion of submanifold, with
weak topology, makes it “easier” to extract limits.

But... with a potentially huge singular set and with multiplicity!

Unless wide singular behaviour is ruled out, the object is not
something that anyone would call a hypersurface.

In other words: will analysis find the object that geometry wants?
.



What we need on the GMT side

Expectation/hope from minmax construction: Morse index ≤ 1.

Likely need varifold-compactness theorems for critical points (of the
relevant functionals) with uniformly bounded Morse index.

Other side of compactness: regularity, which will say that our
“candidate” critical point (in principle only a varifold) is in fact a
sufficiently smooth hypersurface (hence what we were looking for).

[Bel.–Wickramasekera ’18, ’19]:
C 2-regularity and compactness for a class of integral n-varifolds
under stationarity and finite Morse index conditions w.r.t Jg .
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PMC existence minmax methods

To find g -PMC hypersurface: minmax using functional akin to

Jg (Ω) = Hn(∂Ω)−
∫

Ω
g dHn+1.

Almgren–Pitts minmax method: work with Jg defined on a suitable
space of integral n-varifolds. This space lacks a linear structure;
there is no natural Palais–Smale condition.

[Zhou-Zhu ’19]: existence of CMC hypersurfaces for n ≤ 6;
[Zhou-Zhu ’20]: existence of PMC hypersurfaces for n ≤ 6 with a
constraint on the set {g = 0} and g ∈ C∞(Nn+1;R).

The dimensional constraint allows a short-cut to compactness,
thanks to Schoen–Simon–Yau pointwise curvature estimates. Such
estimates fail in higher dimensions.

[Dey, ’19]: existence of CMC hypersurfaces; extends [Zhou-Zhu ’19]
to n > 6 employing [Bel.-Wickramasekera ’18, ’19: regularity and
compactness theory].
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Minimal case

Existence of a closed minimal hypersurface (originally Almgren ’66,
Pitts ’77, Schoen–Simon ’80 via Almgren–Pitts method).

Via Allen–Cahn mountain pass (minmax):
[Guaraco ’18], [Hutchinson–Tonegawa ’00], [Tonegawa ’05],
[Wickramasekera ’14], [Tonegawa–Wickramasekera ’12].

Do not work directly with area functional. Instead:
for ε > 0 work with regularised energy Eε, defined on W 1,2(Nn+1),
with Palais–Smale condition. Euler– Lagrange eqn elliptic
semi-linear. Classical PDE minmax on Hilbert space.
Eε

ε→0→ n-area (in a strong sense).
Recover minimal hypersurface in the ε→ 0 limit.
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Back to PMC existence, via Allen–Cahn minmax

Today’s talk: Allen–Cahn minmax method for the main PMC
existence theorem (first slide).

Do not work with Jg directly.
For ε > 0 work with regularised energy Fε,g , defined on
W 1,2(Nn+1), with Palais–Smale condition. Euler– Lagrange eqn
semi-linear. Classical PDE minmax on Hilbert space.

Hopes: Fε,g
ε→0→ Jg ; find the desired PMC hypersurface in the

ε→ 0 limit, employing [Bel.–Wickramasekera 18’, ’19: regularity
and compactness theory].

Unlike the g ≡ 0 case, Fε,g
ε→0→ Jg holds in a much weaker sense.
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Allen-Cahn / Modica-Mortola (De Giorgi)

Allen-Cahn energy, with parameter ε ∈ (0, 1):

Eε(u) =

∫
N

ε|∇ u|2

2
+

W (u)

ε
dHn+1, u ∈W 1,2(N)

where

W : R→ R+ ∪ {0}
smooth “double-well potential”

e.g. W (t) = 1
4(1− t2)2.



Allen–Cahn modified for g -prescribed problem

Fε,g (u) = Eε(u)−
∫
N

g

2
u dHn+1 −

∫
N

g

2
dHn+1.

Euler–Lagrange: F ′
ε,g (u) = ε∆u − W ′(u)

ε = −g/2.

Hope/plan:
• produce uε solving F ′

ε,g (uε) = 0 by classical minmax (encode the
PMC condition “mean curvature prescribed by g ” at the ε-level);
• send ε→ 0 and recover a (sufficiently smooth) geometric
hypersurface as a limit (in some sense) of uε;
• pass to the limit the PMC condition (will need a back-up plan).
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Weighted level sets of uε → PMC interface
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Weighted level sets of uε → PMC interface



Fε,g → Jg?

The value of Fε,g passes to the limit to become Jg .

Stationarity for Fε,g does not become stationarity for Jg when
g 6≡ 0!

[Hutchinson–Tonegawa ’00]
[Röger–Tonegawa ’08]



Cancellations and multiplicity

∀ ε ∃ critical point vε of Fε,g on R with g ≡ 1, whose graph is

larger ε smaller ε

Then uε(x1, x2, x3) = vε(x3) critical point of Fε,1; level sets are
planes; Eε(uε) concentrates on {x3 = 0} with multiplicity 2 (double
transition of the 1-dim profile).



Establish local regularity of limit interface when g > 0

Under Morse index bounds, using [Bel.-Wickramasekera ’18 ’19]
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Partial solution when g > 0

If the min max leads to an interface that is not only minimal,
thanks to the regularity result we can “throw away” any minimal
portion and obtain the desired PMC hypersurface. (Take the
boundary of the +1 phase.)

Would not work without regularity:
E.g. multiplicity-1 PMC portion with necks, merging with a
multiplicity-2 minimal disk along a singular circle.

vertical cross section view from above



If we get a minimal-only interface (still g > 0):

Back up plan:

If the min max leads to the top-right picture (minimal-only
interface) build, by Fε,g -gradient flow, another sequence of (stable)
critical points vε (of Fε,g ) that will lead to a not-only-minimal
interface.

This uses the minmax characterisation of uε built earlier.



Recap of the difficulty (still g > 0)

Minmax for Fε,g produces uε s.t. Allen–Cahn energy concentrates
onto M, minimal hypersurface, with even multiplicity, say 2.

uε
L1
→ u∞ ≡ −1

(no +1 phase, so no enclosed volume).

Minmax value (for all small ε) is ≈ 2Hn(M);

Minmax characterisation ⇒ 6 ∃ path (continuous in W 1,2(N)) that
connects the valley points (∼= −1 and ∼= +1) keeping Fε,g a fixed
amount below 2Hn(M).

We exhibit a specific path (at the ε-level) starting at ∼= −1; all
along it Fε,g stays a fixed amount below 2Hn(M).



1-dim. profile to implement multiplicity 2 at the ε-level



Continuously vary multiplicity between 0 and 2 at the ε-level
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Geometric view of relevant path
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Conclusive argument for g > 0

Mean-convexity ⇒ flow (for ∇Fε,g ) converges to a stable solution
vε that is ≈ +1 on two fixed open regions.

vε cannot be everywhere ≈ +1, because this is the “second valley
point” for the minmax — the energy along the path exhibited stays
well below the minmax value.

Then (for all ε) ∃ vε stable critical point of Fε,g , with both
{vε ≈ +1} and {vε ≈ −1} non-disappearing in the ε→ 0 limit;

regularity applied to vε → v∞⇒

∂{v∞ = +1} is the desired PMC hypersurface.



g ≥ 0

Approximate with positive gj ;

pass the interfaces (built for gj) to the limit, using quantitative
(elliptic type) C 2,α-estimates established in regularity theorem.

No need of constraints on the nodal set {g = 0}.



Thanks for your attention!


