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The Boltzmann equation

∂t f + v ⋅ ∇x f =
1

Kn
Q(f , f ), t > 0, x ∈ Ω ⊂ R3, v ∈ R3

f = f (t, x , v): one-particle probability density function
— f dxdv gives the probability of finding a fixed particle at time t, position x and

velocity v in the phase space

Kn: Knudsen number (ratio of the mean free path and typical length scale)
— Kn = O(1) kinetic/rarefied regime; Kn ≪ 1 fluid/continuum regime

Q(f , f ): Boltzmann collision operator
— a nonlinear integral operator modeling the binary collisions among particles
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The Boltzmann collision operator

Q(f , f )(v) = ∫
R3
∫
S2
B(v − v∗, σ)[f (v

′
)f (v ′∗) − f (v)f (v∗)]dσ dv∗

v

v�

v�

v�
�

�

�

v + v� = v� + v��
|v|2 + |v�|2 = |v�|2 + |v��|2

Figure: Illustration of a 2D
elastic collision.

(v , v∗) and (v ′, v ′∗) are the velocity pairs
before and after a collision:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

v ′ =
v + v∗

2
+

∣v − v∗∣

2
σ

v ′∗ =
v + v∗

2
−

∣v − v∗∣

2
σ

B(v − v∗, σ) = B(∣v − v∗∣, cos θ)
cos θ = σ ⋅ (v − v∗)/∣v − v∗∣

e.g. variable hard sphere (VHS) model1

B = ∣v − v∗∣
λ, 0 ≤ λ ≤ 1

λ = 1: hard sphere; λ = 0: Maxwell molecule

1Bird, 1994.
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Numerical challenge and general strategy

The major difficulty of numerically solving the Boltzmann equation comes from
the collision operator

a five-fold integral that needs to be evaluated at every v , x and t

a nonlinear (quadratic) operator

Probabilistic approach

direct simulation Monte Carlo (DSMC) method2

— easy implementation, efficient, low accuracy, random fluctuations

Deterministic approach

discrete velocity method (DVM)3

— expensive, low accuracy, maintain physical properties (positivity, conservation,

and entropy decay)

(Fourier) spectral method4

— relatively expensive, high accuracy, does not maintain most physical properties

2Bird, Nanbu, ...
3Bobylev, Buet, Goldstein, Heintz, Palczewski, Panferov, Rogier, Schneider, ...
4Bobylev, Filbet, Gamba, Mouhot, Pareschi, Perthame, Rjasanow, Russo, Tharkabhushanam,

...
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The direct Fourier spectral method5

Consider the spatially homogeneous Boltzmann equation:

⎧⎪⎪
⎨
⎪⎪⎩

∂t f (t, v) = Q(f , f ), v ∈ R3,

f (0, v) = f 0(v).

Truncate the domain R3 to a torus DL = [−L,L]3.

Change of variable v∗ → q = v − v∗ in Q(f , f ), and truncate q to a ball BR :

QR
(f , f )(v) = ∫

BR
∫
S2
B(∣q∣, σ ⋅ q̂)[f (v ′)f (v ′∗) − f (v)f (v − q)]dσ dq,

where ∣q∣ and q̂ are the magnitude and direction of q.

Approximate f by a truncated Fourier series:

f (t, v) ≈ fN(t, v) =
N/2

∑
k=−N/2

fk(t)e
i πL k ⋅v ∈ PN ,

where k = (k1, k2, k3), and −N/2 ≤ k ≤ N/2 means −N/2 ≤ kj ≤ N/2 for each
j .

5Pareschi and Russo, SIAM J. Numer. Anal., 2000.
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The direct Fourier spectral method (cont’d)

Substitute fN into the equation and conduct the Galerkin projection onto the
space PN :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

d

dt
fk = QR

k

fk(0) = f 0k

for −N/2 ≤ k ≤ N/2,

where f 0k is the k-th Fourier mode of the initial condition f 0, and

QR
k =

N/2

∑
l,m=−N/2
l+m=k

G(l ,m)fl fm,

with the weight given by

G(l ,m) = ∫
BR
∫
S2
B(∣q∣, σ ⋅ q̂) [e−i

π
2L (l+m)⋅q+i

π
2L ∣q∣(l−m)⋅σ − e−i

π
L m⋅q]dσ dq

∶ = G(l ,m) −G(m,m).
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The direct Fourier spectral method (cont’d)

The algorithm then proceeds as follows:

0. precompute the weight G(l ,m) — storage requirement O(N6);

1. prepare the initial data f 0k — computational cost O(N3);

2. at each time step, evaluate QR
k — computational cost O(N6);

3. time stepping to obtain fk at new time step — computational cost O(N3);

repeat steps 2 and 3 until the final time.

Step 2 is certainly the most expensive part in this procedure. Step 0 can be
completed in advance, but it requires a huge memory to store the precomputed
weight, which quickly becomes a bottleneck for large-scale problems.

Q: Can we have a fast algorithm to accelerate the computation as well as alleviate
the memory constraint?
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The direct Fourier spectral method (cont’d)

The algorithm then proceeds as follows:

0. precompute the weight G(l ,m) — storage requirement O(N2d);

1. prepare the initial data f 0k — computational cost O(N3);

2. at each time step, evaluate QR
k — computational cost O(N2d);

3. time stepping to obtain fk at new time step — computational cost O(N3);

repeat steps 2 and 3 until the final time.

Step 2 is certainly the most expensive part in this procedure. Step 0 can be
completed in advance, but it requires a huge memory6 to store the precomputed
weight, which quickly becomes a bottleneck for large-scale problems.

Q: Can we have a fast algorithm to accelerate the computation as well as alleviate
the memory constraint?

6For example, when N = 40, it takes over 30 GB of data to store the weights. This becomes
over 500 GB when N = 64.
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Fast Fourier spectral method – a quick summary

Mouhot and Pareschi, Math. Comp., 2006.

O(MN3 logN), M ≪ N, using Carleman representation
Fastest method available to date but only works for single species, hard sphere
kernel
Extension to other cases (general collision kernel, multi-species, inelastic) can
be done but requires additional approximation and computational cost

Gamba, Haack, Hauck, and H., SIAM J. Sci. Comput., 2017.

O(MN4 logN), M ≪ N, using σ−representation
Works for arbitrary collision kernel
Extension to other cases (multi-species, inelastic, noncutoff, etc.) is
straightforward and maintains the same computational cost
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The fast Fourier spectral method

Recall

QR
k =

N/2

∑
l,m=−N/2
l+m=k

G(l ,m)fl fm, with G(l ,m) = G(l ,m) −G(m,m).

What is nice about QR
k ? Its loss term is a convolution

QR,−
k ∶=

N/2

∑
l,m=−N/2
l+m=k

G(m,m)fl fm =

N/2

∑
l,m=−N/2
l+m=k

fl[G(m,m)fm],

hence can be computed using FFT in O(N3 logN) complexity.

What is not nice about QR
k ? Its gain term of QR

k is a weighted convolution

QR,+
k ∶=

N/2

∑
l,m=−N/2
l+m=k

G(l ,m)fl fm,

hence has to be computed directly in O(N6) complexity.
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The fast Fourier spectral method

If we can find a lowrank separated expansion for G(l ,m):

G(l ,m) ≈
T

∑
t=1

αt(l)βt(m), T is small,

then we can render the gain term QR,+
k into a sum of convolutions.

Indeed,

QR,+
k =

N/2

∑
l,m=−N/2
l+m=k

G(l ,m)fl fm ≈
T

∑
t=1

γt(k)
N/2

∑
l,m=−N/2
l+m=k

[αt(l)fl][βt(m)fm].

How?

G(l ,m) = ∫
BR
∫
S2
B(∣q∣, σ ⋅ q̂)e−i

π
2L (l+m)⋅q+i

π
2L ∣q∣(l−m)⋅σdσ dq

= ∫

R

0
∫
S2

(∫
S2
B(∣q∣, σ ⋅ q̂)e−i

π
2L ∣q∣(l+m)⋅q̂ dq̂) e i

π
2L ∣q∣(l−m)⋅σdσ ∣q∣2d∣q∣.
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The fast Fourier spectral method7

If we precompute

F (l +m, ∣q∣, σ) ∶= ∫
S2
B(∣q∣, σ ⋅ q̂)e−i

π
2L ∣q∣(l+m)⋅q̂ dq̂,

and carry out the integration in σ and ∣q∣ using a quadrature, we obtain

G(l ,m) ≈ ∑
∣q∣,σ

∣q∣2w∣q∣wσF (l +m, ∣q∣, σ)e i
π
2L ∣q∣(l−m)⋅σ.

Then

QR,+
k ≈ ∑

∣q∣,σ

∣q∣2w∣q∣wσF (k , ∣q∣, σ)
N/2

∑
l,m=−N/2
l+m=k

[e i
π
2L ∣q∣l ⋅σfl] [e

−i π
2L ∣q∣m⋅σfm] .

We use the Gauss-Legendre quadrature in the radial direction; the Lebedev
quadrature or spherical design on the sphere.

It is found that N∣q∣ = O(N), Nσ =M ≪ N2. The total complexity is
O(MN4 logN) and the storage requirement is O(MN4) (compare with
O(N6) of the direct spectral method).

7Gamba, Haack, Hauck, and H., SIAM J. Sci. Comput., 2017.
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Bobylev-Krook-Wu (BKW) analytical solution

If the collision kernel B = 1/(4π) is a constant, one can construct an exact
solution to the homogeneous Boltzmann equation:

f (t, v) =
1

2(2πK)3/2
exp(−

v2

2K
)(

5K − 3

K
+

1 −K

K 2
v2

) ,

where K = 1 − exp(−t/6). One thus has the exact Q(f , f ) by calculating ∂t f .

N direct fast
8 6.91e-04 7.33e-04

16 7.83e-05 7.63e-05
32 3.90e-08 3.90e-08
64 — 3.81e-08

N direct fast
8 0.09s 0.14s

16 6.31s 0.26s
32 542.34s 1.78s
64 — 33.15s

Table: Left: ∥Qnum
−Qext

∥L∞ evaluated at t = 6.5. Right: Average running time for one
time evaluation of the collision operator. N is the number of points in each velocity
dimension. 14-point Lebedev rule (M = 14) is used on the sphere.
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Generalization to other collision operators

Multi-species Boltzmann collision operator for gas mixtures8

miv +mjv∗ = miv
′
+mjv

′
∗, mi ∣v ∣

2
+mj ∣v∗∣

2
= mi ∣v

′
∣
2
+mj ∣v

′
∗∣

2

∂t f
(i)
+ v ⋅ ∇x f

(i)
=

s

∑
j=1

1

Knij
Q(ij)(f (i), f (j))

Q(ij),+k ≈ ∑
∣q∣,σ

∣q∣2w∣q∣wσF
(ij)
(k, ∣q∣, σ)

N/2

∑
l,m=−N/2
l+m=k

(e
i π
L
∣q∣

mj
mi+mj

l ⋅σ
f (i)l )(e

−i π
L
∣q∣

mi
mi+mj

m⋅σ
f (j)m )

F (ij)(k, ∣q∣, σ) = ∫
S2

Bij(∣q∣, σ ⋅ q̂)e
−i π

L
∣q∣

mj
mi+mj

k ⋅q̂
dq̂

8Jaiswal, Alexeenko, and H., Comput. Methods Appl. Mech. Engrg., 2019.
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Generalization to other collision operators (cont’d)

Inelastic Boltzmann collision operator for granular gases9

v + v∗ = v ′ + v ′∗, ∣v ∣2 + ∣v∗∣
2
≥ ∣v ′∣2 + ∣v ′∗∣

2

Non-cutoff Boltzmann collision operator (collision kernel is non-integrable
in the angular direction)10

B = ∣v − v∗∣
λb(cos θ), sin θb(cos θ)∣

θ→0
∼ θ−1−ν , 0 < ν < 2,

with ν = 2 being the Coulomb interaction.

∫
R3

Q(f , f )(v)ϕ(v)dv = ∫
R3
∫

R3
∫

S2
B(∣q∣, σ ⋅ q̂)f (v)f (v∗) (ϕ(v

′

) − ϕ(v)) dσ dv dv∗

ϕ(v) = e−i
π
L
k ⋅v
Ô⇒ Qk ≈ ∑

∣q∣,q̂

∣q∣2w∣q∣wq̂F(k, ∣q∣, q̂)
N/2

∑
l,m=−N/2
l+m=k

fl (e
−i π

L
∣q∣m⋅q̂fm)

F(k, ∣q∣, q̂) = ∫
S2

B(∣q∣, σ ⋅ q̂) (e i
π
L
∣q∣ 1+e

4
k ⋅(q̂−σ)

− 1)dσ, e < 1 inelastic; e = 1 elastic

9H. and Ma, J. Comput. Phys., 2019.
10H. and Qi, J. Comput. Phys., 2020.
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Motivation

Now we have a Fourier spectral method for the Boltzmann equation

achieves a good accuracy-efficiency tradeoff

works generally well in practice

Q: Can we say something about its stability and convergence?

/ The equation is nonlinear.

/ The method does not necessarily preserve the positivity of the solution.

Positivity is the key to many stability estimates of the Boltzmann equation

∥f ∥L1
if f ≥0
ÔÔÔ ∫ f dv

if mass conservation
ÔÔÔÔÔÔÔÔ ∫ f 0 dv

, The method does preserve the mass (1 lies in the expansion basis).

, The domain is bounded.
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Existing work and our contribution

Pareschi and Russo, Transport Theory Statist. Phys., 2000.
— A positivity-preserving filter is applied to the equation to enforce the positivity of

the solution (then the proof for the continuous equation follows). Filtering

introduces too much smearing hence destroying the spectral accuracy.

Filbet and Mouhot, Trans. Amer. Math. Soc., 2011.
— Use the “spreading” or “mixing” property of the gain term of the collision

operator to show that the solution will become everywhere positive after a certain

time if it is initially negative.

In our recent workH., Qi, and Yang, SIAM J. Numer. Anal., 2021., we give a new
proof

estimate the L2 norm of the negative part of the solution and show that it
can be controlled (the solution is allowed to be negative for the method to
remain stable)

does not rely on sophisticated property of the collision operator
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Main stability result

The Fourier spectral method can be written as12:

⎧⎪⎪
⎨
⎪⎪⎩

∂t f = QR
(f , f ), v ∈ DL

f (0, v) = f 0
Ô⇒ (∗)

⎧⎪⎪
⎨
⎪⎪⎩

∂t fN = PNQ
R
(fN , fN), v ∈ DL

fN(0, v) = PN f
0
∶= f 0N

Basic assumptions:

B = ∣v − v∗∣
λb(cos θ), 0 ≤ λ ≤ 1, ∫S2 b(cos θ)dσ < ∞ (cut-off assumption).

f 0 ∈ L1 ∩H1(DL), periodic and non-negative.

For any ε, ∃N0, s.t. N > N0, ∥f 0N∥L1 ≤ 2∥f 0∥L1 and ∥f 0,−N ∥L2 < ε.

Theorem (H., Qi, and Yang, 2021)

Under the above assumptions, there exists an integer N0 depending only on the
(arbitrary) final time T and initial condition f 0, such that for all N > N0, the
numerical system (∗) admits a unique solution fN(t, ⋅) ∈ L1 ∩H1(DL) on [0,T ].
Furthermore, fN satisfies the stability estimate

∀t ∈ [0,T ], ∥fN(t)∥L1 ≤ 2∥f 0∥L1 .

12
PN is the projection operator onto the space PN . f −(v) ∶= max(−f (v),0).
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Main strategy of the proof

Step (i): Determine a small time τ such that there exists a unique solution fN on
[0, τ] and satisfies

∀t ∈ [0, τ], ∥fN(t)∥L1 ≤ 4∥f 0∥L1 .

Using this L1 bound, one can show that

∀t ∈ [0, τ], ∥f −N (t)∥L2 ≤ K0(f
0, τ)(∥f 0,−N ∥

L2 +
K1(f

0, τ)

N
) .

On the other hand,

∥fN(t)∥L1 = ∫ ∣fN(t, v)∣dv = 2∫ f −N (t, v)dv + ∫ fN(t, v)dv

= 2∥f −N (t)∥L1 + ∫ f 0(v)dv ≤ 2(2L)3/2∥f −N (t)∥L2 + ∥f 0∥L1 .

Therefore, we can choose N large enough (depending only on T and f 0) to obtain

∀t ∈ [0, τ], ∥fN(t)∥L1 ≤ 2∥f 0∥L1 . ⇐Ô back to the initial condition

Step (ii): Iterate the above process to build the solution to [τ,2τ], [2τ,3τ], ...
until T .
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Convergence and spectral accuracy

Basic assumptions:

B = ∣v − v∗∣
λb(cos θ), 0 ≤ λ ≤ 1, ∫S2 b(cos θ)dσ < ∞ (cut-off assumption).

f 0 ∈ L1 ∩Hk(DL), periodic and non-negative.

For any ε, ∃N0, s.t. N > N0, ∥f 0N∥L1 ≤ 2∥f 0∥L1 and ∥f 0,−N ∥L2 < ε.

Define the error function eN(t, v) = PN f (t, v) − fN(t, v), where f is the exact
solution and fN is the numerical solution. Then

Corollary

Under the above assumptions, there exists N0 such that the Fourier spectral
method is convergent for all N > N0 and exhibits spectral accuracy, that is,

∀t ∈ [0,T ], ∥eN(t)∥L2 ≤
C(f 0,T , k)

Nk
, for all N > N0.
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Numerical method for the full Boltzmann equation

Going back to the full Boltzmann equation:

∂t f + v ⋅ ∇x f =
1

Kn
Q(f , f )

One also needs an accurate discretization in the physical space to handle the
convection term.

We couple the discontinuous Galerkin (DG) method in the physical space and the
fast spectral (FS) method in the velocity space to obtain a highly accurate
deterministic method, DGFS, for the full Boltzmann equation13 14 15.

13Jaiswal, Alexeenko, and H., J. Comput. Phys., 2019.
14Jaiswal, Alexeenko, and H., Comput. Methods Appl. Mech. Engrg., 2019.
15Jaiswal, Pikus, Strongrich, Sebastiao, H., and Alexeenko, Phys. Fluids, 2019.
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2D thermally driven cavity flow

The walls are at rest and with the temperature shown above (Tc = 263K ,
Th = 283K ). The simulation is carried out at Kn = 1. Argon gas with VHS
collision kernel is taken as the working gas.

Jingwei Hu (U Washington) Spectral Method for Boltzmann Equation Apr 12, 2022 22 / 26



2D thermally driven cavity flow (cont’d)

Figure: Contours of the temperature and heat flux (x-component). DSMC results (thin
black lines). For DGFS, 82 cells and 3rd order polynomial are used in the physical space;
243 points (solid blue lines) and 483 points (solid red lines) are used in the velocity space.
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2D thermally driven cavity flow (cont’d)

Figure: Contours of the heat flux (y -component) and stress (xy -component). DSMC
results (thin black lines). For DGFS, 82 cells and 3rd order polynomial are used in the
physical space; 243 points (solid blue lines) and 483 points (solid red lines) are used in
the velocity space.
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2D(3V) thermally driven cavity flow (cont’d)

Figure: Contours of the velocity. For DGFS, 82 cells and 3rd order polynomial are used in
the physical space; 483 points (solid red lines) are used in the velocity space. Note that
DSMC results are not shown due to the huge statistical noise.
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Conclusion

A simple yet effective strategy is introduced to accelerate the direct Fourier
spectral method for the Boltzmann collision operator

can handle the general collision kernels (with and without angular cutoff),
the multi-species and inelastic Boltzmann collision operators;

can be coupled with the proper spatial discretization to yield a highly
accurate deterministic solver for the full Boltzmann equation

applicable to a series of engineering applications

A new stability and convergence proof of the Fourier spectral method is provided
for the (cutoff) Boltzmann equation.

Ongoing and future work: 1) Stability/convergence in the non-cutoff case. 2)
Some low-rank method to further reduce the cost.

Thank you!
Papers and preprints can be found at

https://jingweihu-math.github.io/webpage/
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