Non-uniqueness of Leray solutions of the forced Navier-Stokes equations ${ }^{1}$

Elia Brué

Institute for Advanced Study, Princeton
elia.brue@ias.edu
July 20, 2022

[^0]
The Navier-Stokes system

$$
\left\{\begin{array}{lr}
\partial_{t} u+(u \cdot \nabla) u+\nabla p-\Delta u=f \tag{NS}\\
\operatorname{div} u=0 & \\
u(\cdot, 0)=u_{0} & \text { on } \mathbb{R}^{3} \times[0, T]
\end{array}\right.
$$

The Navier-Stokes system

$$
\begin{cases}\partial_{t} u+(u \cdot \nabla) u+\nabla p-\Delta u=f \tag{NS}\\ \operatorname{div} u=0 & \\ u(\cdot, 0)=u_{0} & \text { on } \mathbb{R}^{3} \times[0, T]\end{cases}
$$

Millennium problem
Assume $u_{0} \in C_{c}^{\infty}$ and $f=0$. Is there a global smooth solutions to (NS)?

Leray-Hopf solutions

$$
\text { Let } u_{0} \in L^{2}, f \in L_{t}^{1} L_{x}^{2} \text {. }
$$

[Leray '34], [Hopf '51]: Global solutions to (NS) in the class

$$
u \in L_{t}^{\infty} L_{x}^{2} \cap L_{t}^{2} H_{x}^{1}
$$

Leray-Hopf solutions

Let $u_{0} \in L^{2}, f \in L_{t}^{1} L_{x}^{2}$.

Leray-Hopf solutions

Let $u_{0} \in L^{2}, f \in L_{t}^{1} L_{x}^{2}$.

- [Leray '34], [Hopf '51]: Global solutions to (NS) in the class

$$
u \in L_{t}^{\infty} L_{x}^{2} \cap L_{t}^{2} H_{x}^{1}
$$

Leray-Hopf solutions

Let $u_{0} \in L^{2}, f \in L_{t}^{1} L_{x}^{2}$.

- [Leray '34], [Hopf '51]: Global solutions to (NS) in the class

$$
u \in L_{t}^{\infty} L_{x}^{2} \cap L_{t}^{2} H_{x}^{1}
$$

- $u(\cdot, 0)=u_{0} ;$

Leray-Hopf solutions

Let $u_{0} \in L^{2}, f \in L_{t}^{1} L_{x}^{2}$.

- [Leray '34], [Hopf '51]: Global solutions to (NS) in the class

$$
u \in L_{t}^{\infty} L_{x}^{2} \cap L_{t}^{2} H_{x}^{1}
$$

- $u(\cdot, 0)=u_{0} ;$
- Energy inequality:

$$
\begin{aligned}
\frac{1}{2} \int|u(x, t)|^{2} \mathrm{~d} x & +\int_{0}^{t} \int|\nabla u(x, s)|^{2} \mathrm{~d} x \mathrm{~d} s \\
& \leq \frac{1}{2} \int\left|u_{0}(x)\right|^{2} \mathrm{~d} x+\int_{0}^{t} \int f(x, s) \cdot u(x, s) \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

Properties of Leray-Hopf solutions

- Suitability condition:

Partial regularity: If $f \in L_{x, t}^{5 / 2+}$ then

Properties of Leray-Hopf solutions

- Suitability condition:

$$
\left(\partial_{t}-\Delta\right) \frac{1}{2}|u|^{2}+|\nabla u|^{2}+\operatorname{div}\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right) \leq f \cdot u .
$$

Properties of Leray-Hopf solutions

- Suitability condition:

$$
\left(\partial_{t}-\Delta\right) \frac{1}{2}|u|^{2}+|\nabla u|^{2}+\operatorname{div}\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right) \leq f \cdot u .
$$

- Partial regularity: If $f \in L_{x, t}^{5 / 2+}$ then

$$
\mathcal{P}^{1}(\text { singular set })=0,
$$

[Caffarelli-Kohn-Nirenberg '82].
Weak-strong uniqueness: Leray-Hopf solutions agree with strong solutions.

Properties of Leray-Hopf solutions

- Suitability condition:

$$
\left(\partial_{t}-\Delta\right) \frac{1}{2}|u|^{2}+|\nabla u|^{2}+\operatorname{div}\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right) \leq f \cdot u .
$$

- Partial regularity: If $f \in L_{x, t}^{5 / 2+}$ then

$$
\mathcal{P}^{1}(\text { singular set })=0, \quad\left(\mathscr{H}^{1 / 2}(\text { singular times })=0\right),
$$

[Caffarelli-Kohn-Nirenberg '82].
Weak-strong uniqueness: Leray-Hopf solutions agree with strong solutions.

Properties of Leray-Hopf solutions

- Suitability condition:

$$
\left(\partial_{t}-\Delta\right) \frac{1}{2}|u|^{2}+|\nabla u|^{2}+\operatorname{div}\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right) \leq f \cdot u .
$$

- Partial regularity: If $f \in L_{x, t}^{5 / 2+}$ then

$$
\mathcal{P}^{1}(\text { singular set })=0, \quad\left(\mathscr{H}^{1 / 2}(\text { singular times })=0\right),
$$

[Caffarelli-Kohn-Nirenberg '82].

- Weak-strong uniqueness: Leray-Hopf solutions agree with strong solutions.

The uniqueness problem

```
- The program of Jia, Sverak, and Guillod:
    - Rifurcation from large self-similar solutions.
    Need to prove the existence of an unstable self-similar background
    [Jia-Sverak '14, '15].
    * Numerical evidence of instability [Guillod-Sverak 117].
```

- Convex integration method: After [De Lellis, Szekelyhidi '09, '13]
\rightarrow Non-uniaueness of weak solutions to (NS) in
[Buckmaster-Vicol '19].

The uniqueness problem

- The program of Jia, Sverak, and Guillod:
- Bifurcation from large self-similar solutions.

Need to prove the existence of an unstable self-similar background [Jia-Sverak '14, '15].

- Numerical evidence of instability [Guillod-Sverak '17].
- Convex integration method: After [De Lellis, Szekelyhidi '09, '13] \rightarrow Non-uniqueness of weak solutions to (NS) in

The uniqueness problem

- The program of Jia, Sverak, and Guillod:
- Bifurcation from large self-similar solutions.

Need to prove the existence of an unstable self-similar background [Jia-Sverak '14, '15].

- Numerical evidence of instability [Guillod-Sverak '17].
- Convex integration method: After [De Lellis, Szekelyhidi '09, '13]
- Non-uniqueness of weak solutions to (NS) in

$$
u \in C_{t} H_{x}^{\beta}, \quad \text { for some } \beta>0,
$$

[Buckmaster-Vicol '19].

The uniqueness problem

- The program of Jia, Sverak, and Guillod:
- Bifurcation from large self-similar solutions.

Need to prove the existence of an unstable self-similar background [Jia-Sverak '14, '15].

- Numerical evidence of instability [Guillod-Sverak '17].
- Convex integration method: After [De Lellis, Szekelyhidi '09, '13]
- Non-uniqueness of weak solutions to (NS) in

$$
u \in C_{t} H_{x}^{\beta}, \quad \text { for some } \beta>0
$$

[Buckmaster-Vicol '19].

- Non-uniqueness in $L_{t}^{q} L_{x}^{\infty}, q<2$ and $C_{t} L_{x}^{p}, p<2$. [Cheskidov-Luo '20].

Main results

Theorem (Albritton-B.-Colombo '21)
There exist u and \bar{u}, two distinct suitable Leray-Hopf solutions to (NS) on \mathbb{R}^{3} with identical body force $f \in L_{t}^{1} L_{x}^{2}$ and $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$.

Theorem (Albritton-B.-Colombo '22)
The same conclusion holds in bounded domains and in \mathbb{T}^{3}.

Main results

Theorem (Albritton-B.-Colombo '21)
There exist u and \bar{u}, two distinct suitable Leray-Hopf solutions to (NS) on \mathbb{R}^{3} with identical body force $f \in L_{t}^{1} L_{x}^{2}$ and $u(\cdot, 0)=\bar{u}(\cdot, 0)=0$.

Theorem (Albritton-B.-Colombo '22)
The same conclusion holds in bounded domains and in \mathbb{T}^{3}.

Self-similar structure

\rightarrow There exists a div-free velocity field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.

Self-similar structure

- There exists a div-free velocity field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.

$$
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{U}\left(\frac{x}{\sqrt{t}}\right) .
$$

- There exists $F \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that

Self-similar structure

- There exists a div-free velocity field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.

$$
\begin{gathered}
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{U}\left(\frac{x}{\sqrt{t}}\right) . \\
\bar{u} \in C^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right) \cap C^{0}\left([0, T] ; L^{1} \cap L^{3-}\right) .
\end{gathered}
$$

Self-similar structure

- There exists a div-free velocity field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.

$$
\begin{gathered}
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{U}\left(\frac{x}{\sqrt{t}}\right) . \\
\bar{u} \in C^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right) \cap C^{0}\left([0, T] ; L^{1} \cap L^{3-}\right) .
\end{gathered}
$$

- There exists $F \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that

$$
f(x, t)=\frac{1}{t^{3 / 2}} F\left(\frac{x}{\sqrt{t}}\right) .
$$

Self-similar structure

- There exists a div-free velocity field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t.

$$
\begin{gathered}
\bar{u}(x, t)=\frac{1}{\sqrt{t}} \bar{U}\left(\frac{x}{\sqrt{t}}\right) . \\
\bar{u} \in C^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right) \cap C^{0}\left([0, T] ; L^{1} \cap L^{3-}\right) .
\end{gathered}
$$

- There exists $F \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{gathered}
f(x, t)=\frac{1}{t^{3 / 2}} F\left(\frac{x}{\sqrt{t}}\right) . \\
f \in C^{\infty}\left(\mathbb{R}^{3} \times(0, T)\right) \cap L^{1}\left([0, T] ; L^{1} \cap L^{3-}\right) .
\end{gathered}
$$

Similarity variables

Let u be a solution to (NS) with body force f.
Change of variabies: $\xi=x / \sqrt{t}, \tau=\log (t) \in(-\infty, T)$

Similarity variables

Let u be a solution to (NS) with body force f.

Similarity variables

Let u be a solution to (NS) with body force f.

- Change of variables: $\xi=x / \sqrt{t}, \tau=\log (t) \in(-\infty, T)$

$$
\begin{gathered}
u(x, t)=\frac{1}{\sqrt{t}} U(\xi, \tau) \\
f(x, t)=\frac{1}{t^{3 / 2}} F\left(\frac{x}{\sqrt{t}}\right) .
\end{gathered}
$$

Similarity variables

Let u be a solution to (NS) with body force f.

- Change of variables: $\xi=x / \sqrt{t}, \tau=\log (t) \in(-\infty, T)$

$$
\begin{gathered}
u(x, t)=\frac{1}{\sqrt{t}} U(\xi, \tau) \\
f(x, t)=\frac{1}{t^{3 / 2}} F\left(\frac{x}{\sqrt{t}}\right) .
\end{gathered}
$$

- (NS) in similarity variables: $(\xi, \tau) \in \mathbb{R}^{3} \times(-\infty, T)$

$$
\partial_{\tau} U-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+U \cdot \nabla U+\nabla P=F
$$

The second solution

We think of \bar{U} as a stationary solutions to (NS) is similarity variables with body force F

The second solution

- We think of \bar{U} as a stationary solutions to (NS) is similarity variables with body force F
\rightarrow Instability in similarity variables
non-uniqueness.

The second solution

- We think of \bar{U} as a stationary solutions to (NS) is similarity variables with body force F

$$
-\frac{1}{2}(1+\xi \cdot \nabla) \bar{U}-\Delta \bar{U}+\bar{U} \cdot \nabla \bar{U}+\nabla P=F .
$$

$>$ Instability in similarity variables \Rightarrow non-uniqueness.
v if U' is ("'near) unstable, we make the Ansaiz

The second solution

- We think of \bar{U} as a stationary solutions to (NS) is similarity variables with body force F

$$
-\frac{1}{2}(1+\xi \cdot \nabla) \bar{U}-\Delta \bar{U}+\bar{U} \cdot \nabla \bar{U}+\nabla P=F .
$$

- Instability in similarity variables \Longrightarrow non-uniqueness.
- If \bar{U} is (linear) unstable, we make the Ansatz
where
$\rightarrow U^{\text {lin }}$ solves the linearized (NS) equations around U

The second solution

- We think of \bar{U} as a stationary solutions to (NS) is similarity variables with body force F

$$
-\frac{1}{2}(1+\xi \cdot \nabla) \bar{U}-\Delta \bar{U}+\bar{U} \cdot \nabla \bar{U}+\nabla P=F .
$$

- Instability in similarity variables \Longrightarrow non-uniqueness.
- If \bar{U} is (linear) unstable, we make the Ansatz

$$
U=\bar{U}+V=\bar{U}+U^{\text {lin }}+U^{\text {per }}
$$

where
$-U^{\text {lin }}$ sc lves the linearized (NS) equations around U

The second solution

- We think of \bar{U} as a stationary solutions to (NS) is similarity variables with body force F

$$
-\frac{1}{2}(1+\xi \cdot \nabla) \bar{U}-\Delta \bar{U}+\bar{U} \cdot \nabla \bar{U}+\nabla P=F .
$$

- Instability in similarity variables \Longrightarrow non-uniqueness.
- If \bar{U} is (linear) unstable, we make the Ansatz

$$
U=\bar{U}+V=\bar{U}+U^{\text {lin }}+U^{\text {per }}
$$

where

- $U^{\text {lin }}$ solves the linearized (NS) equations around \bar{U}
- $U^{\text {per }}$ is a small perturbation

The second solution
$U=\bar{U}+V$ solves (NS) iff
where

The second solution

- $U=\bar{U}+V$ solves (NS) iff

$$
\partial_{\tau} V=-\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})+\Delta V+\frac{1}{2}(1+\xi \cdot \nabla) V-\mathbb{P}(V \cdot \nabla V)
$$

The second solution

- $U=\bar{U}+V$ solves (NS) iff

$$
\begin{aligned}
\partial_{\tau} V & =-\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})+\Delta V+\frac{1}{2}(1+\xi \cdot \nabla) V-\mathbb{P}(V \cdot \nabla V) \\
& =\mathcal{L}_{s s} V-\mathbb{P}(V \cdot \nabla V), \quad(\xi, \tau) \in \mathbb{R}^{3} \times(-\infty, T) .
\end{aligned}
$$

where

The second solution

- $U=\bar{U}+V$ solves (NS) iff

$$
\begin{aligned}
\partial_{\tau} V & =-\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})+\Delta V+\frac{1}{2}(1+\xi \cdot \nabla) V-\mathbb{P}(V \cdot \nabla V) \\
& =\mathcal{L}_{s s} V-\mathbb{P}(V \cdot \nabla V), \quad(\xi, \tau) \in \mathbb{R}^{3} \times(-\infty, T) .
\end{aligned}
$$

where

$$
-\mathcal{L}_{\mathrm{ss}} V=-\frac{1}{2}(1+\xi \cdot \nabla) V-\Delta V+\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U}) .
$$

- Goal: We look for a nontrivial solution V which decays at

The second solution

- $U=\bar{U}+V$ solves (NS) iff

$$
\begin{aligned}
\partial_{\tau} V & =-\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U})+\Delta V+\frac{1}{2}(1+\xi \cdot \nabla) V-\mathbb{P}(V \cdot \nabla V) \\
& =\mathcal{L}_{s s} V-\mathbb{P}(V \cdot \nabla V), \quad(\xi, \tau) \in \mathbb{R}^{3} \times(-\infty, T) .
\end{aligned}
$$

where

$$
-\mathcal{L}_{\mathrm{ss}} V=-\frac{1}{2}(1+\xi \cdot \nabla) V-\Delta V+\mathbb{P}(\bar{U} \cdot \nabla V+V \cdot \nabla \bar{U}) .
$$

- Goal: We look for a nontrivial solution V which decays at $\tau \rightarrow-\infty$.

The spectral problem
\rightarrow Linearized equations: We drop the non-linear term $\mathbb{P}(V \cdot \nabla V)$,

Spectral problem: We look for an unstable eigenvalue of $\mathcal{L}_{s S}$, i.e.

$$
\mathcal{L}_{s s} \eta=\lambda \eta
$$

The spectral problem

- Linearized equations: We drop the non-linear term $\mathbb{P}(V \cdot \nabla V)$,

$$
\left\{\begin{array}{l}
\partial_{\tau} V=\mathcal{L}_{s S} V \\
V(\xi, \tau) \rightarrow 0 \quad \text { as } \tau \rightarrow-\infty
\end{array}\right.
$$

such that

The spectral problem

- Linearized equations: We drop the non-linear term $\mathbb{P}(V \cdot \nabla V)$,

$$
\left\{\begin{array}{l}
\partial_{\tau} V=\mathcal{L}_{s S} V \\
V(\xi, \tau) \rightarrow 0 \quad \text { as } \tau \rightarrow-\infty
\end{array}\right.
$$

- Spectral problem: We look for an unstable eigenvalue of $\mathcal{L}_{s s}$, i.e.

$$
\lambda \in \mathbb{C}, a:=\operatorname{Re} \lambda>0, \quad \eta \in C^{\infty} \cap H^{k} \forall k>0
$$

such that

$$
\mathcal{L}_{s s} \eta=\lambda \eta .
$$

The spectral problem

- Linearized equations: We drop the non-linear term $\mathbb{P}(V \cdot \nabla V)$,

$$
\left\{\begin{array}{l}
\partial_{\tau} V=\mathcal{L}_{s S} V \\
V(\xi, \tau) \rightarrow 0 \quad \text { as } \tau \rightarrow-\infty
\end{array}\right.
$$

- Spectral problem: We look for an unstable eigenvalue of $\mathcal{L}_{s s}$, i.e.

$$
\lambda \in \mathbb{C}, a:=\operatorname{Re} \lambda>0, \quad \eta \in C^{\infty} \cap H^{k} \forall k>0
$$

such that

$$
\begin{gathered}
\mathcal{L}_{s s} \eta=\lambda \eta \\
U^{\operatorname{lin}}(\xi, \tau)=\operatorname{Re}\left(e^{\lambda \tau} \eta(\xi)\right), \quad \tau \in \mathbb{R} .
\end{gathered}
$$

From instability to non-uniqueness

- Linear problem: $U^{\text {lin }}$ solves

$$
\partial_{\tau} U^{\text {lin }}=\mathcal{L}_{s S} U^{\mathrm{lin}} .
$$

We make the Ansatz:

From instability to non-uniqueness

- Linear problem: $U^{\text {lin }}$ solves

$$
\partial_{\tau} U^{\text {lin }}=\mathcal{L}_{s S} U^{\mathrm{lin}} .
$$

- $\left|U^{\operatorname{lin}}(\xi, \tau)\right| \sim e^{\operatorname{Re} \lambda \tau}$ when $\tau \rightarrow-\infty$.
- Non-linear problem:

We make the Ansatz:

From instability to non-uniqueness

- Linear problem: $U^{\text {lin }}$ solves

$$
\partial_{\tau} U^{\text {lin }}=\mathcal{L}_{s S} U^{\mathrm{lin}} .
$$

- $\left|U^{\operatorname{lin}}(\xi, \tau)\right| \sim e^{\operatorname{Re} \lambda \tau}$ when $\tau \rightarrow-\infty$.
- Non-linear problem:

$$
\partial_{\tau} V=\mathcal{L}_{s s} V-\mathbb{P}(V \cdot \nabla V) .
$$

We make the Ansatz:

$$
V=U^{\text {lin }}+U^{\text {per }}, \quad\left|U^{\text {per }}(\xi, \tau)\right| \sim e^{2 \operatorname{Re} \lambda \tau} .
$$

Linear Instability

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: \mathcal{D}\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

has an unstable eigenvalue.

Instability: there exist $\eta \in C^{\infty} \cap L^{2}$ and $\lambda \in\{\operatorname{Re}>0\}$ such that

$$
\mathcal{C}_{s} \eta=\lambda_{\eta}
$$

Linear Instability

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: \mathcal{D}\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

has an unstable eigenvalue.

Linear Instability

Theorem (Albritton-B.-Colombo)
There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: \mathcal{D}\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

has an unstable eigenvalue.

Instability: there exist $\eta \in C^{\infty} \cap L^{2}$ and $\lambda \in\{\operatorname{Re}>0\}$ such that

$$
\mathcal{L}_{\mathrm{ss}} \eta=\lambda \eta .
$$

Strategy of proof

We lift a $2 d$ unstable vortex ([Vishik '18]) to a 3d vortex ring.

- Reduction to the Euler equations in standard variables

Strategy of proof

We lift a $2 d$ unstable vortex ([Vishik '18]) to a 3d vortex ring.

- Reduction to the Euler equations in standard variables
- Axisymmetric-no-swirl structure and vortex ring construction

Strategy of proof

We lift a $2 d$ unstable vortex ([Vishik '18]) to a 3d vortex ring.

- Reduction to the Euler equations in standard variables
- Axisymmetric-no-swirl structure and vortex ring construction

Strategy of proof

We lift a $2 d$ unstable vortex ([Vishik '18]) to a 3d vortex ring.

- Reduction to the Euler equations in standard variables
- Axisymmetric-no-swirl structure and vortex ring construction

2D Instability

2d-vorticity formulation: $\omega(x)=\operatorname{curl} u(x), x \in \mathbb{R}^{2}$

$$
\partial_{\omega}+u \nabla \omega=\operatorname{cul}^{1} f
$$

- Shear flows: $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\bar{U}^{\prime}(x)=\left(\bar{b}\left(x_{2}\right), 0\right)
$$

2D Instability

- 2d-vorticity formulation: $\omega(x)=\operatorname{curl} u(x), x \in \mathbb{R}^{2}$

$$
\partial_{t} \omega+u \cdot \nabla \omega=\operatorname{curl} f
$$

2D Instability

- 2d-vorticity formulation: $\omega(x)=\operatorname{curl} u(x), x \in \mathbb{R}^{2}$

$$
\partial_{t} \omega+u \cdot \nabla \omega=\operatorname{curl} f,
$$

- Shear flows: $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\bar{u}(x)=\left(b\left(x_{2}\right), 0\right),
$$

2D Instability

- 2d-vorticity formulation: $\omega(x)=\operatorname{curl} u(x), x \in \mathbb{R}^{2}$

$$
\partial_{t} \omega+u \cdot \nabla \omega=\operatorname{curl} f,
$$

- Shear flows: $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\bar{u}(x)=\left(b\left(x_{2}\right), 0\right),
$$

- Vortices: $x \in \mathbb{R}^{2}, r=|x|$,

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r) .
$$

[Rayleigh '1880], [Tollmien '34], [Lin '02], [Fadeev '71].

2D Instability

- 2d-vorticity formulation: $\omega(x)=\operatorname{curl} u(x), x \in \mathbb{R}^{2}$

$$
\partial_{t} \omega+u \cdot \nabla \omega=\operatorname{curl} f,
$$

- Shear flows: $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\bar{u}(x)=\left(b\left(x_{2}\right), 0\right),
$$

- Vortices: $x \in \mathbb{R}^{2}, r=|x|$,

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r) .
$$

[Rayleigh '1880], [Tollmien '34], [Lin '02], [Fadeev '71].

2D Instability

Theorem (Vishik '18, ABCDGJK'21)

There exists a smooth decaying vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r),
$$

such that the linear operator $\mathcal{L}_{s t}: D\left(\mathcal{L}_{s t}\right) \subset L_{m}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{m}^{2}\left(\mathbb{R}^{2}\right)$, $m \geq 2$,

$$
\left\{\begin{array}{l}
-\mathcal{L}_{s t} \omega=\bar{u} \cdot \nabla \omega+u \cdot \nabla \bar{\omega}, \quad \omega \in L^{2} \\
\omega:=\operatorname{curl} u,
\end{array}\right.
$$

has an unstable eigenvalue.

2D Instability

Theorem (Vishik '18, ABCDGJK'21)

There exists a smooth decaying vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r),
$$

such that the linear operator $\mathcal{L}_{s t}: D\left(\mathcal{L}_{s t}\right) \subset L_{m}^{2}\left(\mathbb{R}^{2}\right) \rightarrow L_{m}^{2}\left(\mathbb{R}^{2}\right)$, $m \geq 2$,

$$
\left\{\begin{array}{l}
-\mathcal{L}_{s t} \omega=\bar{u} \cdot \nabla \omega+u \cdot \nabla \bar{\omega}, \quad \omega \in L^{2} \\
\omega:=\operatorname{curl} u,
\end{array}\right.
$$

has an unstable eigenvalue.

$$
L_{m}^{2}\left(\mathbb{R}^{2}\right):=\{m \text {-fold symmetric functions }\} .
$$

Sharpness of Yudovich class

Theorem (Vishik'18, ABCDGJK'21)

For every $p \in(2, \infty)$, there exist two distinct finite-energy weak solutions u and \bar{u} of the $2 d$-Euler equations with identical body force f such that

- $\omega, \bar{\omega} \in L_{t}^{\infty}\left(L_{x}^{p} \cap L_{x}^{1}\right)$;
- $f \in L_{t}^{1} L_{x}^{2}$ and curl $f \in L_{t}^{1}\left(L_{x}^{p} \cap L_{x}^{1}\right)$.

3D Instability: First reduction

- Claim: It is enough to show linear instability for

$$
-\mathcal{L}_{\mathrm{st}} U:=\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

3D Instability: First reduction

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: \mathcal{D}\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\text {ss }} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

has an unstable eigenvalue.
\rightarrow Claim: It is enough to show linear instability for

3D Instability: First reduction

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: \mathcal{D}\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

has an unstable eigenvalue.

- Claim: It is enough to show linear instability for

$$
-\mathcal{L}_{\mathrm{st}} U:=\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U}) .
$$

3D Instability: First reduction

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field $\bar{U} \in C_{c}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ s.t. the linear operator $\mathcal{L}_{s s}: \mathcal{D}\left(\mathcal{L}_{s s}\right) \subset L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right) \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$

$$
-\mathcal{L}_{\mathrm{ss}} U=-\frac{1}{2}(1+\xi \cdot \nabla) U-\Delta U+\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U})
$$

has an unstable eigenvalue.

- Claim: It is enough to show linear instability for

$$
-\mathcal{L}_{\mathrm{st}} U:=\mathbb{P}(\bar{U} \cdot \nabla U+U \cdot \nabla \bar{U}) .
$$

- Heuristic: by replacing $\bar{U} \rightarrow \varepsilon^{-1} \bar{U}$, we have

$$
\mathcal{L}_{\mathrm{ss}}=\frac{1}{2}(1+\xi \cdot \nabla)+\Delta+\varepsilon^{-1} \mathcal{L}_{\mathrm{st}}
$$

for $\varepsilon \ll 1$ the last term dominates.

Axisymmetric-no-swirl structure

$$
\begin{aligned}
x & =(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3} \\
U & =U^{r}(r, z) e_{r}+U^{z}(r, z) e_{z}
\end{aligned}
$$

Axisymmetric-no-swirl structure

$$
x=(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3}
$$

Axisymmetric-no-swirl structure

$$
\begin{gathered}
x=(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3} \\
U=U^{r}(r, z) e_{r}+U^{z}(r, z) e_{z}
\end{gathered}
$$

Axisymmetric-no-swirl structure

$$
\begin{gathered}
x=(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3} \\
U=U^{r}(r, z) e_{r}+U^{z}(r, z) e_{z}
\end{gathered}
$$

$$
\operatorname{curl} U=-\Omega(r, z) e_{\theta} .
$$

Axisymmetric-no-swirl structure

$$
\begin{gathered}
x=(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3} \\
U=U^{r}(r, z) e_{r}+U^{z}(r, z) e_{z}
\end{gathered}
$$

$$
\operatorname{curl} U=-\Omega(r, z) e_{\theta} .
$$

- We assume $\bar{U}=\bar{U}^{r}(r, z) e_{r}+\bar{U}^{z}(r, z) e_{z}$.

Axisymmetric-no-swirl structure

$$
\begin{gathered}
x=(r \cos \theta, r \sin \theta, z) \in \mathbb{R}^{3} \\
U=U^{r}(r, z) e_{r}+U^{z}(r, z) e_{z}, \\
\operatorname{curl} U=-\Omega(r, z) e_{\theta} .
\end{gathered}
$$

- We assume $\bar{U}=\bar{U}^{r}(r, z) e_{r}+\bar{U}^{z}(r, z) e_{z}$.
- The space of axisymmetric-no-swirl velocity fields is invariant under the action of $\mathcal{L}_{s t}$.

3d Instability: Second reduction

Vorticity formulation: curl $\bar{U}=-\bar{\omega}(r, z) e_{\theta}$,

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\text {vor }} \omega:=(\bar{U} \cdot \nabla) \omega+(U \cdot \nabla) \bar{\omega}-\frac{\bar{U}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega} \\
U=\mathrm{BS}_{3 d}\left[-\omega \boldsymbol{e}_{\theta}\right] .
\end{array}\right.
$$

where $\omega \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$.

3D Instability: Vortex ring

We lift Vishik's unstable vortex

to a 3d vortex ring.

3D Instability: Vortex ring

We lift Vishik's unstable vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r), \quad x \in \mathbb{R}^{2}, r=|x|
$$

to a 3d vortex ring.
\Rightarrow Truncation step: $\bar{U}_{R}(x):=\varphi_{R}(r) \zeta(r) x^{\perp}$ is unstable provided

- Ring construction: We place the $2 d$-vortex
into the axisymmetric-no-swirl coordinates
$\bar{r} \cdot=u_{p}^{1}\left(r-0, z_{r}+\theta_{p}^{2}(r-0, z) e_{z}\right.$
where $\ell \gg 1$

3D Instability: Vortex ring

We lift Vishik's unstable vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r), \quad x \in \mathbb{R}^{2}, r=|x|
$$

to a 3d vortex ring.

- Truncation step: $\bar{u}_{R}(x):=\varphi_{R}(r) \zeta(r) x^{\perp}$ is unstable provided $R \gg 1$.
- Ring construction: We place the $2 d$-vortex
where $\ell \gg 1$.

3D Instability: Vortex ring

We lift Vishik's unstable vortex

$$
\bar{u}(x)=\zeta(r) x^{\perp}, \quad \bar{\omega}(x)=g(r), \quad x \in \mathbb{R}^{2}, r=|x|
$$

to a 3d vortex ring.

- Truncation step: $\bar{u}_{R}(x):=\varphi_{R}(r) \zeta(r) x^{\perp}$ is unstable provided $R \gg 1$.
- Ring construction: We place the $2 d$-vortex

$$
\bar{u}_{R}\left(x_{1}, x_{2}\right)=\left(\bar{u}_{R}^{1}\left(x_{1}, x_{2}\right), \bar{u}_{R}^{2}\left(x_{1}, x_{2}\right)\right)
$$

into the axisymmetric-no-swirl coordinates $(r, z) \in \mathbb{R}_{+} \times \mathbb{R}$

$$
\bar{U}_{\ell}:=\bar{u}_{R}^{1}(r-\ell, z) e_{r}+\bar{u}_{R}^{2}(r-\ell, z) e_{z},
$$

where $\ell \gg 1$.

Instability for $\ell \gg 1$

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\ell} \omega:=\left(\bar{U}_{\ell} \cdot \nabla\right) \omega+(U \cdot \nabla) \bar{\omega}_{\ell}-\frac{\bar{U}_{\ell}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega}_{\ell} \\
U=\mathrm{BS}_{\ell}[\omega] .
\end{array}\right.
$$

where $\omega \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$.

Instability for $\ell \gg 1$

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\ell} \omega:=\left(\bar{U}_{\ell} \cdot \nabla\right) \omega+(U \cdot \nabla) \bar{\omega}_{\ell}-\frac{\bar{U}_{\ell}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega}_{\ell} \\
U=\mathrm{BS}_{\ell}[\omega] .
\end{array}\right.
$$

where $\omega \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$.

Heuristic: $\mathrm{BS}_{\ell} \rightarrow \mathrm{BS}_{2 d}$ as $\ell \rightarrow \infty$.

Instability for $\ell \gg 1$

$$
\left\{\begin{array}{l}
-\mathcal{L}_{\ell} \omega:=\left(\bar{U}_{\ell} \cdot \nabla\right) \omega+(U \cdot \nabla) \bar{\omega}_{\ell}-\frac{\bar{U}_{\ell}^{r}}{r} \omega-\frac{U^{r}}{r} \bar{\omega}_{\ell} \\
U=\mathrm{BS}_{\ell}[\omega]
\end{array}\right.
$$

where $\omega \in L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$.

Heuristic: $\mathrm{BS}_{\ell} \rightarrow \mathrm{BS}_{2 d}$ as $\ell \rightarrow \infty$. Indeed

$$
\begin{gathered}
\partial_{r}^{2} \psi+\frac{1}{r} \partial_{r} \psi-\frac{1}{r^{2}} \psi+\partial_{z}^{2} \psi=\omega \quad \text { in } \mathbb{R}_{+} \times \mathbb{R} \\
U=-\partial_{z} \psi \boldsymbol{e}_{r}+\left(\partial_{r}+\frac{1}{r}\right) \psi \boldsymbol{e}_{z}
\end{gathered}
$$

Open Problems and Future Directions

- Is it possible to remove the force?
- There should be many unstable profiles Ū. How generic are they? Is there an easier way to find them?

Open Problems and Future Directions

- Is it possible to remove the force?
- There should be many unstable profiles \bar{U}. How generic are they? Is there an easier way to find them?

Thank you for your attention!

Open Problems and Future Directions

- Is it possible to remove the force?
- There should be many unstable profiles \bar{U}. How generic are they? Is there an easier way to find them?

Thank you for your attention!

[^0]: ${ }^{1}$ Joint with D. Albritton and M. Colombo

