Quasiconvexity in the general growth setting

C. Irving

Mathematical Institute University of Oxford

Oxbridge PDE Conference, 12 April 2022

Oxford Mathematics

Mathematical Institute

• # × • A.

EPSRC Centre for Doctoral Training in Partial Differential Equations

Introduction

Growth conditions

Semicontinuity

Existence of minima

Oxford Mathematics

Table of contents

Introduction

Growth conditions

Semicontinuity

Existence of minima

Oxford Mathematics

General problem

Introduction

Consider

minimise
$$\mathcal{F}(u) = \int_{\Omega} F(x, u, \nabla u) dx,$$

subject to $u = g$ on $\partial \Omega,$ (1)

where $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^N$.

General problem

Introduction

Consider

minimise
$$\mathcal{F}(u) = \int_{\Omega} F(x, u, \nabla u) \, \mathrm{d}x,$$

subject to $u = g$ on $\partial \Omega,$ (1)

where $u: \Omega \subset \mathbb{R}^n \to \mathbb{R}^N$.

Goal 1: Prove existence of minima in Sobolev spaces, Goal 2: Establish partial $C^{1,\alpha}$ -regularity of minima.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We infer existence via the Direct Method, for which we require

- 1. Take a minimising sequence $\{u_j\}$ for \mathcal{F} ,
- 2. Pass to a suitable weak limit $u_j \rightharpoonup u$,
- 3. Show that the limit map is a minimiser.

We infer existence via the Direct Method, for which we require

- 1. Take a minimising sequence $\{u_j\}$ for \mathcal{F} ,
- 2. Pass to a suitable weak limit $u_j \rightharpoonup u$,
- 3. Show that the limit map is a minimiser.

For this we need

- 1. a growth condition on F,
- $\ \ 2. \ \ coercivity \ of \ \ {\cal F}, \\$
- 3. semicontinuity of the associated integrand.

Table of contents

Introduction

Growth conditions

Semicontinuity

Existence of minima

Oxford Mathematics

Quasiconvexity and general growth

Typically one assumes a p-growth condition

$$|F(x, u, z)| \lesssim |z|^p + 1.$$
⁽²⁾

However we more generally can replace t^p by an *N*-function $\varphi(t)$ where

$$\blacktriangleright \varphi$$
 is non-negative, increasing, convex,

 $\blacktriangleright \varphi$ satisfies

$$\lim_{t \to 0} \frac{\varphi(t)}{t} = 0, \quad \lim_{t \to \infty} \frac{\varphi(t)}{t} = +\infty.$$
(3)

We also assume the Δ_2 -condition, namely $\varphi(2t) \leq C \varphi(t)$.

Oxford Mathematics

Examples include

$$\varphi(t) \sim t^{\rho} \log t,$$
(4)
 $\varphi(t) \sim t^{\rho} \log \cdots \log t,$
(5)

for $1 \leq p < \infty$.

However, the linear case $\varphi(t) = t$ is excluded.

Oxford Mathematics

Proposition (Meyers-Elcrat 1975, Giaquinta-Modica 1979) Suppose $u \in W^{1,p}(\Omega, \mathbb{R}^N)$ with p > 1 such that for all $B_R(x_0) \subset \Omega$ we have

$$\int_{B_{R/2}(x_0)} |\nabla u|^p, \mathrm{d} x \le C \int_{B_R(x_0)} \frac{|u - (u)_{B_R(x_0)}|^p}{R^p} \,\mathrm{d} x. \tag{6}$$

Then there is $\varepsilon > 0$ such that

$$\nabla u \in L^{p+\varepsilon}_{\mathsf{loc}}(\Omega, \mathbb{R}^{\mathsf{N}n}).$$
(7)

This fails for p = 1; consider variants of u(x) = sign(x).

Oxford Mathematics

Proposition (Iwaniec 1998, Cianchi-Fusco 1999) Suppose $u \in W^{1,\varphi}(\Omega, \mathbb{R}^N)$ such that for all $B_R(x_0) \subset \Omega$ we have

$$\int_{B_{R/2}(x_0)} \varphi(|\nabla u|) \, \mathrm{d}x \le C \int_{B_R(x_0)} \varphi\left(\frac{|u-(u)_{B_R(x_0)}|}{R}\right) \, \mathrm{d}x. \tag{8}$$

Then there is $\kappa > 0$ such that

$$\nabla u \in L^{\varphi^{[\kappa]}}_{\mathsf{loc}}(\Omega, \mathbb{R}^{\mathsf{N}n}), \quad \varphi^{[\kappa]}(t) = \varphi(t) \left(\frac{\varphi(t)}{t}\right)^{\kappa}.$$
(9)

Table of contents

Introduction

Growth conditions

Semicontinuity

Existence of minima

Oxford Mathematics

We infer existence via the Direct Method, for which we require

- 1. Take a minimising sequence $\{u_j\}$ for \mathcal{F} ,
- 2. Pass to a suitable weak limit $u_j \rightharpoonup u$,
- 3. Show that the limit map is a minimiser.

For this we need

- 1. a growth condition on F,
- $\ \ 2. \ \ coercivity \ of \ \ {\cal F}, \\$
- 3. semicontinuity of the associated integrand.

Growth + coercivity assumptions gives a minimising sequence $\{u_j\}$ and a limit

$$u_j \stackrel{*}{\rightharpoonup} u \text{ in } W^{1,\varphi}_g(\Omega, \mathbb{R}^N).$$
 (10)

Is the limit u a minimiser? We need lower semicontinuity of \mathcal{F} in this topology.

Growth + coercivity assumptions gives a minimising sequence $\{u_j\}$ and a limit

$$u_j \stackrel{*}{\rightharpoonup} u \text{ in } W^{1,\varphi}_g(\Omega, \mathbb{R}^N).$$
 (10)

Is the limit u a minimiser? We need lower semicontinuity of \mathcal{F} in this topology.

Morrey (1952) showed weak^{*} sequential lower semicontinuity in $W^{1,\infty}$ is equivalent to quasiconvexity

$$F(z_0) \le \int_{\Omega} F(z_0 + \nabla \xi) \,\mathrm{d}x \tag{11}$$

for all $z_0 \in \mathbb{R}^{Nn}, \, \xi \in C^{\infty}_c(\Omega, \mathbb{R}^N).$

Oxford Mathematics

Weak lower semicontinuity for \mathcal{F} in $\mathcal{W}^{1,p}$ (p>1) holds when

- 1. F = F(x, u, z) is Carathéodory,
- 2. F satisfies the growth conditions

$$-|z|^{r}-1 \lesssim F(x, u, z) \lesssim |z|^{p}+1$$
(12)

with r < p,

3. $z \mapsto F(x, u, z)$ is quasiconvex at each (x, u),

Due to Meyers (1965), Acerbi & Fusco (1984), Marcellini (1985) and many others.

Oxford Mathematics

Ball & Murat (1984) showed semicontinuity in $W^{1,n}$ fails for $F(z) = \det z$ with

$$u_j(x,y) = j^{-\frac{1}{2}} (1 - |y|)^j (\sin jx, \cos jx), \quad (x,y) \in (-\pi, \pi) \times (0,1).$$
(13)

Problem: ∇u_j may concentrate near the boundary, or where F is discontinuous in x.

Ball & Murat (1984) showed semicontinuity in $W^{1,n}$ fails for $F(z) = \det z$ with

$$u_j(x,y) = j^{-\frac{1}{2}} (1 - |y|)^j (\sin jx, \cos jx), \quad (x,y) \in (-\pi, \pi) \times (0,1).$$
(13)

Problem: ∇u_j may concentrate near the boundary, or where F is discontinuous in x.

- Meyers (1965) showed semicontinuity in $W_g^{1,p}(\Omega, \mathbb{R}^N)$ under strong continuity assumptions.
- This allows us to consider for instance

$$F(z) = \frac{1}{n} |z|^n + \det z. \tag{14}$$

Table of contents

Introduction

Growth conditions

Semicontinuity

Existence of minima

To deduce existence, we only need semicontinuity along minimising sequences

$$\{u_j\} \subset W_g^{1,\varphi}(\Omega, \mathbb{R}^N)$$
(15)

for which

$$\mathcal{F}(u_j) \to \inf_{v \in W_g^{1,\varphi}(\Omega,\mathbb{R}^N)} \mathcal{F}(v).$$
(16)

UNIXYENT OF COST POEE AND A COST OF CO

Assume

- 1. F = F(x, u, z) is Carathéodory,
- 2. F satisfies the growth condition

$$|F(x, u, z)| \lesssim 1 + \varphi(|z|), \tag{17}$$

3. $z \mapsto F(x, u, z)$ is quasiconvex at each (x, u), 4. there is $\nu > 0$ and $f : \mathbb{R}^{Nn} \to \mathbb{R}$ such that $f(z) \le F(x, u, z)$ and

$$f - \nu \varphi(|\cdot|)$$
 is quasiconvex at 0. (18)

Proposition

Let $\{u_j\}$ be a minimising sequence, there is a sequence $\{v_j\}$ such that

$$u_j - v_j \stackrel{*}{\rightharpoonup} 0$$
, and $\mathcal{F}(v_j) \leq \mathcal{F}(u_j)$ (19)

such that

$$\{\varphi(|\nabla v_j|)\} \text{ is uniformly integrable.}$$
(20)

Here $\Omega \subset \mathbb{R}^n$ is bounded open and $g \in W^{1,\varphi}(\mathbb{R}^n, \mathbb{R}^N)$.

Oxford Mathematics

Corollary Let $\{u_j\}$ be a minimising sequence for \mathcal{F} and $u_j \stackrel{*}{\rightharpoonup} u$ in $W^{1,\varphi}$, then

$$\mathcal{F}(u) \leq \liminf_{j \to \infty} \mathcal{F}(u_j).$$
 (21)

Hence one can show the existence of minimisers in $W_g^{1,\varphi}(\Omega,\mathbb{R}^n)$.

Oxford Mathematics

Ekeland's variational principle Sketch of proof

Step 1: By Ekeland's variational principle we have $\{v_j\} \subset W^{1,\varphi}_g(\Omega, \mathbb{R}^N)$ such that

$$\mathcal{F}(v_j) \leq \mathcal{F}(w) + \int_{\Omega} |\nabla v_j - \nabla w| \, \mathrm{d}x \tag{22}$$

for all j and $w \in W_g^{1,\varphi}(\Omega, \mathbb{R}^N)$.

Step 2: Then one can infer a Caccioppoli inequality

$$\oint_{B_{R/2}(x_0)} \varphi(|\nabla v_j|) \le C \oint_{B_R(x_0)} 1 + \varphi(|\nabla g|) + \varphi\left(\frac{|v_j - (v_j)_{B_R(x_0)}|}{R}\right) \, \mathrm{d}x \qquad (23)$$

and also up to the boundary.

Proposition (Iwaniec 1998, Cianchi-Fusco 1999) Suppose $u \in W^{1,\varphi}(\Omega, \mathbb{R}^N)$ such that for all $B_R(x_0) \subset \Omega$ we have

$$\int_{B_{R/2}(x_0)} \varphi(|\nabla u|) \, \mathrm{d}x \le C \int_{B_R(x_0)} \varphi\left(\frac{|u-(u)_{B_R(x_0)}|}{R}\right) \, \mathrm{d}x. \tag{8}$$

Then there is $\kappa > 0$ such that

$$\nabla u \in L^{\varphi^{[\kappa]}}_{\mathsf{loc}}(\Omega, \mathbb{R}^{\mathsf{N}n}), \quad \varphi^{[\kappa]}(t) = \varphi(t) \left(\frac{\varphi(t)}{t}\right)^{\kappa}.$$
(9)

Step 3: A variant of Gehring's lemma gives

$$\sup_{j} \int_{\Omega} \theta \circ \varphi(|\nabla v_{j}|) \, \mathrm{d}x < \infty, \tag{24}$$

where $\theta(t)/t \to \infty$ as $t \to \infty$.

This gives uniform φ -integrability.

Thank you for listening! Any questions?

On the regularity side one seeks ε -regularity results of following form:

For each $M \ge 0$, there is $\varepsilon_M > 0$ such that if

$$|(\nabla u)_{B_{R}(x_{0})}| \leq M, \quad \int_{B_{R}(x_{0})} \varphi_{1}(|\nabla u - (\nabla u)_{B_{R}(x_{0})}|) \, \mathrm{d}x < \varepsilon_{M}, \tag{25}$$

then u is $C^{1,\alpha}$ in $B_{R/2}(x_0)$.

Considered by Evans (1986), Acerbi-Fusco (1987), Carozza-Fusco-Mingione (1998), Diening-Lengeler-Stroffolini-Verde (2006), Gmeineder-Kristensen (2019), and many others...

Oxford Mathematics

We can establish results of the above type when:

$$F = F(z) \text{ and } \varphi \in \Delta_2 \cap \nabla_2.$$

•
$$F = F(z)$$
 and $\varphi(t) \sim t \log \cdots \log t$.

Case F = F(x, u, z) is more complicated...

We say φ satisfies the Δ_2 condition if

$$\varphi(2t) \le C\varphi(t).$$
 (26)

We say φ satisfies the Δ_2 condition if

$$\varphi(2t) \le C\varphi(t).$$
 (26)

We say φ satisfies the $\nabla_2\text{-condition}$ if one of the following hold

- The conjugate function $\varphi^* \in \Delta_2$,
- There is $\alpha \in (0,1)$ such that φ^{α} is comparable to an *N*-function
- The maximal operator \mathcal{M} is bounded on $L^{\varphi}(\mathbb{R}^n)$.

We say φ satisfies the Δ_2 condition if

$$\varphi(2t) \le C\varphi(t).$$
 (26)

We say φ satisfies the $\nabla_2\text{-condition}$ if one of the following hold

- The conjugate function $\varphi^* \in \Delta_2$,
- ▶ There is $\alpha \in (0,1)$ such that φ^{α} is comparable to an *N*-function
- The maximal operator \mathcal{M} is bounded on $L^{\varphi}(\mathbb{R}^n)$.

Rough idea: Δ_2 and ∇_2 conditions give polynomial control from above and below.