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General problem
Introduction

Consider

minimise F(u) =
∫

Ω
F (x , u, ∇u) dx ,

subject to u = g on ∂Ω,
(1)

where u : Ω ⊂ Rn → RN .

Goal 1: Prove existence of minima in Sobolev spaces,
Goal 2: Establish partial C1,α-regularity of minima.
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Strategy for existence
Introduction

We infer existence via the Direct Method, for which we require
1. Take a minimising sequence {uj} for F ,

2. Pass to a suitable weak limit uj ⇀ u,

3. Show that the limit map is a minimiser.

For this we need
1. a growth condition on F ,

2. coercivity of F ,

3. semicontinuity of the associated integrand.
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N-functions
General growth

Typically one assumes a p-growth condition

|F (x , u, z)| ≲ |z |p + 1. (2)

However we more generally can replace tp by an N-function φ(t) where
▶ φ is non-negative, increasing, convex,
▶ φ satisfies

lim
t→0

φ(t)
t = 0, lim

t→∞
φ(t)

t = +∞. (3)

We also assume the ∆2-condition, namely φ(2t) ≤ Cφ(t).
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Examples
General growth

Examples include

φ(t) ∼ tp log t, (4)
φ(t) ∼ tp log · · · log t, (5)

for 1 ≤ p < ∞.

However, the linear case φ(t) = t is excluded.
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A Gehring lemma
Gehring lemmas

Proposition (Meyers-Elcrat 1975, Giaquinta-Modica 1979)
Suppose u ∈ W 1,p(Ω,RN) with p > 1 such that for all BR(x0) ⊂ Ω we have

−
∫

BR/2(x0)
|∇u|p, dx ≤ C −

∫
BR(x0)

|u − (u)BR(x0)|p

Rp dx . (6)

Then there is ε > 0 such that

∇u ∈ Lp+ε
loc (Ω,RNn). (7)

This fails for p = 1; consider variants of u(x) = sign(x).
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Orlicz case
Gehring lemmas

Proposition (Iwaniec 1998, Cianchi-Fusco 1999)
Suppose u ∈ W 1,φ(Ω,RN) such that for all BR(x0) ⊂ Ω we have

−
∫

BR/2(x0)
φ(|∇u|) dx ≤ C −

∫
BR(x0)

φ

(
|u − (u)BR(x0)|

R

)
dx . (8)

Then there is κ > 0 such that

∇u ∈ Lφ[κ]

loc (Ω,RNn), φ[κ](t) = φ(t)
(

φ(t)
t

)κ

. (9)
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Strategy for existence
Semicontinuity

We infer existence via the Direct Method, for which we require
1. Take a minimising sequence {uj} for F ,

2. Pass to a suitable weak limit uj ⇀ u,

3. Show that the limit map is a minimiser.
For this we need

1. a growth condition on F ,

2. coercivity of F ,

3. semicontinuity of the associated integrand.
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Lower semicontinuity
Quasiconvexity

Growth + coercivity assumptions gives a minimising sequence {uj} and a limit

uj
∗

⇀ u in W 1,φ
g (Ω,RN). (10)

Is the limit u a minimiser? We need lower semicontinuity of F in this topology.

Morrey (1952) showed weak∗ sequential lower semicontinuity in W 1,∞ is equivalent to
quasiconvexity

F (z0) ≤ −
∫

Ω
F (z0 + ∇ξ) dx (11)

for all z0 ∈ RNn, ξ ∈ C∞
c (Ω,RN).
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Known results
Quasiconvexity

Weak lower semicontinuity for F in W 1,p (p > 1) holds when
1. F = F (x , u, z) is Carathéodory,
2. F satisfies the growth conditions

−|z |r − 1 ≲ F (x , u, z) ≲ |z |p + 1 (12)

with r < p,

3. z 7→ F (x , u, z) is quasiconvex at each (x , u),

Due to Meyers (1965), Acerbi & Fusco (1984), Marcellini (1985) and many others.
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Necessity of a lower bound
Quasiconvexity

Ball & Murat (1984) showed semicontinuity in W 1,n fails for F (z) = det z with

uj(x , y) = j− 1
2 (1 − |y |)j(sin jx , cos jx), (x , y) ∈ (−π, π) × (0, 1). (13)

Problem: ∇uj may concentrate near the boundary, or where F is discontinuous in x .

▶ Meyers (1965) showed semicontinuity in W 1,p
g (Ω,RN) under strong continuity

assumptions.
▶ This allows us to consider for instance

F (z) = 1
n |z |n + det z . (14)
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Idea for finding minima
Regularisation of minimising sequences

To deduce existence, we only need semicontinuity along minimising sequences

{uj} ⊂ W 1,φ
g (Ω,RN) (15)

for which
F(uj) → inf

v∈W 1,φ
g (Ω,RN)

F(v). (16)
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Hypotheses of F
Regularisation of minimising sequences

Assume
1. F = F (x , u, z) is Carathéodory,
2. F satisfies the growth condition

|F (x , u, z)| ≲ 1 + φ(|z |), (17)

3. z 7→ F (x , u, z) is quasiconvex at each (x , u),
4. there is ν > 0 and f : RNn → R such that f (z) ≤ F (x , u, z) and

f − νφ(|·|) is quasiconvex at 0. (18)
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Regularisation
Regularisation of minimising sequences

Proposition
Let {uj} be a minimising sequence, there is a sequence {vj} such that

uj − vj
∗

⇀ 0, and F(vj) ≤ F(uj) (19)

such that
{φ(|∇vj |)} is uniformly integrable. (20)

Here Ω ⊂ Rn is bounded open and g ∈ W 1,φ(Rn,RN).

Oxbridge PDE Conference Quasiconvexity and general growth 19



Lower semicontinuity
Regularisation of minimising sequences

Corollary
Let {uj} be a minimising sequence for F and uj

∗
⇀ u in W 1,φ, then

F(u) ≤ lim inf
j→∞

F(uj). (21)

Hence one can show the existence of minimisers in W 1,φ
g (Ω,Rn).
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Ekeland’s variational principle
Sketch of proof

Step 1: By Ekeland’s variational principle we have {vj} ⊂ W 1,φ
g (Ω,RN) such that

F(vj) ≤ F(w) +
∫

Ω
|∇vj − ∇w | dx (22)

for all j and w ∈ W 1,φ
g (Ω,RN).
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Caccioppoli inequality
Sketch of proof

Step 2: Then one can infer a Caccioppoli inequality

−
∫

BR/2(x0)
φ(|∇vj |) ≤ C −

∫
BR(x0)

1 + φ(|∇g |) + φ

(
|vj − (vj)BR(x0)|

R

)
dx (23)

and also up to the boundary.
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Orlicz case
Sketch of proof

Proposition (Iwaniec 1998, Cianchi-Fusco 1999)
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Improved integrability
Sketch of proof

Step 3: A variant of Gehring’s lemma gives

sup
j

∫
Ω

θ ◦ φ(|∇vj |) dx < ∞, (24)

where θ(t)/t → ∞ as t → ∞.

This gives uniform φ-integrability.
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Thank you for listening! Any questions?
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A word on regularity
ε-regularity results

On the regularity side one seeks ε-regularity results of following form:

For each M ≥ 0, there is εM > 0 such that if

|(∇u)BR(x0)| ≤ M, −
∫

BR(x0)
φ1(|∇u − (∇u)BR(x0)|) dx < εM , (25)

then u is C1,α in BR/2(x0).

Considered by Evans (1986), Acerbi-Fusco (1987), Carozza-Fusco-Mingione (1998),
Diening-Lengeler-Stroffolini-Verde (2006), Gmeineder-Kristensen (2019), and many others. . .

Oxbridge PDE Conference Quasiconvexity and general growth 26



More words on regularity
ε-regularity results

We can establish results of the above type when:
▶ F = F (z) and φ ∈ ∆2 ∩ ∇2.

▶ F = F (z) and φ(t) ∼ t log · · · log t.

Case F = F (x , u, z) is more complicated. . .
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∆2 and ∇2 conditions
More on N-functions

We say φ satisfies the ∆2 condition if

φ(2t) ≤ Cφ(t). (26)

We say φ satisfies the ∇2-condition if one of the following hold
▶ The conjugate function φ∗ ∈ ∆2,

▶ There is α ∈ (0, 1) such that φα is comparable to an N-function
▶ The maximal operator M is bounded on Lφ(Rn).

Rough idea: ∆2 and ∇2 conditions give polynomial control from above and below.
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