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Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.
• Balance between pressure and gravity in a static star;
• As gas burns, balance shifts;

• Possible collapse? Supernova?

Figure: Image credit: R.J. Hall
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Euler-Poisson equations

The Euler-Poisson equations of gas dynamics with Newtonian gravity:
∂tρ+ divx(ρu) = 0, (t ,x) ∈ R× R3,

ρ
(
∂tu + (u · ∇)u

)
+∇xp(ρ) = −ρ∇Φ, (t ,x) ∈ R× R3,

∆Φ = 4πρ, (t ,x) ∈ R× R3.

(1)

ρ is density, u is velocity, p is pressure, Φ is gravitational potential.
We assume the equation of state

p = p(ρ) = ργ , γ ∈
(
1,

4
3
)
.



Collapse

Collapse is the formation of a singularity at the origin, i.e.

ρ(t ,0)→∞ as t → 0− .

• For γ > 4
3 , no finite mass and energy collapse possible.

• For γ = 4
3 , Goldreich–Weber collapse - unsuitable model for

outer core.



Previous Results

Classical and numerical work
• Taylor, Von Neumann, Sedov, Güderley ’40s: study implosion

and explosion for Euler equations;
• Larson–Penston ’69: numerical solution for γ = 1;
• Hunter ’77: family of numerical solutions for γ = 1;
• Yahil ’83: numerical solutions for γ ∈ [ 6

5 ,
4
3 );

• Maeda–Harada ’01: numerical evidence towards mode stability
of Larson–Penston.

Recent works
• Merle–Raphaël–Rodnianski–Szeftel ’22: existence of a

imploding self-similar solutions for Euler;
• Guo–Hadzic–Jang ’21: construction of LP solution.
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Self-similar singularity formation (Type I)

Self-similarity and singularities interact in a wide range of problems.
• Stellar collapse;
• Formation/expansion of shock waves

(Buckmaster–Shkoller–Vicol ’20,...);
• Shock reflection (Chen–Feldman ’18);
• Bacterial growth;
• Geometric wave equations (Costin–Donninger–Glogic ’17,...);
• Yang–Mills (Bizon ’00, Glogic ’20,...);
• ...

Key Features:
• Non-linearity;
• Intertwining of spatial and time scales;
• Good initial data leads to badly behaved solutions!
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Scaling and Self-similarity

Scaling
Let ρ = ρ(t , r), u = u(t , r) x

|x| , r = |x|, solve Euler-Poisson, λ > 0.
Then

ρλ(t , r) = λ−
2

2−γ ρ
( t

λ
1

2−γ

,
r
λ

)
, uλ(t , r) = λ−

γ−1
2−γ u

( t

λ
1

2−γ

,
r
λ

)
is also a solution. (NB: This is a unique scaling!)

Self-similarity
We define a self-similar variable

y =
r

(−t)2−γ ,

and search for

ρ(t , r) = (−t)−2ρ̃(y), u(t , r) = (−t)1−γ ũ(y).
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ODE system

Defining a convenient variable ω(y) = ũ(y)/y + 2− γ, self-similar
Euler-Poisson becomes

ρ̃′ =
y ρ̃h(ρ̃, ω)

γρ̃γ−1 − y2ω2 ,

ω′ =
4− 3γ − 3ω

y
− yωh(ρ̃, ω)

γρ̃γ−1 − y2ω2 ,

(2)

where h(ρ̃, ω) is a quadratic function.

Definition (Sonic point)
Let (ρ̃(·), ω(·)) be a C1-solution to the self-similar Euler-Poisson
system on the interval (0,∞). A point y∗ ∈ (0,∞) such that

G(y , ρ̃, ω) := γρ̃γ−1(y∗)− y2
∗ω

2(y∗) = 0

is called a sonic point.
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Theorem
Initial/boundary conditions
For a regular solution, we require

ρ̃(0) > 0, ω(0) =
4− 3γ

3
,

ρ̃(y) ∼ y−
2

2−γ as y →∞, lim
y→∞

ω(y) = 2− γ.

NB: this forces the existence of a sonic point!

Theorem (Guo–Hadzic–Jang–S. ’21)
For each γ ∈ (1, 4

3 ), there exists a global, real-analytic solution (ρ̃, ω)
of self-similar Euler-Poisson with a single sonic point y∗ such that:

ρ̃(y) > 0 for all y ∈ [0,∞), −2
3

y < ũ(y) < 0 for all y ∈ (0,∞).

In addition, both ρ and ω are strictly monotone:

ρ̃′(y) < 0 for all y ∈ (0,∞), ω′(y) > 0 for all y ∈ (0,∞).
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Overview of key difficulties

Regularity
Expect stability tied to regularity (MRRS ’22). Requires smoothness
through sonic point.

Non-linearity
Methods need to be adapted to specific non-linearities (no general
recipe for solving such problems).

Non-autonomous system
Non-autonomous forces evolving phase portrait. No fixed phase
portrait analysis for invariant regions.
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Overview of Strategy

Two explicit solutions
Far-field solution (ρf , ωf ) and Friedman solution (ρF , ωF ):

(ρf (y), ωf (y)) = (kγy−
2

2−γ ,2− γ), (ρF (y), ωF (y)) = (
1

6π
,

4
3
− γ).

Sonic points at yf (γ) < yF (γ).

0 yf (γ) yF (γ) ∞

4−3γ
3

2− γ



Overview of Strategy

Proposition (Local Solution)
For all γ ∈ (1, 4

3 ), there exists ν > 0 such that for all
y∗ ∈ [yf (γ), yF (γ)], there exists an analytic solution (ρ(·; y∗), ω(·; y∗))
to self-similar Euler-Poisson on (y∗ − ν, y∗ + ν) with a single sonic
point at y∗.

0 yf (γ) y∗1 y∗2 yF (γ) ∞

4−3γ
3

2− γ

ω(·; y∗2)

ω(·; y∗1)



Overview of Strategy

Lemma (Solving to the right)
For each γ ∈ (1, 4

3 ), each y∗ ∈ [yf (γ), yF (γ)], the local solution
(ρ(·; y∗), ω(·; y∗)) obtained by Taylor expansion extends globally to the
right on [y∗,∞), remains supersonic, and satisfies the asymptotic
boundary conditions.

0 yf (γ) y∗1 y∗2 yF (γ) ∞

4−3γ
3

2− γ

ω(·; y∗2)

ω(·; y∗1)



Overview of Strategy

Aim: Find ȳ∗ such that local solution (ρ(·; ȳ∗), ω(·; ȳ∗)) extends
smoothly to y = 0. Look for solution with

4
3
− γ ≤ ω(y ; ȳ∗) < 2− γ, lim

y→0
ω(y ; ȳ∗) =

4
3
− γ.

0 yf (γ) y∗1 ȳ∗ y∗2 yF (γ)

4−3γ
3

ω(·; y∗2)

ω(·; ȳ∗)
ω(·; y∗1)



Future Programme

Linear Stability
• Appropriate self-similar coordinates;
• Non-self-adjoint problem (complex eigenvalues);
• Sonic degeneracy and issues with dissipativity (monotonicity).

Future directions
• Non-linear stability;
• Einstein-Euler (relativistic self-similar fluid implosion) and its

stability (cf. Guo–Hadžić–Jang ’21).
• Continuation and expansion?
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Thank you!


