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Millennium problem

Assume up € C and f = 0. Is there a global smooth solutions to
(NS)?
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Leray-Hopf solutions

Letuy € L2, fe L]L2.
> [Leray '34], [Hopf '51]: Global solutions to (NS) in the class
ueLPL2nL2H]
» u(-,0) = up;

» Energy inequality:

%/|u(x, t)|2dx+/0t/|Vu(x, s)Pdxds
1 2 t .
< 2/|u0(x)| dx+/0 /f(x,s) u(x,s)dxds.
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Properties of Leray-Hopf solutions

» Suitability condition:

1 1
(at—A)§|u\2 + |Vul? + div <<2|u|2 +p> u) <f-u.

> Partial regularity: If f € L2/Z* then
P (singular set) =0, <%1/2(singular times) = O) ,

[Caffarelli-Kohn-Nirenberg '82].

» Weak-strong uniqueness: Leray-Hopf solutions agree with strong
solutions.
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The uniqueness problem

» The program of Jia, Sverak, and Guillod:

» Bifurcation from large self-similar solutions.
Need to prove the existence of an unstable self-similar background
[Jia-Sverak '14, '15].

» Numerical evidence of instability [Guillod-Sverak *17].

» Convex integration method: After [De Lellis, Szekelyhidi '09, '13]
» Non-uniqueness of weak solutions to (NS) in

ue CH?, forsomes >0,

[Buckmaster-Vicol "19].
> Non-uniqueness in L{Lg°, g < 2 and C:L%, p < 2. [Cheskidov-Luo
'20].
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Main results

Theorem (Albritton-B.-Colombo '21)

There exist u and u, two distinct suitable Leray-Hopf solutions to (NS)
on R® with identical body force f € L} L2 and u(-,0) = &(-,0) = 0.

Theorem (Albritton-B.-Colombo ’22)
The same conclusion holds in bounded domains and in T3.
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Self-similar structure

> There exists a div-free velocity field U € C°(R3; R®) s.t.

b(x, t) = \150 <\’/(f> .

e C®R3x(0,T)NC0, T]; L' nL3).

» There exists F € C3°(R3; R®) such that

f(x, 1) = ;7/-' (\2) .

fe C(R® % (0,T))NL([0, T]; L' N L3).
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Similarity variables

Let u be a solution to (NS) with body force f.

» Change of variables: ¢ = x/V/t, 7 = log(t) € (—o0, T)
1
Vi

f(x.t) = ;7/—' (\2) .

» (NS) in similarity variables: (¢,7) € R3 x (—oo, T)

U(X’ t) = U(E,T),

E)TU—%U +EVU—AU+U-VU+VP=F
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1

—§(1+£-V)U—AU+U~VU+VP:F.
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The second solution

> We think of U as a stationary solutions to (NS) is similarity
variables with body force F

> Instability in similarity variables = non-uniqueness.
> If Uis (linear) unstable, we make the Ansatz
U:U+ V:U—FUlin—i—Uper,

where

> Uin solves the linearized (NS) equations around U
> P is a small perturbation
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The second solution

> U= U+ V solves (NS) iff
- - 1
0,V =-P(U-VV+V-VO)+AV+ (1 +£- V)V -PB(V-VV)
=LssV-P(V-VV), (&7)€R3x (—00,T).
where
—LV = —%(1 +&-V)V-AV+P(U-VV+V-VU).

» Goal: We look for a nontrivial solution V which decays at
T — —00.
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The spectral problem

> Linearized equations: We drop the non-linear term P(V - VV),

0;V =LgsV
Vi, 7)—>0 as7— —0

» Spectral problem: We look for an unstable eigenvalue of Lg, i.e.
AeC,a:=ReA>0, neC®nHVvk>0

such that
Lssn = Anp.

Un(¢,7) = Re(eMn(€)), T€ER.
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From instability to non-uniqueness

» Linear problem: U'" solves

67— Ulin — Ess Ulin )

> |Un(¢, 7)| ~ eReAT when 7 — —oo.
» Non-linear problem:
0.V =LsV-—P(V-VV).
We make the Ansatz:

V= Ulin + Uper’ ‘Uper(g’ T)| ~ eZReAT )
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Linear Instability

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field U € C°(R3; R?) s.t.

the linear operator Lgs : D(Lss) C L2(R3; R®) — L2(R3; R3)
—L U= —%(1 +&- V) U-AU+P(U-VU+U-VU)

has an unstable eigenvalue.

Instability: there exist n € C* N L2 and A € {Re > 0} such that

Lgsn = An.
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Strategy of proof

We lift a 2d unstable vortex ([Vishik *18]) to a 3d vortex ring.
» Reduction to the Euler equations in standard variables

» Axisymmetric-no-swirl structure and vortex ring construction
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2D Instability

» 2d-vorticity formulation: w(x) = curl u(x), x € R?
Ow + U-Vw =curl f,
» Shear flows: x = (x1, %) € R?,
i(x) = (b(x2),0),
» Vortices: x € R?, r = |x|,

(x) = ¢(Nx+,  @(x) =g(r).

[Rayleigh *1880], [Tollmien *34], [Lin ’02], [Fadeev "71].
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2D Instability

Theorem (Vishik '18, ABCDGJK’21)

There exists a smooth decaying vortex
u(x) =¢(Nxt,  o(x)=g(r),

such that the linear operator L : D(Lst) C L2,(R?) — L2,(R?),
m>2,
{—L’stw: U-Vo+u Vo, wel?

w:=curlu,

has an unstable eigenvalue.

L2 (R?) := {m-fold symmetric functions} .



Sharpness of Yudovich class

Theorem (Vishik’'18, ABCDGJK'21)

For every p € (2,0), there exist two distinct finite-energy weak
solutions u and u of the 2d-Euler equations with identical body force f
such that

> w,@ e LE(LEnLl);
> fe LIL2 and curlf € L} (L} N L}).
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3D Instability: First reduction

Theorem (Albritton-B.-Colombo)

There exists a divergence-free vector field U € C°(R3; R?) s.t.
the linear operator Lgs : D(Lss) C L2(R3; R3) — L2(R3; R3)

—ESSU:—%U +&- V) U-AU+PU-VU+U-VU)

has an unstable eigenvalue.

» Claim: It is enough to show linear instability for
—LyU:=PWU-VU+U-VU).
» Heuristic: by replacing U — ¢~ U, we have
1
Los=-(1+6V)+A+e "Ly,

2

for e <« 1 the last term dominates.
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Axisymmetric-no-swirl structure

x = (rcos#,rsinf, z) € R®
U=U'(r,z)e, + U(r, 2)e;,

curlU = =Q(r,z)ep .

> We assume U = U'(r, z)e, + U?(r, 2)e; .
» The space of axisymmetric-no-swirl velocity fields is invariant
under the action of Lg;.



3d Instability: Second reduction

Vorticity formulation: curl U = —&(r, 2)ey,

—Lyorw 1= (U . V)w + (U . V)a}_gw _ UT’J"
U = BSaq[~wey] .

where w € L2(R, x R).
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3D Instability: Vortex ring

We lift Vishik’s unstable vortex
o(x) = ¢(nx*, @(x)=g(r), xeR%r=|x|,
to a 3d vortex ring.

» Truncation step: Ug(x) := ¢r(r)¢(r)x= is unstable provided
R>>1.

» Ring construction: We place the 2d-vortex
UR(x1,Xe) = (UR(x1, Xe), Ua(X1, X2))
into the axisymmetric-no-swirl coordinates (r,z) € Ry x R
Uy :=0k(r—¢,2)e, + Ua(r — ¢, 2)e;,

where ¢ >> 1.



Instability for £ >> 1

—Low = (U( . V)w + (U . V)@g—%w — UT’(L‘g
U =BS/[w].

where w € L2(R, x R).




Instability for £ >> 1

—Low = (U( . V)w + (U . V)@g—%w — UT’(L‘g
U =BS/[w].

where w € L2(R, x R).

Heuristic: BS, — BSy4 as ¢ — oo.



Instability for £ >> 1

—Low = (U( -Vw+ (U - V)w_lw _ lw
U =BS/[w].

where w € L2(R, x R).

Heuristic: BS, — BS,4 as ¢ — oo. Indeed

1 1 .
O+ ?0,1/;— ﬁl/)—i—(')fw =w inRy xR,

U__az'l/}er+< )1/162
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» There should be many unstable profiles U. How generic are
they? Is there an easier way to find them?

Thank you for your attention!



